1
|
Das S, Thompson W, Papoutsakis ET. Engineered and hybrid human megakaryocytic extracellular vesicles for targeted non-viral cargo delivery to hematopoietic (blood) stem and progenitor cells. Front Bioeng Biotechnol 2024; 12:1435228. [PMID: 39386042 PMCID: PMC11461334 DOI: 10.3389/fbioe.2024.1435228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Native and engineered extracellular vesicles generated from human megakaryocytes (huMkEVs) or from the human megakaryocytic cell line CHRF (CHEVs) interact with tropism delivering their cargo to both human and murine hematopoietic stem and progenitor cells (HSPCs). To develop non-viral delivery vectors to HSPCs based on MkEVs, we first confirmed, using NOD-scid IL2Rγnull (NSG™) mice, the targeting potential of the large EVs, enriched in microparticles (huMkMPs), chosen for their large cargo capacity. 24 h post intravenous infusion into NSG mice, huMkEVs induced a nearly 50% increase in murine platelet counts. PKH26-labeled huMkEVs or CHEVs localized to the HSPC-rich bone marrow preferentially interacting with murine HSPCs, thus confirming their receptor-mediated tropism for NSG HSPCs, and their potential to treat thromobocytopenias. We explored this tropism to functionally deliver synthetic cargo, notably plasmid DNA coding for a fluorescent reporter, to NSG HSPCs both in vitro and in vivo. We loaded huMkEVs with plasmid DNA either through electroporation or by generating hybrid particles with preloaded liposomes. Both methods facilitated successful functional targeted delivery of pDNA, as tissue weight-normalized fluorescence intensity of the expressed fluorescent reporter was significantly higher in bone marrow than other tissues. Furthermore, the fraction of fluorescent CD117+ HSPCs was nearly 19-fold higher than other cell types within the bone marrow 72-h following administration of the hybrid particles, further supporting that HSPC tropism is retained when using hybrid particles. These data demonstrate the potential of these EVs as a non-viral, HSPC-specific cargo vehicle for gene therapy applications to treat hematological diseases.
Collapse
Affiliation(s)
- Samik Das
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Poncz M, Zaitsev SV, Ahn H, Kowalska MA, Bdeir K, Dergilev KV, Ivanciu L, Camire RM, Cines DB, Stepanova V. Packaging of supplemented urokinase into alpha granules of in vitro-grown megakaryocytes for targeted nascent clot lysis. Blood Adv 2024; 8:3798-3809. [PMID: 38805575 PMCID: PMC11298819 DOI: 10.1182/bloodadvances.2024012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes. CD34+ megakaryocytes internalize and store in alpha granules (α-granules) single-chain uPA (scuPA) and a plasmin-resistant thrombin-activatable variant (uPAT). Both uPAs colocalized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3, but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+ megakaryocytes was mediated, in part, via LRP1 and αIIbβ3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV but not endogenous VWF in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid artery injury model in nonobese diabetic-severe combined immunodeficiency IL2rγnull (NSG) mice homozygous for VWFR1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein Ibα) to test whether platelets derived from scuPA- or uPAT-megakaryocytes would prevent thrombus formation. NSG/VWFR1326H mice exhibited a lower thrombotic burden after carotid artery injury compared with NSG mice unless infused with human platelets or megakaryocytes, whereas intravenous injection of uPA-megakaryocytes generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies describe the use of in vitro-generated megakaryocytes as a potential platform for delivering uPA or other ectopic proteins within platelet α-granules to sites of vascular injury.
Collapse
Affiliation(s)
- Mortimer Poncz
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Sergei V. Zaitsev
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hyunsook Ahn
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - M. Anna Kowalska
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Konstantin V. Dergilev
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology named after Academician E.I. Chazov, Moscow, Russia
| | - Lacramioara Ivanciu
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Rodney M. Camire
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Douglas B. Cines
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
3
|
Kim H, Jarocha D, Johnson I, Ahn H, Hlinka N, French DL, Rauova L, Lee K, Poncz M. Studies of infused megakaryocytes into mice support a "catch-and-release" model of pulmonary-centric thrombopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597316. [PMID: 38895231 PMCID: PMC11185690 DOI: 10.1101/2024.06.04.597316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many aspects of thrombopoiesis, the release of platelets from megakaryocytes (Mks), remain under debate, including where this process occurs. Murine lung in situ -microscopy studies suggested that a significant fraction of circulating platelets were released from lung-entrapped, marrow-derived Mks. We now confirm these in situ studies that endogenous mMks are entrapped in the lungs and show that intravenously infused in vitro -differentiated, mature murine (m) and human (h) Mks are similarly entrapped followed by shedding of their cytoplasm over ∼30 minutes with a peak number of released platelets occurring 1.5-4 hours later. However, while infused Mks from both species shed large intrapulmonary cytoplasmic fragments that underwent further processing into platelet-sized fragments, the two differed: many mMks escaped from and then recycled back to the lungs, while most hMks were enucleated upon first intrapulmonary passage. Infused immature hMks, inflammatory hMks, umbilical cord-blood-derived hMks and immortalized Mk progenitor cell (imMKCL)-derived hMks were also entrapped in the lung of recipient mice, and released their cytoplasm, but did so to different degrees. Intraarterial infused hMks resulted in few Mks being entrapped in tissues other than the lungs and was accompanied by a blunted and delayed rise in circulating human platelets. These studies demonstrate that the lung entraps and processes both circulating Mks and released large cytoplasmic fragments consistent with a recent lung/heart murine study and support a pulmonary-centric "catch-and-release" model of thrombopoiesis. Thus, thrombopoiesis is a drawn-out process with the majority of cytoplasmic processing derived from Mks occurring in the pulmonary bed. Key Points Infused in vitro -differentiated megakaryocytes synchronously release cytoplasmic fragments highly selectively in the pulmonary bed. Large, released megakaryocyte fragments recycle to the lungs, undergo further fission, terminally form platelets.
Collapse
|
4
|
Pavani G, Klein JG, Nations CC, Sussman JH, Tan K, An HH, Abdulmalik O, Thom CS, Gearhart PA, Willett CM, Maguire JA, Chou ST, French DL, Gadue P. Modeling primitive and definitive erythropoiesis with induced pluripotent stem cells. Blood Adv 2024; 8:1449-1463. [PMID: 38290102 PMCID: PMC10955655 DOI: 10.1182/bloodadvances.2023011708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.
Collapse
Affiliation(s)
- Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joshua G. Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Catriana C. Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan H. Sussman
- Department of Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kai Tan
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Hyung An
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S. Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter A. Gearhart
- Department of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA
| | - Camryn M. Willett
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stella T. Chou
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
5
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Kumar S, Schroeder JA, Shi Q. Platelet-targeted gene therapy induces immune tolerance in hemophilia and beyond. J Thromb Haemost 2024; 22:23-34. [PMID: 37558132 PMCID: PMC11249137 DOI: 10.1016/j.jtha.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Blood platelets have unique storage and delivery capabilities. Platelets play fundamental roles in hemostasis, inflammatory reactions, and immune responses. Beyond their functions, platelets have been used as a target for gene therapy. Platelet-targeted gene therapy aims to deliver a sustained expression of neo-protein in vivo by genetically modifying the target cells, resulting in a cure for the disease. Even though there has been substantial progress in the field of gene therapy, the potential development of immune responses to transgene products or vectors remains a significant concern. Of note, multiple preclinical studies using platelet-specific lentiviral gene delivery to hematopoietic stem cells in hemophilia have demonstrated promising results with therapeutic levels of neo-protein that rescue the hemorrhagic bleeding phenotype and induce antigen-specific immune tolerance. Further studies using ovalbumin as a surrogate protein for platelet gene therapy have shown robust antigen-specific immune tolerance induced via peripheral clonal deletions of antigen-specific CD4- and CD8-T effector cells and induction of antigen-specific regulatory T (Treg) cells. This review discusses platelet-targeted gene therapy, focusing on immune tolerance induction.
Collapse
Affiliation(s)
- Saurabh Kumar
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA
| | - Jocelyn A Schroeder
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qizhen Shi
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA; Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center Milwaukee, Wisconsin, USA.
| |
Collapse
|
7
|
Poncz M, Zaitsev SV, Ahn H, Kowalska MA, Bdeir K, Camire RM, Cines DB, Stepanova V. Packaging of supplemented urokinase into naked alpha-granules of in vitro -grown megakaryocytes for targeted therapeutic delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570278. [PMID: 38106191 PMCID: PMC10723305 DOI: 10.1101/2023.12.05.570278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Our prior finding that uPA endogenously expressed and stored in the platelets of transgenic mice prevented thrombus formation without causing bleeding, prompted us to develop a potentially clinically relevant means of generating anti-thrombotic human platelets in vitro from CD34 + hematopoietic cell-derived megakaryocytes. CD34 + -megakaryocytes internalize and store in α-granules single-chain uPA (scuPA) and a uPA variant modified to be plasmin-resistant, but thrombin-activatable, (uPAT). Both uPAs co-localized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3 (IFITM3), but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34 + -\megakaryocytes was mediated in part via LRP1 and αIIbβ3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV, but not endogenous VWF, in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid-artery injury model in NOD-scid IL2rγnull (NSG) mice homozygous for VWF R1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein IbmlIX) to test whether platelets derived from scuPA-MKs or uPAT-Mks would prevent thrombus formation. NSG/VWF R1326H mice exhibited a lower thrombotic burden after carotid artery injury compared to NSG mice unless infused with human platelets or MKs, whereas intravenous injection of either uPA-containing megakaryocytes into NSG/VWF R1326H generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies suggest the potential to deliver uPA or potentially other ectopic proteins within platelet α-granules from in vitro- generated megakaryocytes. Key points Unlike platelets, in vitro-grown megakaryocytes can store exogenous uPA in its α-granules.uPA uptake involves LRP1 and αIIbβ3 receptors and is functionally available from activated platelets.
Collapse
|
8
|
Zhao X, Alibhai D, Walsh TG, Tarassova N, Englert M, Birol SZ, Li Y, Williams CM, Neal CR, Burkard P, Cross SJ, Aitken EW, Waller AK, Beltrán JB, Gunning PW, Hardeman EC, Agbani EO, Nieswandt B, Hers I, Ghevaert C, Poole AW. Highly efficient platelet generation in lung vasculature reproduced by microfluidics. Nat Commun 2023; 14:4026. [PMID: 37419900 PMCID: PMC10329040 DOI: 10.1038/s41467-023-39598-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Dominic Alibhai
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Tony G Walsh
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Maximilian Englert
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Semra Z Birol
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Chris R Neal
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Philipp Burkard
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Stephen J Cross
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elizabeth W Aitken
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Amie K Waller
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - José Ballester Beltrán
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ejaife O Agbani
- Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Cedric Ghevaert
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
9
|
Lee K, Ahn HS, Estevez B, Poncz M. RUNX1-deficient human megakaryocytes demonstrate thrombopoietic and platelet half-life and functional defects. Blood 2023; 141:260-270. [PMID: 36219879 PMCID: PMC9936297 DOI: 10.1182/blood.2022017561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Heterozygous defects in runt-related transcription factor 1 (RUNX1) are causative of a familial platelet disorder with associated myeloid malignancy (FPDMM). Because RUNX1-deficient animal models do not mimic bleeding disorder or leukemic risk associated with FPDMM, development of a proper model system is critical to understanding the underlying mechanisms of the observed phenotype and to identifying therapeutic interventions. We previously reported an in vitro megakaryopoiesis system comprising human CD34+ hematopoietic stem and progenitor cells that recapitulated the FPDMM quantitative megakaryocyte defect through a decrease in RUNX1 expression via a lentiviral short hairpin RNA strategy. We now show that shRX-megakaryocytes have a marked reduction in agonist responsiveness. We then infused shRX-megakaryocytes into immunocompromised NOD scid gamma (NSG) mice and demonstrated that these megakaryocytes released fewer platelets than megakaryocytes transfected with a nontargeting shRNA, and these platelets had a diminished half-life. The platelets were also poorly responsive to agonists, unable to correct thrombus formation in NSG mice homozygous for a R1326H mutation in von Willebrand Factor (VWFR1326H), which switches the species-binding specificity of the VWF from mouse to human glycoprotein Ibα. A small-molecule inhibitor RepSox, which blocks the transforming growth factor β1 (TGFβ1) pathway and rescued defective megakaryopoiesis in vitro, corrected the thrombopoietic defect, defects in thrombus formation and platelet half-life, and agonist response in NSG/VWFR1326H mice. Thus, this model recapitulates the defects in FPDMM megakaryocytes and platelets, identifies previously unrecognized defects in thrombopoiesis and platelet half-life, and demonstrates for the first time, reversal of RUNX1 deficiency-induced hemostatic defects by a drug.
Collapse
Affiliation(s)
- Kiwon Lee
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Sook Ahn
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brian Estevez
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol 2022; 13:1029223. [PMID: 36524131 PMCID: PMC9745136 DOI: 10.3389/fimmu.2022.1029223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Megakaryocytes (MKs) are large cells giving rise to platelets. It is well established that in adults, MKs develop from hematopoietic stem cells and reside in the bone marrow. MKs are also rare but normal constituents of the venous blood returning to the lungs, and MKs are found in the lung vasculature (MKcirc), suggesting that these cells are migrants from the bone marrow and get trapped in lung capillaries where the final steps of platelet production can occur. An unprecedented increase in the number of lung and circulating MKs was described in coronavirus disease 2019 (COVID-19) patients, suggesting that lung thrombopoiesis may be increased during lung infection and/or thromboinflammation. In addition to the population of platelet-producing intravascular MKs in the lung, a population of lung-resident megakaryocytes (MKL) has been identified and presents a specific immune signature compared to its bone marrow counterparts. Recent single-cell analysis and intravital imaging have helped us gain a better understanding of these populations in mouse and human. This review aims at summarizing the recent data on increased occurrence of lung MKs and discusses their origin, specificities, and potential role in homeostasis and inflammatory and infectious lung diseases. Here, we address remaining questions, controversies, and methodologic challenges for further studies of both MKcirc and MKL.
Collapse
|
11
|
Production and nonclinical evaluation of an autologous iPSC-derived platelet product for the iPLAT1 clinical trial. Blood Adv 2022; 6:6056-6069. [PMID: 36149941 PMCID: PMC9706535 DOI: 10.1182/bloodadvances.2022008512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
Donor-derived platelets are used to treat or prevent hemorrhage in patients with thrombocytopenia. However, ∼5% or more of these patients are complicated with alloimmune platelet transfusion refractoriness (allo-PTR) due to alloantibodies against HLA-I or human platelet antigens (HPA). In these cases, platelets from compatible donors are necessary, but it is difficult to find such donors for patients with rare HLA-I or HPA. To produce platelet products for patients with aplastic anemia with allo-PTR due to rare HPA-1 mismatch in Japan, we developed an ex vivo good manufacturing process (GMP)-based production system for an induced pluripotent stem cell-derived platelet product (iPSC-PLTs). Immortalized megakaryocyte progenitor cell lines (imMKCLs) were established from patient iPSCs, and a competent imMKCL clone was selected for the master cell bank (MCB) and confirmed for safety, including negativity of pathogens. From this MCB, iPSC-PLTs were produced using turbulent flow bioreactors and new drugs. In extensive nonclinical studies, iPSC-PLTs were confirmed for quality, safety, and efficacy, including hemostasis in a rabbit model. This report presents a complete system for the GMP-based production of iPSC-PLTs and the required nonclinical studies and thus supports the iPLAT1 study, the first-in-human clinical trial of iPSC-PLTs in a patient with allo-PTR and no compatible donor using the autologous product. It also serves as a comprehensive reference for the development of widely applicable allogeneic iPSC-PLTs and other cell products that use iPSC-derived progenitor cells as MCB.
Collapse
|
12
|
Qin J, Zhang J, Jiang J, Zhang B, Li J, Lin X, Wang S, Zhu M, Fan Z, Lv Y, He L, Chen L, Yue W, Li Y, Pei X. Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell 2022; 29:1229-1245.e7. [PMID: 35931032 DOI: 10.1016/j.stem.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
Reprogramming somatic cells into megakaryocytes (MKs) would provide a promising source of platelets. However, using a pharmacological approach to generate human MKs from somatic cells remains an unmet challenge. Here, we report that a combination of four small molecules (4M) successfully converted human cord blood erythroblasts (EBs) into induced MKs (iMKs). The iMKs could produce proplatelets and release functional platelets, functionally resembling natural MKs. Reprogramming trajectory analysis revealed an efficient cell fate conversion of EBs into iMKs by 4M via the intermediate state of bipotent precursors. 4M induced chromatin remodeling and drove the transition of transcription factor (TF) regulatory network from key erythroid TFs to essential TFs for megakaryopoiesis, including FLI1 and MEIS1. These results demonstrate that the chemical reprogramming of cord blood EBs into iMKs provides a simple and efficient approach to generate MKs and platelets for clinical applications.
Collapse
Affiliation(s)
- Jinhua Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianan Jiang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jisheng Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaosong Lin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Meiqi Zhu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yang Lv
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China; Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| |
Collapse
|
13
|
Kim D, Shin DY, Liu J, Jeong NR, Koh Y, Hong J, Huang X, Broxmeyer HE, Yoon SS. Expansion of Human Megakaryocyte-Lineage Progeny via Aryl Hydrocarbon Receptor Antagonism with CH223191. Stem Cell Rev Rep 2022; 18:2982-2994. [PMID: 35687264 DOI: 10.1007/s12015-022-10386-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
Abstract
Aryl hydrocarbon receptor (AhR) antagonism is known to expand human hematopoietic stem cells (HSCs). However, its regulatory effect on the lineage-skewed differentiation of HSCs has not been sufficiently studied. Here, we investigate the effect of the AhR-selective antagonist CH223191 on the regulation of HSC differentiation. Consistent with the well-known effects of AhR antagonists, CH223191 treatment increase phenotypic HSCs (Lin-CD34 + CD38-CD90 + CD45RA-) and preserves their functionality. On the other hand, CH223191 leads to an overall expansion of megakaryocyte (MK)-lineage populations, such as MK progenitors (MKps, CD34 + CD41 +), immature MKs (CD41 + CD42b-), and mature MKs (CD41 + CD42b +), and it also activates MK/platelet-associated signaling pathways. Furthermore, CH223191 expands MKps, mature MKs, and p-selectin (CD62p)-positive platelet-like particles in immune thrombocytopenia (ITP) patient bone marrow (BM). These results highlight the numerical expansion of human MK-lineage progeny through AhR antagonism with CH223191. This approach using CH2231291 may be applicable in the development of auxiliary treatment regimens for patients with abnormal thrombopoiesis.
Collapse
Affiliation(s)
- Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Jun Liu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Na-Rae Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Xinxin Huang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301:120602. [DOI: 10.1016/j.lfs.2022.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
|
15
|
Bhan A, Ansari K, Chen MY, Jandial R. Human induced pluripotent stem cell-derived platelets loaded with lapatinib effectively target HER2+ breast cancer metastasis to the brain. Sci Rep 2021; 11:16866. [PMID: 34654856 PMCID: PMC8521584 DOI: 10.1038/s41598-021-96351-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
Prognosis of patients with HER2+ breast-to-brain-metastasis (BBM) is dismal even after current standard-of-care treatments, including surgical resection, whole-brain radiation, and systemic chemotherapy. Radiation and systemic chemotherapies can also induce cytotoxicity, leading to significant side effects. Studies indicate that donor-derived platelets can serve as immune-compatible drug carriers that interact with and deliver drugs to cancer cells with fewer side effects, making them a promising therapeutic option with enhanced antitumor activity. Moreover, human induced pluripotent stem cells (hiPSCs) provide a potentially renewable source of clinical-grade transfusable platelets that can be drug-loaded to complement the supply of donor-derived platelets. Here, we describe methods for ex vivo generation of megakaryocytes (MKs) and functional platelets from hiPSCs (hiPSC-platelets) in a scalable fashion. We then loaded hiPSC-platelets with lapatinib and infused them into BBM tumor-bearing NOD/SCID mouse models. Such treatment significantly increased intracellular lapatinib accumulation in BBMs in vivo, potentially via tumor cell-induced activation/aggregation. Lapatinib-loaded hiPSC-platelets exhibited normal morphology and function and released lapatinib pH-dependently. Importantly, lapatinib delivery to BBM cells via hiPSC-platelets inhibited tumor growth and prolonged survival of tumor-bearing mice. Overall, use of lapatinib-loaded hiPSC-platelets effectively reduced adverse effects of free lapatinib and enhanced its therapeutic efficacy, suggesting that they represent a novel means to deliver chemotherapeutic drugs as treatment for BBM.
Collapse
Affiliation(s)
- Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Khairul Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- Celcuity LLC, Minneapolis, MN, 55446, USA
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
16
|
Leung J, Cau MF, Kastrup CJ. Emerging gene therapies for enhancing the hemostatic potential of platelets. Transfusion 2021; 61 Suppl 1:S275-S285. [PMID: 34269451 DOI: 10.1111/trf.16519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Platelet transfusions are an integral component of balanced hemostatic resuscitation protocols used to manage severe hemorrhage following trauma. Enhancing the hemostatic potential of platelets could lead to further increases in the efficacy of transfusions, particularly for non-compressible torso hemorrhage or severe hemorrhage with coagulopathy, by decreasing blood loss and improving overall patient outcomes. Advances in gene therapies, including RNA therapies, are leading to new strategies to enhance platelets for better control of hemorrhage. This review will highlight three approaches for creating modified platelets using gene therapies: (i) direct transfection of transfusable platelets ex vivo, (ii) in vitro production of engineered platelets from platelet-precursor cells, and (iii) modifying the bone marrow for in vivo production of modified platelets. In summary, modifying platelets to enhance their hemostatic potential is an exciting new frontier in transfusion medicine, but more preclinical development as well as studies testing the safety and efficacy of these agents are needed.
Collapse
Affiliation(s)
- Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
MacKeigan DT, Ni T, Shen C, Stratton TW, Ma W, Zhu G, Bhoria P, Ni H. Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2021; 20:260-273. [PMID: 33001021 DOI: 10.2174/1871529x20666201001144541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.
Collapse
Affiliation(s)
- Daniel T MacKeigan
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Tyler W Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
18
|
Human megakaryocytic microparticles induce de novo platelet biogenesis in a wild-type murine model. Blood Adv 2021; 4:804-814. [PMID: 32119736 DOI: 10.1182/bloodadvances.2019000753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Platelet transfusions are used to treat idiopathic or drug-induced thrombocytopenia. Platelets are an expensive product in limited supply, with limited storage and distribution capabilities because they cannot be frozen. We have demonstrated that, in vitro, human megakaryocytic microparticles (huMkMPs) target human CD34+ hematopoietic stem and progenitor cells (huHSPCs) and induce their Mk differentiation and platelet biogenesis in the absence of thrombopoietin. In this study, we showed that, in vitro, huMkMPs can also target murine HSPCs (muHSPCs) to induce them to differentiate into megakaryocytes in the absence of thrombopoietin. Based on that, using wild-type BALB/c mice, we demonstrated that intravenously administering 2 × 106 huMkMPs triggered de novo murine platelet biogenesis to increase platelet levels up to 49% 16 hours after administration. huMkMPs also largely rescued low platelet levels in mice with induced thrombocytopenia 16 hours after administration by increasing platelet counts by 51%, compared with platelet counts in thrombocytopenic mice. Normalized on a tissue-mass basis, biodistribution experiments show that MkMPs localized largely to the bone marrow, lungs, and liver 24 hours after huMkMP administration. Beyond the bone marrow, CD41+ (megakaryocytes and Mk-progenitor) cells were frequent in lungs, spleen, and especially, liver. In the liver, infused huMKMPs colocalized with Mk progenitors and muHSPCs, thus suggesting that huMkMPs interact with muHSPCs in vivo to induce platelet biogenesis. Our data demonstrate the potential of huMkMPs, which can be stored frozen, to treat thrombocytopenias and serve as effective carriers for in vivo, target-specific cargo delivery to HSPCs.
Collapse
|
19
|
Catelli LF, Saad STO. Ex Vivo Manufacture of Megakaryocytes and Platelets from Stem Cells: Recent Advances Toward Transfusion in Humans. Stem Cells Dev 2021; 30:351-362. [PMID: 33622080 DOI: 10.1089/scd.2020.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The generation of ex vivo functional megakaryocytes (MK) and platelets is an important issue in transfusion medicine as donor dependence implies in limitations, such as shortage of eligible volunteers. Indeed, platelet transfusion is still a procedure that saves the lives of patients with defective platelet production. Recent technological development has enabled the isolation and expansion of stem cells that can be used as a source for the production of functional platelets for transfusion. In this review, we discuss recent approaches of in vitro or ex vivo production of MK and platelets, suggesting that, in the near future, donor-independent sources may become a possibility. The feasibility of using these cells in the clinic may be safer, and in vitro manipulation could generate universally compatible products, solving problems related to platelet refractoriness. However, functionality and survival testing of these products in human beings are scarce; therefore, additional studies are needed to consolidate this purpose.
Collapse
Affiliation(s)
- Lucas Ferioli Catelli
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
20
|
Abstract
Current research in the field of transfusion medicine is focused on developing innovative approaches to generate populations of functional megakaryocytes (MKs) ex vivo. This may open perspectives to establish alternative therapies for donor platelet transfusion in the management of thrombocytopenic patients and pave the way for novel regenerative approaches. Efficient cryopreservation techniques can provide the opportunity for long-term storage and accumulation of necessary amounts of MKs in a ready-to-use manner. However, in this case, besides the viability, it is crucial to consider the recovery of functional MK properties after the impact of freezing. In this chapter, the possibility to cryopreserve iPSC-derived MKs is described. In particular, the methods for a comprehensive analysis of phenotypic and functional features of MKs after cryopreservation are proposed. The use of cryopreserved in vitro-produced MKs may benefit to the field of transfusion medicine to overcome the lack of sufficient blood donors.
Collapse
|
21
|
Ono‐Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose-derived mesenchymal stem cells: Mechanistic studies and clinical application. J Thromb Haemost 2021; 19:342-350. [PMID: 33217130 PMCID: PMC7898515 DOI: 10.1111/jth.15181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Megakaryocytes (MKs) are platelet progenitor stem cells found in the bone marrow. Platelets obtained from blood draws can be used for therapeutic applications, especially platelet transfusion. The needs for platelet transfusions for clinical situation is increasing, due in part to the growing number of patients undergoing chemotherapy. Platelets obtained from donors, however, have the disadvantages of a limited storage lifespan and the risk of donor-related infection. Extensive effort has therefore been directed at manufacturing platelets ex vivo. Here, we review ex vivo technologies for MK development, focusing on human adipose tissue-derived mesenchymal stem/stromal cell line (ASCL)-based strategies and their potential clinical application. Bone marrow and adipose tissues contain mesenchymal stem/stromal cells that have an ability to differentiate into MKs, which release platelets. Taking advantage of this mechanism, we developed a donor-independent system for manufacturing platelets for clinical application using ASCL established from adipose-derived mesenchymal stem/stromal cells (ASCs). Culture of ASCs with endogenous thrombopoietin and its receptor c-MPL, and endogenous genes such as p45NF-E2 leads to MK differentiation and subsequent platelet production. ASCs compose heterogeneous cells, however, and are not suitable for clinical application. Thus, we established ASCLs, which expand into a more homogeneous population, and fulfill the criteria for mesenchymal stem cells set by the International Society for Cellular Therapy. Using our ASCL culture system with MK lineage induction medium without recombinant thrombopoietin led to peak production of platelets within 12 days, which may be sufficient for clinical application.
Collapse
Affiliation(s)
- Yukako Ono‐Uruga
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
| | - Yasuo Ikeda
- Department of HematologyKeio University School of MedicineTokyoJapan
- Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Yumiko Matsubara
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
- Department of Laboratory MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
22
|
Generation and manipulation of human iPSC-derived platelets. Cell Mol Life Sci 2021; 78:3385-3401. [PMID: 33439272 PMCID: PMC7804213 DOI: 10.1007/s00018-020-03749-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures.
Collapse
|
23
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
24
|
Pogozhykh D, Eicke D, Gryshkov O, Wolkers WF, Schulze K, Guzmán CA, Blasczyk R, Figueiredo C. Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. Int J Mol Sci 2020; 21:ijms21207654. [PMID: 33081128 PMCID: PMC7589913 DOI: 10.3390/ijms21207654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| | - Dorothee Eicke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30823 Garbsen, Germany;
| | - Willem F. Wolkers
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| |
Collapse
|
25
|
Guan X, Wang L, Wang H, Wang H, Dai W, Jiang Y. Good Manufacturing Practice-Grade of Megakaryocytes Produced by a Novel Ex Vivo Culturing Platform. Clin Transl Sci 2020; 13:1115-1126. [PMID: 33030809 PMCID: PMC7719378 DOI: 10.1111/cts.12788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Ex vivo (EV)‐derived megakaryocytes (MKs) have shown great promise as a substitute for platelets in transfusion medicine to alleviate a severe shortage of donor‐platelets. Challenges remain that include poor efficiency, a limited scale of production, and undefined short‐term storage conditions of EV‐derived MKs. This study aims to develop a high‐efficiency system for large‐scale production of Good Manufacturing Practice (GMP)‐grade MKs and determine the short‐term storage condition for the MKs. A roller‐bottle culture system was introduced to produce GMP‐grade MKs from small‐molecule/cytokine cocktail expanded hematopoietic stem cells. Various buffer systems and temperatures for the short‐term storage of MKs were assessed by cell viability, biomarker expression, and DNA ploidy levels. MKs stored for 24 hours were transplanted into sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to confirm their platelet‐releasing and tissue‐homing ability in vivo. A yield of ~ 2.5 × 104 CD41a+/CD42b+ MKs with purity of ~ 80% was achieved from one original cord blood CD34+ cell. Compared with the static culture, the roller‐bottle culture system significantly enhanced megakaryopoiesis, as shown by the cell size, DNA ploidy, and megakaryopoiesis‐related gene expression. The optimal storage condition for the MKs was defined as normal saline with 10% human serum albumin at 22℃. Stored MKs were capable of rapidly producing functional platelets and largely distributing in the lungs of NOD/SCID mice. The novel development of efficient production and storage system for GMP‐grade MKs represents a significant step toward application of these MKs in the clinic.
Collapse
Affiliation(s)
- Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corporation, Suzhou, China
| | - Lan Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Hanlu Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corporation, Suzhou, China
| | - Huihui Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corporation, Suzhou, China
| | - Wei Dai
- Department of Environmental Medicine, NYU Langone Medical Center, Tuxedo, New York, USA
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corporation, Suzhou, China
| |
Collapse
|
26
|
Flahou C, Sugimoto N, Eto K. [Novel platelet pharming using human induced pluripotent stem cells]. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2020; 204:961-970. [PMID: 33012790 PMCID: PMC7521593 DOI: 10.1016/j.banm.2020.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022]
Abstract
La production in vitro de plaquettes offre une opportunité de résoudre les problèmes liés aux limitations d’approvisionnement et à la sécurité des dons de produits dérivés du sang. Les cellules souches pluripotentes induites – ou iPSC – sont une source idéale pour la production de cellules à des fins de thérapies régénératives. Nous avons précédemment établi avec succès une lignée mégacaryocytaire immortalisée à partir d’iPSC. Celle-ci possède une capacité de prolifération fiable. Par ailleurs, il est possible de les cryoconserver. Elle est donc une source adaptée de cellules primaires pour la production de plaquettes suivant les Bonnes Pratiques de Fabrication (BPF). Dans le même temps, la capacité améliorée des bioréacteurs à reproduire certaines conditions physiologiques, telle que la turbulence, de pair avec la découverte de molécules favorisant la thrombopoïèse, a contribué à l’accomplissement de la production de plaquettes en quantité et qualité suffisantes pour répondre aux besoins cliniques. La production de plaquettes à partir de cellules iPS s’étend aussi aux patients en état de réfraction allo-immune, par la production de plaquettes autologues ou dont on a génétiquement manipulé l’expression des Antigènes des Leucocytes Humains (HLA) et des Antigènes Plaquettaires Humain (HPA). Considérant ces avancées fondamentales, les plaquettes iPSC avec expression des HLA modifiées se présentent comme un potentiel produit de transfusion universel. Dans cette revue, nous souhaitons apporter une vue d’ensemble de la production in vitro de plaquettes à partir de cellules iPS, et de son possible potentiel transformatif, d’importance capitale dans le domaine de la transfusion des produits sanguins.
Collapse
Affiliation(s)
- C Flahou
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon
| | - N Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon
| | - K Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon.,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japon
| |
Collapse
|
27
|
Cai Y, Shi Q. Platelet-Targeted FVIII Gene Therapy Restores Hemostasis and Induces Immune Tolerance for Hemophilia A. Front Immunol 2020; 11:964. [PMID: 32595633 PMCID: PMC7303294 DOI: 10.3389/fimmu.2020.00964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Platelets are small anucleated blood components primarily described as playing a fundamental role in hemostasis and thrombosis. Over the last decades, increasing evidence has demonstrated the role of platelets in modulating inflammatory reactions and immune responses. Platelets harbor several specialized organelles: granules, endosomes, lysosomes, and mitochondria that can synthesize proteins with pre-stored mRNAs when needed. While the functions of platelets in the immune response are well-recognized, little is known about the potential role of platelets in immune tolerance. Recent studies demonstrate that platelet-specific FVIII gene therapy can restore hemostasis and induce immune tolerance in hemophilia A mice, even mice with preexisting anti-FVIII immunity. Here, we review the potential mechanisms by which platelet-targeted FVIII gene therapy restores hemostasis in the presence of anti-FVIII inhibitory antibodies and induces immune tolerance in hemophilia A.
Collapse
Affiliation(s)
- Yuanhua Cai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| |
Collapse
|
28
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. In vitro platelet production for transfusion purposes: Where are we now? Transfus Apher Sci 2020; 59:102864. [PMID: 32646795 DOI: 10.1016/j.transci.2020.102864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade there has been a worldwide increase in the demand of platelet concentrates (PCs) for transfusion. This is, to a great extent, due to a growing and aging population with the concomitant increase in the incidence of onco-hematological diseases, which require frequent platelet (PLT) transfusions. Currently, PLTs are sourced uniquely from donations, and their storage time is limited only to a few days. The necessity to store PCs at room temperature (to minimize loss of PLT functional integrity), poses a major risk for bacterial contamination. While the implementation of pathogen reduction treatments (PRTs) and new-generation PLT additive solutions have allowed the extension of the shelf life and a safer PLT transfusion product, the concern of PCs shortage still pressures the scientific community to find alternative solutions with the aim of meeting the PLT transfusion increasing demand. In this concise report, we will focus on the efforts made to produce, in in vitro culture, high yields of viable and functional PLTs for transfusion purposes in a cost-effective manner, meeting not only current Good Manufacturing Practices (cGMPs), but also transfusion safety standards.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, England, UK
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain.
| |
Collapse
|
29
|
Infused factor VIII-expressing platelets or megakaryocytes as a novel therapeutic strategy for hemophilia A. Blood Adv 2020; 3:1368-1378. [PMID: 31036722 DOI: 10.1182/bloodadvances.2017007914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
B-domainless factor VIII (FVIII) ectopically expressed in megakaryocytes (MKs) is stored in α granules of platelets (pFVIII) and is capable of restoring hemostasis in FVIIInull mice, even in the presence of circulating inhibitors. However, our prior studies have shown that this ectopically expressed pFVIII can injure developing MKs. Moreover, the known risks of prolonged thrombocytopenia after bone marrow transplantation are significant challenges to the use of this strategy to treat individuals with severe hemophilia A and particularly those with intractable clinically relevant inhibitors. Because of these limitations, we now propose the alternative therapeutic pFVIII strategy of infusing pFVIII-expressing MKs or platelets derived from induced pluripotent stem cells (iPSCs). pFVIII-expressing iPSC-derived MKs, termed iMKs, release platelets that can contribute to improved hemostasis in problematic inhibitor patients with hemophilia A. As proof of principle, we demonstrate that hemostasis can be achieved in vitro and in vivo with pFVIII-expressing platelets and show prolonged efficacy. Notably, pFVIII-expressing platelets are also effective in the presence of inhibitors, and their effect was enhanced with recombinant FVIIa. Human pFVIII-expressing iMKs improved hemostasis in vitro, and derived platelets from infused human pFVIII-expressing iMKs improved hemostasis in FVIIInull mice. These studies indicate the potential therapeutic use of recurrent pFVIII-expressing MK or platelet infusions with prolonged hemostatic coverage that may be additive with bypassing agents in hemophilia A patients with neutralizing inhibitors.
Collapse
|
30
|
Patel A, Clementelli CM, Jarocha D, Mosoyan G, Else C, Kintali M, Fong H, Tong J, Gordon R, Gillespie V, Keyzner A, Poncz M, Hoffman R, Iancu-Rubin C. Pre-clinical development of a cryopreservable megakaryocytic cell product capable of sustained platelet production in mice. Transfusion 2019; 59:3698-3713. [PMID: 31802511 DOI: 10.1111/trf.15546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelet (PLT) transfusions are the most effective treatments for patients with thrombocytopenia. The growing demand for PLT transfusion products is compounded by a limited supply due to dependency on volunteer donors, a short shelf-life, risk of contaminating pathogens, and alloimmunization. This study provides preclinical evidence that a third-party, cryopreservable source of PLT-generating cells has the potential to complement presently available PLT transfusion products. STUDY DESIGN AND METHODS CD34+ hematopoietic stem/progenitor cells derived from umbilical cord blood (UCB) units were used in a simple and efficient culture system to generate a cell product consisting of megakaryocytes (MKs) at different stages of development. The cultures thus generated were evaluated ex vivo and in vivo before and after cryopreservation. RESULTS We generated a megakaryocytic cell product that can be cryopreserved without altering its phenotypical and functional capabilities. The infusion of such a product, either fresh or cryopreserved, into immune-deficient mice led to production of functional human PLTs which were observed within a week after infusion and persisted for 8 weeks, orders of magnitude longer than that observed after the infusion of traditional PLT transfusion products. The sustained human PLT engraftment was accompanied by a robust presence of human cells in the bone marrow (BM), spleen, and lungs of recipient mice. CONCLUSION This is a proof-of-principle study demonstrating the creation of a cryopreservable megakaryocytic cell product which releases functional PLTs in vivo. Clinical development of such a product is currently being pursued for the treatment of thrombocytopenia in patients with hematological malignancies.
Collapse
Affiliation(s)
- Ami Patel
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cara Marie Clementelli
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gohar Mosoyan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cindy Else
- Comparative Pathology Laboratory in the Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manisha Kintali
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen Fong
- Sangamo Therapeutics, Inc., Richmond, California
| | - Jay Tong
- AllCells, LLC, Alameda, California
| | - Ronald Gordon
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Virginia Gillespie
- Comparative Pathology Laboratory in the Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alla Keyzner
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mortimer Poncz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Camelia Iancu-Rubin
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Lefrançais E, Looney MR. Platelet Biogenesis in the Lung Circulation. Physiology (Bethesda) 2019; 34:392-401. [PMID: 31577166 PMCID: PMC6957358 DOI: 10.1152/physiol.00017.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Megakaryocytes are normal cellular components of the blood returning to the heart and entering the lungs, and historical data has pointed to a role of the lungs in platelet production. Recent studies using intravital microscopy have demonstrated that platelet release occurs in the lung from bone marrow megakaryocytes that embolize into the lung circulation.
Collapse
Affiliation(s)
- Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
32
|
Hansen M, von Lindern M, van den Akker E, Varga E. Human‐induced pluripotent stem cell‐derived blood products: state of the art and future directions. FEBS Lett 2019; 593:3288-3303. [DOI: 10.1002/1873-3468.13599] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Marten Hansen
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| |
Collapse
|
33
|
Salzmann M, Schrottmaier WC, Kral-Pointner JB, Mussbacher M, Volz J, Hoesel B, Moser B, Bleichert S, Morava S, Nieswandt B, Schmid JA, Assinger A. Genetic platelet depletion is superior in platelet transfusion compared to current models. Haematologica 2019; 105:1738-1749. [PMID: 31537686 PMCID: PMC7271594 DOI: 10.3324/haematol.2019.222448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Genetically modified mice have advanced our knowledge on platelets in hemostasis and beyond tremendously. However, mouse models harbor certain limitations, including availability of platelet specific transgenic strains, and off-target effects on other cell types. Transfusion of genetically modified platelets into thrombocytopenic mice circumvents these problems. Additionally, ex vivo treatment of platelets prior to transfusion eliminates putative side effects on other cell types. Thrombocytopenia is commonly induced by administration of anti-platelet antibodies, which opsonize platelets to cause rapid clearance. However, antibodies do not differentiate between endogenous or exogenous platelets, impeding transfusion efficacy. In contrast, genetic depletion with the inducible diphtheria toxin receptor (iDTR) system induces thrombocytopenia via megakaryocyte ablation without direct effects on circulating platelets. We compared the iDTR system with antibody-based depletion methods regarding their utility in platelet transfusion experiments, outlining advantages and disadvantages of both approaches. Antibodies led to thrombocytopenia within two hours and allowed the dose-dependent adjustment of the platelet count. The iDTR model caused complete thrombocytopenia within four days, which could be sustained for up to 11 days. Neither platelet depletion approach caused platelet activation. Only the iDTR model allowed efficient platelet transfusion by keeping endogenous platelet levels low and maintaining exogenous platelet levels over longer time periods, thus providing clear advantages over antibody-based methods. Transfused platelets were fully functional in vivo, and our model allowed examination of transgenic platelets. Using donor platelets from already available genetically modified mice or ex vivo treated platelets, may decrease the necessity of platelet-specific mouse strains, diminishing off-target effects and thereby reducing animal numbers.
Collapse
Affiliation(s)
- Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia Volz
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Moser
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Bleichert
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.,Department of Surgery, General Hospital, Medical University Vienna, Vienna, Austria
| | - Susanne Morava
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Zhu F, Feng M, Sinha R, Murphy MP, Luo F, Kao KS, Szade K, Seita J, Weissman IL. The GABA receptor GABRR1 is expressed on and functional in hematopoietic stem cells and megakaryocyte progenitors. Proc Natl Acad Sci U S A 2019; 116:18416-18422. [PMID: 31451629 PMCID: PMC6744911 DOI: 10.1073/pnas.1906251116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
GABRR1 is a rho subunit receptor of GABA, the major inhibitory neurotransmitter in the mammalian brain. While most investigations of its function focused on the nervous system, its regulatory role in hematopoiesis has not been reported. In this study, we found GABRR1 is mainly expressed on subsets of human and mouse hematopoietic stem cells (HSCs) and megakaryocyte progenitors (MkPs). GABRR1-negative (GR-) HSCs led to higher donor-derived hematopoietic chimerism than GABRR1-positive (GR+) HSCs. GR+ but not GR- HSCs and MkPs respond to GABA in patch clamp studies. Inhibition of GABRR1 via genetic knockout or antagonists inhibited MkP differentiation and reduced platelet numbers in blood. Overexpression of GABRR1 or treatment with agonists significantly promoted MkP generation and megakaryocyte colonies. Thus, this study identifies a link between the neural and hematopoietic systems and opens up the possibility of manipulating GABA signaling for platelet-required clinical applications.
Collapse
Affiliation(s)
- Fangfang Zhu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Matthew Philip Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA 94305
| | - Fujun Luo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Krzysztof Szade
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
Martinez AF, Miller WM. Enabling Large-Scale Ex Vivo Production of Megakaryocytes from CD34 + Cells Using Gas-Permeable Surfaces. Stem Cells Transl Med 2019; 8:658-670. [PMID: 30848565 PMCID: PMC6591548 DOI: 10.1002/sctm.18-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Patients suffering from acute or sustained thrombocytopenia require platelet transfusions, which are entirely donor-based and limited by challenges related to storage and fluctuating supply. Developing cell-culture technologies will enable ex vivo and donor-independent platelet production. However, critical advancements are needed to improve scalability and increase megakaryocyte (Mk) culture productivity. To address these needs, we evaluated Mk production from mobilized peripheral blood CD34+ cells cultured on a commercially available gas-permeable silicone rubber membrane, which provides efficient gas exchange, and investigated the use of fed-batch media dilution schemes. Starting with a cell-surface density of 40 × 103 CD34+ cells per cm2 (G40D), culturing cells on the membrane for the first 5 days and employing media dilutions yielded 39 ± 19 CD41+ CD42b+ Mks per input CD34+ cell by day 11-a 2.2-fold increase compared with using standard culture surfaces and full media exchanges. By day 7, G40D conditions generated 1.5-fold more CD34+ cells and nearly doubled the numbers of Mk progenitors. The increased number of Mk progenitors coupled with media dilutions, potentially due to the retention of interleukin (IL)-3, increased Mk production in G40D. Compared with controls, G40D had higher viability, yielded threefold more Mks per milliliter of media used and exhibited lower mean ploidy, but had higher numbers of high-ploidy Mks. Finally, G40D-Mks produced proplatelets and platelet-like-particles that activate and aggregate upon stimulation. These results highlight distinct improvements in Mk cell-culture and demonstrate how new technologies and techniques are needed to enable clinically relevant production of Mks for platelet generation and cell-based therapies.
Collapse
Affiliation(s)
- Andres F Martinez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - William M Miller
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
36
|
Olson TS. Translating HSC Niche Biology for Clinical Applications. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv 2019; 2:597-606. [PMID: 29545255 DOI: 10.1182/bloodadvances.2017010975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
In vitro-grown megakaryocytes for generating platelets may have value in meeting the increasing demand for platelet transfusions. Remaining challenges have included the poor yield and quality of in vitro-generated platelets. We have shown that infusing megakaryocytes leads to intrapulmonary release of functional platelets. A Src kinase inhibitor (SU6656), a Rho-associated kinase inhibitor (Y27632), and an aurora B kinase inhibitor (AZD1152) have been shown to increase megakaryocyte ploidy and in vitro proplatelet release. We now tested whether megakaryocytes generated from CD34+ hematopoietic cells in the presence of these inhibitors could enhance functional platelet yield following megakaryocyte infusion. As expected, all inhibitors increased megakaryocyte ploidy, size, and granularity, but these inhibitors differed in whether they injured terminal megakaryocytes: SU6656 was protective, whereas Y27632 and AZD1152 increased injury. Upon infusion, inhibitor-treated megakaryocytes released threefold to ninefold more platelets per initial noninjured megakaryocyte relative to control, but only SU6656-treated megakaryocytes had a significant increase in platelet yield when calculated based on the number of initial CD34+ cells; this was fourfold over nontreated megakaryocytes. The released platelets from drug-treated, but healthy, megakaryocytes contained similar percentages of young, uninjured platelets that robustly responded to agonists and were well incorporated into a growing thrombus in vivo as controls. These studies suggest that drug screens that select megakaryocytes with enhanced ploidy, cell size, and granularity may include a subset of drugs that can enhance the yield and function of platelets, and may have clinical application for ex vivo-generated megakaryocytes and platelet transfusion.
Collapse
|
38
|
Zhang N, Newman PJ. Packaging functionally important plasma proteins into the α-granules of human-induced pluripotent stem cell-derived megakaryocytes. J Tissue Eng Regen Med 2019; 13:244-252. [PMID: 30556311 DOI: 10.1002/term.2785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 11/11/2022]
Abstract
The contents of platelet α-granules arrive via a number of pathways; some are synthesized by megakaryocytes (MKs), for example, von Willebrand factor (VWF), whereas others are endocytosed from plasma, for example, fibrinogen (Fgn) and factor V (FV). Currently, almost all in vitro-induced pluripotent stem cell (iPSC)-derived MKs are generated under serum-free conditions, and their α-granule cargoes lack components that would normally be taken up from plasma during the course of megakaryopoiesis. How this might affect the ability of in vitro-derived platelets to contribute fully to haemostasis is not known. The purpose of this investigation was to examine whether "feeding" human plasma to iPSC-derived MKs might result in loading their α-granules with physiologically important proteins. iPSCs were differentiated to CD41+ /CD42b+ MKs using a serum-free protocol. The resulting MKs were polyploid, expressed a number of platelet-specific surface receptors, and spread on Fgn or collagen-coated surfaces. Reverse transcription-polymerase chain reaction analysis detected mRNA transcripts for FV and VWF but not Fgn chains. Fluorescence immunocytochemistry and confocal microscopy confirmed constitutive VWF distribution in granule-like structures in MKs cultured under plasma-free conditions, and the granules became positive for Fgn upon incubation with human plasma. iPSC-derived MKs showed a low level of constitutive FV expression that increased dramatically upon incubation with human plasma. Taken together, these data suggest that human iPSC-derived MKs are capable of endocytosing and storing plasma components in their α-granules. Incorporating this methodology into current protocols for producing in vitro-derived MKs should provide novel insights into MK biology and lead to the generation of large numbers of MKs and platelets with improved functionality.
Collapse
Affiliation(s)
- Nanyan Zhang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Peter J Newman
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
|
40
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Megakaryocytes and platelets from a novel human adipose tissue-derived mesenchymal stem cell line. Blood 2018; 133:633-643. [PMID: 30487128 DOI: 10.1182/blood-2018-04-842641] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/02/2018] [Indexed: 12/24/2022] Open
Abstract
The clinical need for platelet transfusions is increasing; however, donor-dependent platelet transfusions are associated with practical problems, such as the limited supply and the risk of infection. Thus, we developed a manufacturing system for platelets from a donor-independent cell source: a human adipose-derived mesenchymal stromal/stem cell line (ASCL). The ASCL was obtained using an upside-down culture flask method and satisfied the minimal criteria for defining mesenchymal stem cells (MSCs) by The International Society for Cellular Therapy. The ASCL showed its proliferation capacity for ≥2 months without any abnormal karyotypes. The ASCL was cultured in megakaryocyte induction media. ASCL-derived megakaryocytes were obtained, with a peak at day 8 of culture, and ASCL-derived platelets (ASCL-PLTs) were obtained, with a peak at day 12 of culture. We observed that CD42b+ cells expressed an MSC marker (CD90) which is related to cell adhesion. Compared with peripheral platelets, ASCL-PLTs exhibit higher levels of PAC1 binding, P-selectin surface exposure, ristocetin-induced platelet aggregation, and ADP-induced platelet aggregation, as well as similar levels of fibrinogen binding and collagen-induced platelet aggregation. ASCL-PLTs have lower epinephrine-induced platelet aggregation. The pattern of in vivo kinetics after infusion into irradiated immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice was similar to that of platelet concentrates. ASCL-PLTs have similar characteristics to those of peripheral platelets and might have an additional function as MSCs. The establishment of the ASCL and its differentiation into ASCL-PLTs do not require gene transfer, and endogenous thrombopoietin is used for differentiation. The present protocol is a simple method that does not require feeder cells, further enhancing the clinical application of our approach.
Collapse
|
42
|
An HH, Poncz M, Chou ST. Induced Pluripotent Stem Cell-Derived Red Blood Cells, Megakaryocytes, and Platelets: Progress and Challenges. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0144-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Screening for genes that regulate the differentiation of human megakaryocytic lineage cells. Proc Natl Acad Sci U S A 2018; 115:E9308-E9316. [PMID: 30150396 DOI: 10.1073/pnas.1805434115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Different combinations of transcription factors (TFs) function at each stage of hematopoiesis, leading to distinct expression patterns of lineage-specific genes. The identification of such regulators and their functions in hematopoiesis remain largely unresolved. In this study, we utilized screening approaches to study the transcriptional regulators of megakaryocyte progenitor (MkP) generation, a key step before platelet production. Promising candidate genes were generated from a microarray platform gene expression commons and individually manipulated in human hematopoietic stem and progenitor cells (HSPCs). Deletion of some of the candidate genes (the hit genes) by CRISPR/Cas9 led to decreased MkP generation during HSPC differentiation, while more MkPs were produced when some hit genes were overexpressed in HSPCs. We then demonstrated that overexpression of these genes can increase the frequency of mature megakaryocytic colonies by functional colony forming unit-megakaryocyte (CFU-Mk) assay and the release of platelets after in vitro maturation. Finally, we showed that the histone deacetylase inhibitors could also increase MkP differentiation, possibly by regulating some of the newly identified TFs. Therefore, identification of such regulators will advance the understanding of basic mechanisms of HSPC differentiation and conceivably enable the generation and maturation of megakaryocytes and platelets in vitro.
Collapse
|
44
|
Spear AM, Lawton G, Staruch RMT, Rickard RF. Regenerative medicine and war: a front-line focus for UK defence. NPJ Regen Med 2018; 3:13. [PMID: 30155273 PMCID: PMC6104070 DOI: 10.1038/s41536-018-0053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
The recent prolonged conflicts in Iraq and Afghanistan saw the advancement of deployed trauma care to a point never before seen in war. The rapid translation of lessons from combat casualty care research, facilitated by an appetite for risk, contributed to year-on-year improvements in care of the injured. These paradigms, however, can only ever halt the progression of damage. Regenerative medicine approaches, in contrast, hold a truly disruptive potential to go beyond the cessation of damage from blast or ballistic trauma, to stimulate its reversal, and to do so from a very early point following injury. The internationally distributed and, in parts austere environments in which operational medical care is delivered provide an almost unique challenge to the development and translation of regenerative medicine technologies. In parallel, however, an inherent appetite for risk means that Defence will always be an early adopter. In focusing our operational priorities for regenerative medicine, the authors conducted a review of the current research landscape in the UK and abroad and sought wide clinical opinion. Our priorities are all applicable very far forward in the patient care pathway, and are focused on three broad and currently under-researched areas, namely: (a) blood, as an engineered tissue; (b) the mechanobiology of deep tissue loss and mechanobiological approaches to regeneration, and; (c) modification of the endogenous response. In focusing on these areas, we hope to engender the development of regenerative solutions for improved functional recovery from injuries sustained in conflict.
Collapse
Affiliation(s)
- Abigail M. Spear
- Defence Science & Technology Laboratory, Porton Down, Salisbury, UK
| | - Graham Lawton
- Academic Department of Military Surgery & Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Robert M. T. Staruch
- Academic Department of Military Surgery & Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Rory F. Rickard
- Academic Department of Military Surgery & Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|
45
|
Shepherd JH, Howard D, Waller AK, Foster HR, Mueller A, Moreau T, Evans AL, Arumugam M, Bouët Chalon G, Vriend E, Davidenko N, Ghevaert C, Best SM, Cameron RE. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials 2018; 182:135-144. [PMID: 30118981 DOI: 10.1016/j.biomaterials.2018.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Platelet transfusions are a key treatment option for a range of life threatening conditions including cancer, chemotherapy and surgery. Efficient ex vivo systems to generate donor independent platelets in clinically relevant numbers could provide a useful substitute. Large quantities of megakaryocytes (MKs) can be produced from human pluripotent stem cells, but in 2D culture the ratio of platelets harvested from MK cells has been limited and restricts production rate. The development of biomaterial cell supports that replicate vital hematopoietic micro-environment cues are one strategy that may increase in vitro platelet production rates from iPS derived Megakaryocyte cells. In this paper, we present the results obtained generating, simulating and using a novel structurally-graded collagen scaffold within a flow bioreactor system seeded with programmed stem cells. Theoretical analysis of porosity using micro-computed tomography analysis and synthetic micro-particle filtration provided a predictive tool to tailor cell distribution throughout the material. When used with MK programmed stem cells the graded scaffolds influenced cell location while maintaining the ability to continuously release metabolically active CD41 + CD42 + functional platelets. This scaffold design and novel fabrication technique offers a significant advance in understanding the influence of scaffold architectures on cell seeding, retention and platelet production.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Daniel Howard
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amie K Waller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Holly Rebecca Foster
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Annett Mueller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Thomas Moreau
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amanda L Evans
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Meera Arumugam
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Guénaëlle Bouët Chalon
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Eleonora Vriend
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Natalia Davidenko
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK.
| | - Serena M Best
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Ruth E Cameron
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
46
|
Abstract
With a growing demand for platelet transfusions, large-scale ex vivo platelet production would alleviate the reliance on donors. Now, Ito et al. report that turbulence is an important physical regulator of platelet generation in vivo and can be exploited in a bioreactor to enable clinical scale production of functional platelets starting from human iPSCs.
Collapse
Affiliation(s)
- Camelia Iancu-Rubin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
47
|
Bergmeier W, Antoniak S, Conway EM, Denis CV, George LA, Isermann B, Key NS, Krishnaswamy S, Lam WA, Lillicrap D, Liu J, Looney MR, López JA, Maas C, Peyvandi F, Ruf W, Sood AK, Versteeg HH, Wolberg AS, Wong PC, Wood JP, Weiler H. Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Res Pract Thromb Haemost 2018; 2:407-428. [PMID: 30046746 PMCID: PMC6046595 DOI: 10.1002/rth2.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This 9th Symposium on Hemostasis is an international scientific meeting held biannually in Chapel Hill, North Carolina. The meeting is in large measure the result of the close friendship between the late Dr. Harold R. Roberts of UNC Chapel Hill and Dr. Ulla Hedner of Novo Nordisk. When Novo Nordisk was developing the hemophilia therapy that would become NovoSeven, they sponsored a series of meetings to understand the basic biology and clinical applications of factor VIIa. The first meeting in Chapel Hill was held April 4-6, 2002 with Dr. Roberts as the organizer. Over the years, the conference emphasis has expanded from discussions of factor VIIa and tissue factor to additional topics in hemostasis and thrombosis. This year's meeting includes presentations by internationally renowned speakers that discuss the state-of-the-art on an array of important topics, including von Willebrand factor, engineering advances, coagulation and disease, tissue factor biology, therapeutic advances, and basic clotting factor biology. Included in this review article are illustrated abstracts provided by our speakers, which highlight the main conclusions of each invited talk. This will be the first meeting without Dr. Roberts in attendance, yet his commitment to excellent science and his focus on turning science to patient care are pervasively reflected in the presentations by our speakers.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics University of North Carolina Chapel Hill NC USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill NC USA
| | | | | | - Lindsey A George
- University of Pennsylvania Children's Hospital of Philadelphia Philadelphia PA USA
| | | | - Nigel S Key
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Sriram Krishnaswamy
- University of Pennsylvania Children's Hospital of Philadelphia Philadelphia PA USA
| | - Wilbur A Lam
- Department of Pediatrics and the Wallace H. Coulter Department of Biomedical Engineering Emory University and Georgia Institute of Technology Atlanta GA USA
| | | | - Jian Liu
- Eshelman School of Pharmacy University of North Carolina Chapel Hill NC USA
| | - Mark R Looney
- University of California San Francisco San Francisco CA USA
| | - José A López
- School of Medicine Puget Sound Blood Center Research Institute University of Washington Seattle WA USA
| | - Coen Maas
- Department of Clinical Chemistry and Haematology University Medical Center Utrecht Utrecht the Netherlands
| | | | - Wolfram Ruf
- The Scripps Research Institute La Jolla CA USA
| | - Anil K Sood
- University of Texas MD Anderson Cancer Center Houston TX USA
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill NC USA
| | - Pancras C Wong
- Transfusion Medicine Hematology Bristol-Meyers Squibb Pennington NJ USA
| | - Jeremy P Wood
- Gill Heart and Vascular Institute University of Kentucky Lexington KY USA
| | - Hartmut Weiler
- Blood Research Institute Blood Center of Wisconsin Milwaukee WI USA
| |
Collapse
|
48
|
Current status of blood 'pharming': megakaryoctye transfusions as a source of platelets. Curr Opin Hematol 2018; 24:565-571. [PMID: 28985194 DOI: 10.1097/moh.0000000000000378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Donor-derived platelets have proven to be of hemostatic value in many clinical settings. There is a fear that the need for platelets may outgrow the donor pool in first-world countries. Moreover, there are other challenges with donor platelets that add to the impetus to find an alternative platelet source, especially after the megakaryocyte cytokine thrombopoietin was identified. Megakaryocytes have since been differentiated from numerous cell sources and the observed released platelet-like particles (PLPs) have led to calls to develop such products for clinical use. The development of megakaryocytes from embryonic stem cell also supported the concept of developing nondonor-based platelets. RECENT FINDINGS Several groups have claimed that nondonor-based platelets derived from in-vitro grown megakaryocytes may soon become available to supplement or replace donor-derived products, but their number and quality has been wanting. A possible alternative of directly infusing megakaryocytes that release platelets in the lungs - similar to that recently shown for endogenous megakaryocytes - has been proposed. SUMMARY This present review will describe the present state-of-the-art in generating and delivering nondonor-derived platelets. Progress has been slow, but advances in our ability to generate human megakaryocytes in culture, generate PLPs from these cells, and test the functionality of the resultant platelets in vitro and in vivo have identified important remaining challenges and raised alternative potential solutions.
Collapse
|
49
|
Lefrançais E, Roberts Looney M. [The hidden face of the lung: a platelet factory and a blood progenitors reservoir]. Med Sci (Paris) 2017; 33:1032-1035. [PMID: 29261486 DOI: 10.1051/medsci/20173312005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emma Lefrançais
- Université de Californie, San Francisco HSE 1355A - 513 parnassus ave, San Francisco, CA-94143-0130, États-Unis
| | - Mark Roberts Looney
- Université de Californie, San Francisco HSE 1355A - 513 parnassus ave, San Francisco, CA-94143-0130, États-Unis
| |
Collapse
|
50
|
Costa-Filho RC, Bozza FA. Platelets: an outlook from biology through evidence-based achievements in critical care. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:449. [PMID: 29264366 PMCID: PMC5721222 DOI: 10.21037/atm.2017.11.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
Abstract
Since the original observations by Bizzozero and Osler, we have seen tremendous advances in the understanding of platelets far beyond haemostasis and the restoration of injured endothelium. In this mini-review on platelets, we will briefly outline their historical description and the importance of their evolution, focusing on a 450 million years old living fossil of Limulus polyphemus, a marine chelicerate arthropod, which helped researchers explain the basis for the immunity role of platelets and make correlations with platelet ultrastructure and function. In addition, the impact of the Limulus Amoebocyte Lysate (LAL) test for modern medicine is highlighted. The role of platelets in cardiovascular diseases, their relevance in arterial and venous thrombosis, and the utilization of antithrombotic drugs as therapeutic agents are also reported. Furthermore, platelet receptors are crucial in aggravating or mitigating other diseases, such as cancer and infections, which can recruit cells and have numerous interactions in a process recently coined "NETosis formation", which is also briefly depicted.
Collapse
Affiliation(s)
- Rubens C. Costa-Filho
- Department of Critical Care, Hospital Pro Cardíaco, Rua Gal. Polidoro, Rio de Janeiro RJ, Brazil
- Trombocore, Haemostasis & Thrombosis Studies with roTEM thromboelastometry directed to critically ill patients, Rua Dona Mariana, Botafogo, Rio de Janeiro RJ, Brazil
| | - Fernando A. Bozza
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro, Rio de Janeiro RJ, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Estr. de Manguinhos, Manguinhos, Rio de Janeiro RJ, Brazil
| |
Collapse
|