1
|
Zhang J, Ma J, Li Y, Lv X, Feng L. Whole-genome sequencing reveals cellular origin of concomitant chronic lymphocytic leukemia and multiple myeloma: a case report. Cancer Biol Ther 2024; 25:2403203. [PMID: 39295116 DOI: 10.1080/15384047.2024.2403203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/16/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are hematological disorders affecting B cells. The clonal relationship between CLL and MM has not always been clarified, although this information is critical to understanding its pathogenesis. Here, we present a rare clinical case of synchronous CLL and MM. Whole-genome sequencing (WGS) was performed using malignant lymph node (LN) and bone marrow (BM) tissues. Based on the high consistency of single nucleotide variants (SNVs), significantly mutated genes (SMGs), copy number variations (CNVs), different B cell receptor (BCR) IGH rearrangement features in LN and BM, and the different light-chain expression patterns in CLL and MM cells, we concluded that CLL and MM cells from this patient originated from the same hematopoietic stem cell/progenitors, different pro-B cells and suffered oncogenic mutations at different B cell differentiation stages. Depth analysis of genome features using WGS provides a new method to explore the process of malignant B cell genesis.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Ma
- Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Feng
- Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Kassner J, Abdellatif B, Yamshon S, Monge J, Kaner J. Current landscape of CD3 bispecific antibodies in hematologic malignancies. Trends Cancer 2024; 10:708-732. [PMID: 38987076 DOI: 10.1016/j.trecan.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Over the past 30 years the incorporation of monoclonal antibody (mAb) treatments into the management of hematologic malignancies has led to significant improvements in patient outcomes. The key limitation of mAb treatments is the necessity for target antigen presentation on major histocompatibility complex (MHC) and costimulatory molecules to elicit a cytotoxic immune response. With the advent of bispecific antibodies (BsAbs), these limitations can be overcome through direct stimulation of cytotoxic T cells, thus limiting tumor cell evasion. BsAbs are rapidly being incorporated into treatment regimens for hematologic malignancies, and there are now seven FDA-approved treatments in this class, six of which have been approved in the past year. In this review we describe the function, complications, and clinical trial data available for CD3 BsAbs in the treatment of lymphoma, myeloma, and leukemia.
Collapse
Affiliation(s)
- Joshua Kassner
- Department of Internal Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA; Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jorge Monge
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Kaner
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
4
|
Malard F, Neri P, Bahlis NJ, Terpos E, Moukalled N, Hungria VTM, Manier S, Mohty M. Multiple myeloma. Nat Rev Dis Primers 2024; 10:45. [PMID: 38937492 DOI: 10.1038/s41572-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Multiple myeloma (MM) is a haematological lymphoid malignancy involving tumoural plasma cells and is usually characterized by the presence of a monoclonal immunoglobulin protein. MM is the second most common haematological malignancy, with an increasing global incidence. It remains incurable because most patients relapse or become refractory to treatments. MM is a genetically complex disease with high heterogeneity that develops as a multistep process, involving acquisition of genetic alterations in the tumour cells and changes in the bone marrow microenvironment. Symptomatic MM is diagnosed using the International Myeloma Working Group criteria as a bone marrow infiltration of ≥10% clonal plasma cells, and the presence of at least one myeloma-defining event, either standard CRAB features (hypercalcaemia, renal failure, anaemia and/or lytic bone lesions) or biomarkers of imminent organ damage. Younger and fit patients are considered eligible for transplant. They receive an induction, followed by consolidation with high-dose melphalan and autologous haematopoietic cell transplantation, and maintenance therapy. In older adults (ineligible for transplant), the combination of daratumumab, lenalidomide and dexamethasone is the preferred option. If relapse occurs and requires further therapy, the choice of therapy will be based on previous treatment and response and now includes immunotherapies, such as bi-specific monoclonal antibodies and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Salomon Manier
- Department of Hematology, Lille University Hospital and INSERM UMR-S1277 and CNRS UMR9020, Lille, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
5
|
Karube K, Satou A, Kato S. New classifications of B-cell neoplasms: a comparison of 5th WHO and International Consensus classifications. Int J Hematol 2024:10.1007/s12185-024-03781-5. [PMID: 38805112 DOI: 10.1007/s12185-024-03781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In 2024, the World Health Organization (WHO) launched a new classification of lymphoid neoplasms, a revision of the previously used Revised 4th Edition of their classification (WHO-4R). However, this means that two classifications are now in simultaneous use: the 5th Edition of the WHO classification (WHO-5) and the International Consensus Classification (ICC). Instead of a comprehensive review of each disease entity, as already described elsewhere, this review focuses on revisions made in both the WHO-5 and ICC from WHO-4R and discrepancies between them regarding B-cell neoplasms. Similarities include cutaneous marginal zone lymphoma, cold agglutinin disease, non-primary effusion lymphoma-type effusion-based lymphoma, and gray zone lymphoma. Differences include plasma cell neoplasms, high-grade B-cell lymphoma (double hit lymphoma), follicular lymphoma, LPD with immune deficiency and dysregulation, extranodal large B-cell lymphoma, transformations of indolent B-cell lymphomas, and diffuse large B-cell lymphoma, not otherwise specified. Understanding the similarities and differences between the two latest classifications will aid daily diagnostic practice and future research on lymphoid neoplasms.
Collapse
Affiliation(s)
- Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University, Aichi, Japan.
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Seiichi Kato
- Center for Clinical Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
6
|
Zmorzynski S, Popek-Marciniec S, Biernacka B, Szudy-Szczyrek A, Chocholska S, Styk W, Czerwik-Marcinkowska J, Swiderska-Kolacz G. In Vitro Low-Bortezomib Doses Induce Apoptosis and Independently Decrease the Activities of Glutathione S-Transferase and Glutathione Peroxidase in Multiple Myeloma, Taking into Account the GSTT1 and GSTM1 Gene Variants. Genes (Basel) 2024; 15:387. [PMID: 38540446 PMCID: PMC10970692 DOI: 10.3390/genes15030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.
Collapse
Affiliation(s)
| | | | - Beata Biernacka
- Institute of Nursing and Obstetrics, Academy of Zamosc, 22-400 Zamosc, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Sylwia Chocholska
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | | |
Collapse
|
7
|
Vernet Machado Bressan Wilke M, Iop GD, Faqueti L, Lemos da Silva LA, Kubaski F, Poswar FO, Michelin-Tirelli K, Randon D, Borelli WV, Giugliani R, Schwartz IVD. A Brazilian Rare-Disease Center's Experience with Glucosylsphingosine (lyso-Gb1) in Patients with Gaucher Disease: Exploring a Novel Correlation with IgG Levels in Plasma and a Biomarker Measurement in CSF. Int J Mol Sci 2024; 25:2870. [PMID: 38474117 PMCID: PMC10931658 DOI: 10.3390/ijms25052870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Gaucher disease (GD, OMIM 230800) is one of the most common lysosomal disorders, being caused by the deficient activity of the enzyme acid β-glucocerebrosidase (Gcase). Three clinical forms of Gaucher's disease (GD) are classified based on neurological involvement. Type 1 (GD1) is non-neuronopathic, while types 2 (GD2) and 3 (GD3) are neuronopathic forms. Gcase catalyzes the conversion of glucosylceramide (GlcCer) into ceramide and glucose. As GlcCer accumulates in lysosomal macrophages, it undergoes deacylation to become glycosylsphingosine (lyso-Gb1), which has shown to be a useful and reliable biomarker for the diagnosis and monitoring of treated and untreated patients with GD. Multiple myeloma (MM) is one of the leading causes of cancer-related death among patients with GD and monoclonal gammopathy of undetermined significance (MGUS) is a non-neoplastic condition that can be a telltale sign of a B clonal proliferation caused by the chronic activation of B cells. This study aimed to quantify Lyso-Gb1 levels in dried blood spots (DBS) and cerebrospinal fluid (CSF) as biomarkers for Gaucher disease (GD) and discuss the association of this biomarker with other clinical parameters. This is a mixed-methods study incorporating both cross-sectional and longitudinal elements within a cohort design with a convenience-sampling strategy. Data collection took place from January 2012 to March 2023. Lyso-Gb1 extraction from DBS involved the use of a methanol-acetonitrile-water mixture, followed by incubation and centrifugation. Analysis was performed using UPLC-MS/MS with MassLynx software version 4.2 and the control group for the DBS measurements included general newborns. CSF Lyso-Gb1 was extracted using ethyl acetate, analyzed by UPLC-MS/MS with a calibration curve, and expressed in pmol/L. Lysosomal activity in CSF was assessed by measuring chitotriosidase (Cht), and other lysosomal enzyme activities were assessed as previously described in the literature. Patients with metachromatic leukodystrophy (MLD) were used as controls. Thirty-two treated patients (twenty-nine GD1 and three GD3, all on ERT except for one GD type on SRT with eliglustat) and three untreated patients (one GD1, one GD2, and one GD3) were included. When analyzing only the treated GD1 group, a significant correlation was found between lyso-Gb1 and age (rho = -0.447, p = 0.001), ChT, and IgG levels (rho = 0.73, p < 0.001; and rho = 0.36, p = 0.03, respectively). Five GD1 patients (three females, mean age 40 years) also had their CSF collected and analyzed. The average measurement of lyso-Gb1 in CSF was 94 pmol/L (range: 57.1-157.9 pmol/L) versus <6.2 pmol/L in the control group (MLD). This is the first time, to the best of our knowledge, that lyso-Gb1 has been associated with IgG levels. While this finding reflects a risk for MGUS or MM and not only chronic plasma B-cell activation, it still requires further studies. Moreover, the analysis of CSF lyso-Gb1 levels in GD1 patients was demonstrated to be significantly higher than the control group. This raises the hypothesis that CSF lyso-Gb1 may serve as a valuable indicator for neurological involvement in GD, providing insights into the potential implications for neurological manifestations in GD, including GD1. The correlation between lyso-Gb1 and ChT levels in treated GD1 patients further underscores the interconnectedness of lysosomal markers and their relevance in monitoring.
Collapse
Affiliation(s)
| | - Gabrielle Dineck Iop
- Biodiscovery Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035903, Brazil; (G.D.I.); (L.F.); (L.A.L.d.S.)
| | - Larissa Faqueti
- Biodiscovery Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035903, Brazil; (G.D.I.); (L.F.); (L.A.L.d.S.)
| | - Layzon Antonio Lemos da Silva
- Biodiscovery Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035903, Brazil; (G.D.I.); (L.F.); (L.A.L.d.S.)
| | - Francyne Kubaski
- Biochemical Genetics Laboratory, Greenwood Genetics Center, Greenwood, SC 29646, USA;
| | - Fabiano O. Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil;
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035003, Brazil
| | - Kristiane Michelin-Tirelli
- LEIM-Biochemical Genetics Laboratory, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil;
| | - Dévora Randon
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | | | - Roberto Giugliani
- Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 90035003, Brazil; (M.V.M.B.W.); (R.G.)
- Biodiscovery Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035903, Brazil; (G.D.I.); (L.F.); (L.A.L.d.S.)
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil;
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035003, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035003, Brazil
- Dasa Genômica, São Paulo 04078013, Brazil
- Casa dos Raros, Porto Alegre 90035003, Brazil
| | - Ida Vanessa D. Schwartz
- Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 90035003, Brazil; (M.V.M.B.W.); (R.G.)
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil;
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035003, Brazil
- Instituto Nacional de Doenças Raras—InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| |
Collapse
|
8
|
Ren L, Ren Y, Yang Y, Wang W, Xu T, Wang Y, Xu J, Maihemaiti A, Lan T, Li P, Zhou C, Wang P, Liu P. Clinical profiles in multiple myeloma patients with extreme survivals: a study from a National Medical Center in China. Hematology 2023; 28:2277503. [PMID: 38018564 DOI: 10.1080/16078454.2023.2277503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES The clinical outcomes of multiple myeloma (MM) patients are highly variable in the real-world setting. Some MM patients may have clinical endings that do not abide by the book. We aim to describe features of MM patients with extreme survivals in real-world practice. METHODS This retrospective study enrolled 941 patients consecutively visited a national medical center, China, between July 1995 and December 2021. Among patients, we identified two groups of MM patients with extreme survivals, 56 were in the long-term remission (LR) group with progression-free survival (PFS) ≥ 60 months, and 82 were in the rapid progression (RP) group with PFS ≤ 6 months. RESULTS CRAB features, of which hypercalcemia, renal insufficiency, and anemia were more common in the RP group, except for bone disease, with a comparable incidence at diagnosis in both groups (88.8 vs 85.7%, P = 0.52). High-risk cytogenetics was detected in 45.7% of patients in the RP group. Of note, 14.3% of MM patients in the LR group harbored del (17p). According to the Revised International Staging System (R-ISS), 9% of patients belonged to stage I in the RP group, and 19% of patients in the LR group were found in stage III. There were 8 (15.7%) patients in the LR group only achieved partial response (PR) as the best response. Median time to best response (TBR) for LR and RP group patients was 4.6 and 1.4 months, respectively. CONCLUSIONS The disparities in the survivals of MM patients indicated that some unexpected factors have influenced the outcomes in the real-world setting.
Collapse
Affiliation(s)
- Liang Ren
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuhong Ren
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yang Yang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjing Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tianhong Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Aziguli Maihemaiti
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tianwei Lan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chi Zhou
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Pu Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Hui H, Fuller KA, Eresta Jaya L, Konishi Y, Ng TF, Frodsham R, Speight G, Yamada K, Clarke SE, Erber WN. IGH cytogenetic abnormalities can be detected in multiple myeloma by imaging flow cytometry. J Clin Pathol 2023; 76:763-769. [PMID: 36113967 DOI: 10.1136/jcp-2022-208230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
AIMS Cytogenetic abnormalities involving the IGH gene are seen in up to 55% of patients with multiple myeloma. Current testing is performed manually by fluorescence in situ hybridisation (FISH) on purified plasma cells. We aimed to assess whether an automated imaging flow cytometric method that uses immunophenotypic cell identification, and does not require cell isolation, can identify IGH abnormalities. METHODS Aspirated bone marrow from 10 patients with multiple myeloma were studied. Plasma cells were identified by CD38 and CD138 coexpression and assessed with FISH probes for numerical or structural abnormalities of IGH. Thousands of cells were acquired on an imaging flow cytometer and numerical data and digital images were analysed. RESULTS Up to 30 000 cells were acquired and IGH chromosomal abnormalities were detected in 5 of the 10 marrow samples. FISH signal patterns seen included fused IGH signals for IGH/FGFR3 and IGH/MYEOV, indicating t(4;14) and t(11;14), respectively. In addition, three IGH signals were identified, indicating trisomy 14 or translocation with an alternate chromosome. The lowest limit of detection of an IGH abnormality was in 0.05% of all cells. CONCLUSIONS This automated high-throughput immuno-flowFISH method was able to identify translocations and trisomy involving the IGH gene in plasma cells in multiple myeloma. Thousands of cells were analysed and without prior cell isolation. The inclusion of positive plasma cell identification based on immunophenotype led to a lowest detection level of 0.05% marrow cells. This imaging flow cytometric FISH method offers the prospect of increased precision of detection of critical genetic lesions involving IGH and other chromosomal defects in multiple myeloma.
Collapse
Affiliation(s)
- Henry Hui
- School of Biomedical Sciences, The University of Western Australia, WA Australia
| | - Kathy A Fuller
- School of Biomedical Sciences, The University of Western Australia, WA Australia
| | | | | | - Teng Fong Ng
- School of Biomedical Sciences, The University of Western Australia, WA Australia
| | | | | | | | - Sarah E Clarke
- School of Biomedical Sciences, The University of Western Australia, WA Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, WA Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| |
Collapse
|
10
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
11
|
Jia Y, Yu X, Liu R, Shi L, Jin H, Yang D, Zhang X, Shen Y, Feng Y, Zhang P, Yang Y, Zhang L, Zhang P, Li Z, He A, Kong G. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis 2023; 14:512. [PMID: 37558663 PMCID: PMC10412649 DOI: 10.1038/s41419-023-06036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hua Jin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dan Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaofeng Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Pengyu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
12
|
Bong IPN, Esa E. Molecular genetic aberrations in the pathogenesis of multiple myeloma. ASIAN BIOMED 2023; 17:152-162. [PMID: 37860676 PMCID: PMC10584387 DOI: 10.2478/abm-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Multiple myeloma (MM) is the second most common form of blood cancer characterized by clonal expansion of malignant plasma cells within the bone marrow. MM is a complex, progressive, and highly heterogeneous malignancy, which occurs via a multistep transformation process involving primary and secondary oncogenic events. Recent advances in molecular techniques have further expanded our understanding of the mutational landscape, clonal composition, and dynamic evolution patterns of MM. The first part of this review describes the key oncogenic events involved in the initiation and progression of MM, together with their prognostic impact. The latter part highlights the most prominent findings concerning genomic aberrations promoted by gene expression profiling (GEP) and next-generation sequencing (NGS) in MM. This review provides a concise understanding of the molecular pathogenesis of the MM genome and the importance of adopting emerging molecular technology in future clinical management of MM.
Collapse
Affiliation(s)
- Ivyna Pau Ni Bong
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| |
Collapse
|
13
|
Samur MK, Szalat R, Munshi NC. Single-cell profiling in multiple myeloma: insights, problems, and promises. Blood 2023; 142:313-324. [PMID: 37196627 PMCID: PMC10485379 DOI: 10.1182/blood.2022017145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
In a short time, single-cell platforms have become the norm in many fields of research, including multiple myeloma (MM). In fact, the large amount of cellular heterogeneity in MM makes single-cell platforms particularly attractive because bulk assessments can miss valuable information about cellular subpopulations and cell-to-cell interactions. The decreasing cost and increasing accessibility of single-cell platform, combined with breakthroughs in obtaining multiomics data for the same cell and innovative computational programs for analyzing data, have allowed single-cell studies to make important insights into MM pathogenesis; yet, there is still much to be done. In this review, we will first focus on the types of single-cell profiling and the considerations for designing a single-cell profiling experiment. Then, we will discuss what have learned from single-cell profiling about myeloma clonal evolution, transcriptional reprogramming, and drug resistance, and about the MM microenvironment during precursor and advanced disease.
Collapse
Affiliation(s)
- Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
14
|
Tarab‐Ravski D, Hazan‐Halevy I, Goldsmith M, Stotsky‐Oterin L, Breier D, Naidu GS, Aitha A, Diesendruck Y, Ng BD, Barsheshet H, Berger T, Vaxman I, Raanani P, Peer D. Delivery of Therapeutic RNA to the Bone Marrow in Multiple Myeloma Using CD38-Targeted Lipid Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301377. [PMID: 37171801 PMCID: PMC10375190 DOI: 10.1002/advs.202301377] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Multiple myeloma (MM) is a cancer of differentiated plasma cells that occurs in the bone marrow (BM). Despite the recent advancements in drug development, most patients with MM eventually relapse and the disease remains incurable. RNA therapy delivered via lipid nanoparticles (LNPs) has the potential to be a promising cancer treatment, however, its clinical implementation is limited due to inefficient delivery to non-hepatic tissues. Here, targeted (t)LNPs designed for delivery of RNA payload to MM cells are presented. The tLNPs consist of a novel ionizable lipid and are coated with an anti-CD38 antibody (αCD38-tLNPs). To explore their therapeutic potential, it is demonstrated that LNPs encapsulating small interference RNA (siRNA) against cytoskeleton-associated protein 5 (CKAP5) lead to a ≈90% decrease in cell viability of MM cells in vitro. Next, a new xenograft MM mouse model is employed, which clinically resembles the human disease and demonstrates efficient homing of MM cells to the BM. Specific delivery of αCD38-tLNPs to BM-residing and disseminated MM cells and the improvement in therapeutic outcome of MM-bearing mice treated with αCD38-tLNPs-siRNA-CKAP5 are shown. These results underscore the potential of RNA therapeutics for treatment of MM and the importance of developing effective targeted delivery systems and reliable preclinical models.
Collapse
|
15
|
Xu C, Gao M, Zhang J, Fu Y. IL5RA as an immunogenic cell death-related predictor in progression and therapeutic response of multiple myeloma. Sci Rep 2023; 13:8528. [PMID: 37236993 DOI: 10.1038/s41598-023-35378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown the potential of immunogenic cell death-related modalities in myeloma. The significance of IL5RA in myeloma and immunogenic cell death remains unknown. We analyzed IL5RA expression, the gene expression profile, and secretory protein genes related to IL5RA level using GEO data. Immunogenic cell death subgroup classification was performed using the ConsensusClusterPlus and pheatmap R package. Enrichment analyses were based on GO/KEGG analysis. After IL5RA-shRNA transfection in myeloma cells, cell proliferation, apoptosis, and drug sensitivity were detected. P < 0.05 was considered statistically significant. IL5RA was upregulated in myeloma and progressed smoldering myeloma. We observed enrichment in pathways such as the PI3K-Akt signaling pathway, and Natural killer cell mediated cytotoxicity in the high-IL5RA group. IL5RA was also closely associated with secretory protein genes such as CST6. We observed the enrichment of cellular apoptosis and hippo signaling pathway on differential genes in the immunogenic cell death cluster. Furthermore, IL5RA was associated with immune infiltration, immunogenic cell death-related genes, immune-checkpoint-related genes, and m6A in myeloma. In vitro and in vivo experiments showed the involvement of IL5RA in apoptosis, proliferation, and drug resistance of myeloma cells. IL5RA shows the potential to be an immunogenic cell death-related predictor for myeloma.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Meng Gao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junhua Zhang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yunfeng Fu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
16
|
Rebmann Chigrinova E, Porret NA, Andres M, Wiedemann G, Banz Y, Legros M, Pollak M, Oppliger Leibundgut E, Pabst T, Bacher U. Correlation of plasma cell assessment by phenotypic methods and molecular profiles by NGS in patients with plasma cell dyscrasias. BMC Med Genomics 2022; 15:203. [PMID: 36138464 PMCID: PMC9503268 DOI: 10.1186/s12920-022-01346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Next-generation sequencing (NGS) detects somatic mutations in a high proportion of plasma cell dyscrasias (PCD), but is currently not integrated into diagnostic routine. We correlated NGS data with degree of bone marrow (BM) involvement by cytomorphology (BMC), histopathology (BMH), and multiparameter flow cytometry (MFC) in 90 PCD patients.
Methods Of the 90 patients the diagnoses comprised multiple myeloma (n = 77), MGUS (n = 7), AL-amyloidosis (n = 4) or solitary plasmocytoma (n = 2). The NGS panel included eight genes CCND1, DIS3, EGR1, FAM46C (TENT5C), FGFR3, PRDM1, TP53, TRAF3, and seven hotspots in BRAF, IDH1, IDH2, IRF4, KRAS, NRAS. Results Mutations were detected in 64/90 (71%) of cases. KRAS (29%), NRAS (16%) and DIS3 (16%) were most frequently mutated. At least one mutation/sample corresponded to a higher degree of BM involvement with a mean of 11% pathologic PC by MFC (range, 0.002–62%), and ~ 50% (3–100%) as defined by both BMC and BMH. Conclusions The probability of detecting a mutation by NGS in the BM was highest in samples with > 10% clonal PC by MFC, or > 20% PC by BMC/ BMH. We propose further evaluation of these thresholds as a practical cut-off for processing of samples by NGS at initial PCD diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01346-1.
Collapse
Affiliation(s)
| | - Naomi A Porret
- Department of Hematology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Andres
- Department of Hematology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Myriam Legros
- Center for Laboratory Medicine (ZLM), Inselspital, University of Bern, Bern, Switzerland
| | - Matthias Pollak
- Department of Hematology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Fregnani A, Saggin L, Gianesin K, Quotti Tubi L, Carraro M, Barilà G, Scapinello G, Bonetto G, Pesavento M, Berno T, Branca A, Gurrieri C, Zambello R, Semenzato G, Trentin L, Manni S, Piazza F. CK1α/RUNX2 Axis in the Bone Marrow Microenvironment: A Novel Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174173. [PMID: 36077711 PMCID: PMC9454895 DOI: 10.3390/cancers14174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable disease for which novel therapeutic approaches targeting the malignant cells and the associated bone disease are urgently needed. CK1α is a protein kinase that plays a crucial role in the signaling network that sustains plasma cell (PC) survival and bone disease. This protein regulates Wnt/β-catenin signaling, which is fundamental for both MM cell survival and mesenchymal stromal cell (MSC) osteogenic differentiation. In this study, we investigated its involvement in MM–MSC cross-talk. We found that, by lowering CK1α expression levels in co-cultures of MM and MSC cells, expression of RUNX2—the master regulator of osteogenic differentiation—was regulated differently in the two cell types. Our data suggest the possibility of using a specific CK1α inhibitor as part of a novel therapeutic approach to selectively kill malignant PCs and overcome the blocking of osteogenic differentiation induced by MM cells in MSCs. Abstract Multiple myeloma (MM) is a malignant plasma cell (PC) neoplasm, which also displays pathological bone involvement. Clonal expansion of MM cells in the bone marrow causes a perturbation of bone homeostasis that culminates in MM-associated bone disease (MMABD). We previously demonstrated that the S/T kinase CK1α sustains MM cell survival through the activation of AKT and β-catenin signaling. CK1α is a negative regulator of the Wnt/β-catenin cascade, the activation of which promotes osteogenesis by directly stimulating the expression of RUNX2, the master gene regulator of osteoblastogenesis. In this study, we investigated the role of CK1α in the osteoblastogenic potential of mesenchymal stromal cells (MSCs) and its involvement in MM–MSC cross-talk. We found that CK1α silencing in in vitro co-cultures of MMs and MSCs modulated RUNX2 expression differently in PCs and in MSCs, mainly through the regulation of Wnt/β-catenin signaling. Our findings suggest that the CK1α/RUNX2 axis could be a potential therapeutic target for constraining malignant PC expansion and supporting the osteoblastic transcriptional program of MSCs, with potential for ameliorating MMABD. Moreover, considering that Lenalidomide treatment leads to MM cell death through Ikaros, Aiolos and CK1α proteasomal degradation, we examined its effects on the osteoblastogenic potential of MSC compartments.
Collapse
Affiliation(s)
- Anna Fregnani
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Lara Saggin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Ketty Gianesin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Laura Quotti Tubi
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Carraro
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Greta Scapinello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgia Bonetto
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Pesavento
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Tamara Berno
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Antonio Branca
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Carmela Gurrieri
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sabrina Manni
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| | - Francesco Piazza
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| |
Collapse
|
18
|
Bong IPN, Ng CC, Othman N, Esa E. Gene expression profiling and in vitro functional studies reveal RAD54L as a potential therapeutic target in multiple myeloma. Genes Genomics 2022; 44:957-966. [PMID: 35689754 PMCID: PMC9273556 DOI: 10.1007/s13258-022-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Background Current advances in the molecular biology of multiple myeloma (MM) are not sufficient to fully delineate the genesis and development of this disease. Objective This study aimed to identify molecular targets underlying MM pathogenesis. Methods mRNA expression profiling for 29 samples (19 MM samples, 7 MM cell lines and 3 controls) were obtained using microarray. We evaluated the in vitro effects of RAD54L gene silencing on the proliferation, apoptosis and cell cycle distribution in KMS-28BM human MM cells using siRNA approach. Cell proliferation was determined by MTS assay while apoptosis and cell cycle distribution were analysed with flow cytometry. Gene and protein expression was evaluated using RT-qPCR and ELISA, respectively. Results Microarray results revealed a total of 5124 differentially expressed genes (DEGs), in which 2696 and 2428 genes were up-regulated and down-regulated in MM compared to the normal controls, respectively (fold change ≥ 2.0; P < 0.05). Up-regulated genes (RAD54L, DIAPH3, SHCBP1, SKA3 and ANLN) and down-regulated genes (HKDC1, RASGRF2, CYSLTR2) have never been reported in association with MM. Up-regulation of RAD54L was further verified by RT-qPCR (P < 0.001). In vitro functional studies revealed that RAD54L gene silencing significantly induced growth inhibition, apoptosis (small changes) and cell cycle arrest in G0/G1 phase in KMS-28BM (P < 0.05). Silencing of RAD54L also decreased its protein level (P < 0.05). Conclusions This study has identified possible molecular targets underlying the pathogenesis of MM. For the first time, we reveal RAD54L as a potential therapeutic target in MM, possibly functioning in the cell cycle and checkpoint control. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-022-01272-7.
Collapse
Affiliation(s)
- Ivyna Pau Ni Bong
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia.
| | - Ching Ching Ng
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Norodiyah Othman
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| |
Collapse
|
19
|
Bal S, Kumar SK, Fonseca R, Gay F, Hungria VTM, Dogan A, Costa LJ. Multiple myeloma with t(11;14): unique biology and evolving landscape. Am J Cancer Res 2022; 12:2950-2965. [PMID: 35968339 PMCID: PMC9360221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023] Open
Abstract
Multiple myeloma is characterized by heterogeneity in clinical presentation, response to treatment, and importantly, patient outcomes. The translocation of chromosomes 11 and 14 [t(11;14)(q13;32)], hereafter referred to as t(11;14), is the most common primary translocation event in multiple myeloma, occurring in approximately 16%-24% of patients. Multiple myeloma harboring t(11;14) represents a unique disease subset as t(11;14)-positive myeloma cells exhibit biological features that are distinct from t(11;14)-negative myeloma cells, including overexpression of cyclin D1, higher levels of the antiapoptotic protein BCL-2, and the frequent expression of the B-cell lineage protein CD20. Additionally, t(11;14) is associated with less common clinical features, such as immunoglobulin M and light chain disease. With the evolution of the treatment landscape, the prognostic significance of t(11;14) multiple myeloma remains debatable. However, it is clear that t(11;14) multiple myeloma represents a distinct subset and a rare opportunity for targeted therapy with BCL-2 inhibition. In this review, we first describe the underlying biology of t(11;14) multiple myeloma cells, then summarize the body of literature evaluating the prognosis of patients with t(11;14) multiple myeloma, and finally discuss therapeutic implications.
Collapse
Affiliation(s)
- Susan Bal
- Department of Medicine, Division of Hematology Oncology, O’Neal Comprehensive Cancer Center, The University of Alabama at BirminghamBirmingham, AL, USA
| | - Shaji K Kumar
- Division of Hematology, Mayo ClinicRochester, MN, USA
| | - Rafael Fonseca
- Division of Hematology and Oncology, Mayo ClinicPhoenix, AZ, USA
| | - Francesca Gay
- Clinical Trial Unit, Division of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of TorinoTorino TO, Italy
| | | | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Luciano J Costa
- Department of Medicine, Division of Hematology Oncology, O’Neal Comprehensive Cancer Center, The University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
20
|
Dragoș ML, Ivanov IC, Mențel M, Văcărean-Trandafir IC, Sireteanu A, Titianu AA, Dăscălescu AS, Stache AB, Jitaru D, Gorgan DL. Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients. Int J Mol Sci 2022; 23:7530. [PMID: 35886877 PMCID: PMC9318311 DOI: 10.3390/ijms23147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma results from the clonal proliferation of abnormal plasma cells (PCs) in the bone marrow (BM). In this study, the cell surface expression markers (CD) on atypical PCs (detected by multiparametric flow cytometry (MFC)) were correlated with copy number alterations (CNAs) in the genome (detected by multiplex ligation-dependent probe amplification (MLPA)) to assess their impact on prognosis in newly diagnosed MM patients. Statistically significant results were obtained when different stages of PC maturation (classified based on CD19 and CD81 expression) were associated with CD117 expression and identified CNAs. In the intermediately differentiated PC group (CD19(-) CD81(+)), patients who didn't express CD117 had a lower median progression free survival (PFS) (p = 0.024). Moreover, within this group, patients with less than three adverse CNAs, which harbor CD117, had a better outcome with a PFS of more than 48 months compared with 19 months (p = 0.008). Considering all the results, our study suggested the need to integrate both the CD markers and copy number alterations to evaluate the prognosis of newly diagnosed multiple myeloma patients.
Collapse
Affiliation(s)
- Mihaiela L. Dragoș
- Biology Department, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (M.L.D.); (A.B.S.)
| | - Iuliu C. Ivanov
- Molecular Diagnosis Department, Regional Institute of Oncology, 700483 Iasi, Romania; (I.C.I.); (A.S.)
| | - Mihaela Mențel
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania; (M.M.); (I.C.V.-T.)
- Immunophenotyping Department, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Irina C. Văcărean-Trandafir
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania; (M.M.); (I.C.V.-T.)
| | - Adriana Sireteanu
- Molecular Diagnosis Department, Regional Institute of Oncology, 700483 Iasi, Romania; (I.C.I.); (A.S.)
| | - Amalia A. Titianu
- Department of Hematology, Regional Institute of Oncology, 700483 Iasi, Romania; (A.A.T.); (A.S.D.)
- Department of Hematology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Angela S. Dăscălescu
- Department of Hematology, Regional Institute of Oncology, 700483 Iasi, Romania; (A.A.T.); (A.S.D.)
- Department of Hematology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alexandru B. Stache
- Biology Department, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (M.L.D.); (A.B.S.)
- Molecular Diagnosis Department, Regional Institute of Oncology, 700483 Iasi, Romania; (I.C.I.); (A.S.)
| | - Daniela Jitaru
- Biology Department, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (M.L.D.); (A.B.S.)
| | - Dragoș L. Gorgan
- Biology Department, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (M.L.D.); (A.B.S.)
| |
Collapse
|
21
|
Sadowska-Klasa A, Abba M, Gajkowska-Kulik J, Zaucha JM. Therapy-related acute lymphoblastic leukemia following treatment for multiple myeloma - diagnostic and therapeutic dilemma. Acta Oncol 2022; 61:1126-1131. [PMID: 35668607 DOI: 10.1080/0284186x.2022.2083921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdansk, Poland
| | - Mary Abba
- Medical University of Gdańsk, Gdansk, Poland
| | - Justyna Gajkowska-Kulik
- Department of Hematology and Bone Marrow Transplantation, SSM Nicolaus Copernicus, Toruń, Poland
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdansk, Poland
| |
Collapse
|
22
|
Angelopoulos N, Chatzipli A, Nangalia J, Maura F, Campbell PJ. Bayesian networks elucidate complex genomic landscapes in cancer. Commun Biol 2022; 5:306. [PMID: 35379892 PMCID: PMC8980036 DOI: 10.1038/s42003-022-03243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Bayesian networks (BNs) are disciplined, explainable Artificial Intelligence models that can describe structured joint probability spaces. In the context of understanding complex relations between a number of variables in biological settings, they can be constructed from observed data and can provide a guiding, graphical tool in exploring such relations. Here we propose BNs for elucidating the relations between driver events in large cancer genomic datasets. We present a methodology that is specifically tailored to biologists and clinicians as they are the main producers of such datasets. We achieve this by using an optimal BN learning algorithm based on well established likelihood functions and by utilising just two tuning parameters, both of which are easy to set and have intuitive readings. To enhance value to clinicians, we introduce (a) the use of heatmaps for families in each network, and (b) visualising pairwise co-occurrence statistics on the network. For binary data, an optional step of fitting logic gates can be employed. We show how our methodology enhances pairwise testing and how biologists and clinicians can use BNs for discussing the main relations among driver events in large genomic cohorts. We demonstrate the utility of our methodology by applying it to 5 cancer datasets revealing complex genomic landscapes. Our networks identify central patterns in all datasets including a central 4-way mutual exclusivity between HDR, t(4,14), t(11,14) and t(14,16) in myeloma, and a 3-way mutual exclusivity of three major players: CALR, JAK2 and MPL, in myeloproliferative neoplasms. These analyses demonstrate that our methodology can play a central role in the study of large genomic cancer datasets. Bayesian network inference on several blood and solid cancer genomic datasets provides more accessible ways to explore driver events in cancer.
Collapse
Affiliation(s)
- Nicos Angelopoulos
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Systems Immunity Research Institute, Medical School, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Aikaterini Chatzipli
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jyoti Nangalia
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Francesco Maura
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Peter J Campbell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
23
|
Sweeney NW, Ahlstrom JM, Davies FE, Thompson MA. HealthTree Cure Hub: A Patient-Derived, Patient-Driven Clinical Cancer Information Platform Used to Overcome Hurdles and Accelerate Research in Multiple Myeloma. JCO Clin Cancer Inform 2022; 6:e2100141. [PMID: 35271305 PMCID: PMC8932482 DOI: 10.1200/cci.21.00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of rare diseases, such as multiple myeloma (MM), often experiences unique research hurdles that can delay or prevent lifesaving discoveries. HealthTree Cure Hub is a first-in-class software program designed to overcome these potential research hurdles.
Collapse
Affiliation(s)
| | | | - Faith E Davies
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | | |
Collapse
|
24
|
Wang Y, Ling Z, Hu Z, Gui Y, Huang C, Yao Y, Li R. OUP accepted manuscript. Lab Med 2022; 53:465-474. [PMID: 35397004 DOI: 10.1093/labmed/lmac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhian Ling
- Department of Orthopedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojian Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Gui
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunni Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yibin Yao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruolin Li
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Jirabanditsakul C, Dakeng S, Kunacheewa C, U-Pratya Y, Owattanapanich W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol Cancer Res Treat 2022; 21:15330338221111228. [PMID: 35770320 PMCID: PMC9252016 DOI: 10.1177/15330338221111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.
Collapse
Affiliation(s)
- Chutirat Jirabanditsakul
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sumana Dakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Ortiz-Estévez M, Towfic F, Flynt E, Stong N, Jang IS, Wang K, Trotter MWB, Thakurta A. Integrative multi-omics identifies high risk multiple myeloma subgroup associated with significant DNA loss and dysregulated DNA repair and cell cycle pathways. BMC Med Genomics 2021; 14:295. [PMID: 34922559 PMCID: PMC8684160 DOI: 10.1186/s12920-021-01140-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Despite significant therapeutic advances in improving lives of multiple myeloma (MM) patients, it remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a genetically heterogeneous disease and therapeutic resistance is driven by a complex interplay of disease pathobiology and mechanisms of drug resistance. We applied a multi-omics strategy using tumor-derived gene expression, single nucleotide variant, copy number variant, and structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM (NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with distinct genomic and transcriptomic features. Results Our integrative approach let us identify NDMM subgroups with transversal profiles to previously described ones, based on single data types, which shows the impact of this approach for disease stratification. One key novel subgroup is our MDMS8, associated with poor clinical outcome [median overall survival, 38 months (global log-rank p-value < 1 × 10−6)], which uniquely presents a broad genomic loss (> 9% of entire genome, t-test p value < 1e−5) driving dysregulation of various transcriptional programs affecting DNA repair and cell cycle/mitotic processes. This subgroup was validated on multiple independent datasets, and a master regulator analyses identified transcription factors controlling MDMS8 transcriptomic profile, including CKS1B and PRKDC among others, which are regulators of the DNA repair and cell cycle pathways. Conclusion Using multi-omics unsupervised clustering we were able to discover a new high-risk multiple myeloma patient segment. This high-risk group presents diverse previously known genetic markers, but also a new characteristic defined by accumulation of genomic loss which seems to drive transcriptional dysregulation of cell cycle, DNA repair and DNA damage. Finally, our work identified various master regulators, including E2F2 and CKS1B as the genes controlling these key biological pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01140-5.
Collapse
Affiliation(s)
- María Ortiz-Estévez
- BMS Center for Innovation and Translational Research Europe (CITRE), A Bristol Myers Squibb Company, Sevilla, Spain
| | | | - Erin Flynt
- Bristol Myers Squibb, 181 Passaic Ave, Summit, NJ, 07901, USA
| | - Nicholas Stong
- Bristol Myers Squibb, 181 Passaic Ave, Summit, NJ, 07901, USA
| | | | - Kai Wang
- Bristol Myers Squibb, San Diego, CA, USA
| | - Matthew W B Trotter
- BMS Center for Innovation and Translational Research Europe (CITRE), A Bristol Myers Squibb Company, Sevilla, Spain
| | - Anjan Thakurta
- Bristol Myers Squibb, 181 Passaic Ave, Summit, NJ, 07901, USA.
| |
Collapse
|
27
|
Bazarbachi AH, Avet-Loiseau H, Szalat R, Samur AA, Hunter Z, Shammas M, Corre J, Fulciniti M, Anderson KC, Parmigiani G, Treon SP, Mohty M, Munshi NC, Samur MK. IgM-MM is predominantly a pre-germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood 2021; 138:1980-1985. [PMID: 34792571 PMCID: PMC8602933 DOI: 10.1182/blood.2021011452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin M (IgM) multiple myeloma (MM) is a rare disease subgroup. Its differentiation from other IgM-producing gammopathies such as Waldenström macroglobulinemia (WM) has not been well characterized but is essential for proper risk assessment and treatment. In this study, we investigated genomic and transcriptomic characteristics of IgM-MM samples using whole-genome and transcriptome sequencing to identify differentiating characteristics from non-IgM-MM and WM. Our results suggest that IgM-MM shares most of its defining structural variants and gene-expression profiling with MM, but has some key characteristics, including t(11;14) translocation, chromosome 6 and 13 deletion as well as distinct molecular and transcription-factor signatures. Furthermore, IgM-MM translocations were predominantly characterized by VHDHJH recombination-induced breakpoints, as opposed to the usual class-switching region breakpoints; coupled with its lack of class switching, these data favor a pre-germinal center origin. Finally, we found elevated expression of clinically relevant targets, including CD20 and Bruton tyrosine kinase, as well as high BCL2/BCL2L1 ratio in IgM-MM, providing potential for targeted therapeutics.
Collapse
Affiliation(s)
- Abdul Hamid Bazarbachi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, New York, NY
| | - Hervé Avet-Loiseau
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Anil Aktas Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Zachary Hunter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Masood Shammas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jill Corre
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Giovanni Parmigiani
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Steven P Treon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mohamad Mohty
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, INSERM UMRs 938, Université Sorbonne, Paris, France; and
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
28
|
Yenamandra AK, Hughes C, Maris AS. Artificial Intelligence in Plasma Cell Myeloma: Neural Networks and Support Vector Machines in the Classification of Plasma Cell Myeloma Data at Diagnosis. J Pathol Inform 2021; 12:35. [PMID: 34760332 PMCID: PMC8529344 DOI: 10.4103/jpi.jpi_26_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Plasma cell neoplasm and/or plasma cell myeloma (PCM) is a mature B-cell lymphoproliferative neoplasm of plasma cells that secrete a single homogeneous immunoglobulin called paraprotein or M-protein. Plasma cells accumulate in the bone marrow (BM) leading to bone destruction and BM failure. Diagnosis of PCM is based on clinical, radiologic, and pathological characteristics. The percent of plasma cells by manual differential (bone marrow morphology), the white blood cell (WBC) count, cytogenetics, fluorescence in situ hybridization (FISH), microarray, and next-generation sequencing of BM are used in the risk stratification of newly diagnosed PCM patients. The genetics of PCM is highly complex and heterogeneous with several genetic subtypes that have different clinical outcomes. National Comprehensive Cancer Network guidelines recommend targeted FISH analysis of plasma cells with specific DNA probes to detect genetic abnormalities for the staging of PCM (4.2021). Recognition of risk categories through training software for classification of high-risk PCM and a novel way of addressing the current approaches through bioinformatics will be a significant step toward automation of PCM analysis. Methods: A new artificial neural network (ANN) classification model was developed and tested in Python programming language with a first data set of 301 cases and a second data set of 176 cases for a total of 477 cases of PCM at diagnosis. Classification model was also developed with support vector machines (SVM) algorithm in R studio and interactive data visuals using Tableau. Results: The resulting ANN algorithm had 94% accuracy for the first and second data sets with a classification summary of precision (PPV): 0.97, recall (sensitivity): 0.76, f1 score: 0.83, and accuracy of logistic regression of 1.0. SVM of plasma cells versus TP53 revealed a 95% accuracy level. Conclusion: A novel classification model based only on specific morphological and genetic variables was developed using a machine learning algorithm, the ANN. ANN identified an association of WBC and BM plasma cell percentage with two of the high-risk genetic categories in the diagnostic cases of PCM. With further training and testing of additional data sets that include morphologic and additional genetic rearrangements, the newly developed ANN model has the potential to develop an accurate classification of high-risk categories of PCM.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin Hughes
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander S Maris
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Lancman G, Sastow DL, Cho HJ, Jagannath S, Madduri D, Parekh SS, Richard S, Richter J, Sanchez L, Chari A. Bispecific Antibodies in Multiple Myeloma: Present and Future. Blood Cancer Discov 2021; 2:423-433. [PMID: 34661161 PMCID: PMC8510808 DOI: 10.1158/2643-3230.bcd-21-0028] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Despite many recent advances in therapy, there is still no plateau in overall survival curves in multiple myeloma. Bispecific antibodies are a novel immunotherapeutic approach designed to bind antigens on malignant plasma cells and cytotoxic immune effector cells. Early-phase clinical trials targeting B-cell maturation antigen (BCMA), GPRC5D, and FcRH5 have demonstrated a favorable safety profile, with mainly low-grade cytokine release syndrome, cytopenias, and infections. Although dose escalation is ongoing in several studies, early efficacy data show response rates in the most active dose cohorts between 61% and 83% with many deep responses; however, durability remains to be established. Further clinical trial data are eagerly anticipated. SIGNIFICANCE Overall survival of triple-class refractory multiple myeloma remains poor. Bispecific antibodies are a novel immunotherapeutic modality with a favorable safety profile and impressive preliminary efficacy in heavily treated patients. Although more data are needed, bispecifics will likely become an integral part of the multiple myeloma treatment paradigm in the near future. Studies in earlier lines of therapy and in combination with other active anti-multiple myeloma agents will help further define the role of bispecifics in multiple myeloma.
Collapse
Affiliation(s)
- Guido Lancman
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Hearn J Cho
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sundar Jagannath
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deepu Madduri
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir S Parekh
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shambavi Richard
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua Richter
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Larysa Sanchez
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ajai Chari
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
30
|
Başcı S, Yiğenoğlu TN, Yaman S, Bozan E, Ulu BU, Bakırtaş M, Kılınç A, Özcan N, Bahsi T, Dal MS, Çakar MK, Altuntaş F. Does myeloma genetic have an effect on stem cell mobilization? Transfus Apher Sci 2021; 60:103249. [PMID: 34419357 DOI: 10.1016/j.transci.2021.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) after induction treatment is the standard of care. Our understanding of myeloma genetics has been very limited and its effect to stem cell mobilization is not widely investigated. We aimed to investigate the effect of genetic abnormalities on stem cell mobilization in myeloma. METHODS The data of 150 MM patients who underwent stem cell mobilization at our center between 2009-2020 were included and analyzed retrospectively. Pre-treatment bone marrow cytogenetics and fluorescence in situ hybridization tests were performed for each patient. RESULTS Groups were divided into two as patients with normal cytogenetic and abnormal cytogenetic. No difference observed between groups regarding age, gender and ECOG (p = 0.4; p = 0.2; p = 0.3). Groups were similar concerning myeloma characteristics, received treatment and treatment response. Median CD34+ cells/kg harvested was 444(2-11.29) in normal cytogenetic group whereas it was 4,8(2.4-8.6) in abnormal cytogenetic group(p = 0.2). Optimal CD34+ cells level achievement was 73 (67 %) in normal cytogenetic group while it was 25(71.4 %) in abnormal cytogenetic group(p = 0.6). Neutrophil and platelet engraftment durations were similar among cytogenetic groups (p = 0.7; p = 0.9). R-ISS based groups were also did not differ regarding harvested CD34+ cells and achievement optimal CD34 level (p = 0.79, p = 0.74). Engraftment durations for neutrophil and platelet were comparable between R-ISS based groups (p = 0.59, p = 0.65) CONCLUSIONS: Here we were not able to find any impact of genetic abnormalities on stem cell mobilization in myeloma patients. Expanded studies can aid to identify the effect of particular genetic anomalies on the stem cell mobilization.
Collapse
Affiliation(s)
- Semih Başcı
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Tuğçe Nur Yiğenoğlu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Samet Yaman
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersin Bozan
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bahar Uncu Ulu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Bakırtaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ali Kılınç
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nurgül Özcan
- Department of Clinical Biochemistry, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Taha Bahsi
- Department of Genetic, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Sinan Dal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Merih Kızıl Çakar
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Fevzi Altuntaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
31
|
Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021; 337:571-588. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Hematological malignancies (HMs) typically persisting in the blood, lymphoma, and/or bone marrow invalidate surgery and local treatments clinically used for solid tumors. The presence and drug resistance nature of cancer stem cells (CSCs) further lends HMs hard to cure. The development of new treatments like molecular targeted drugs and antibodies has improved the clinical outcomes for HMs but only to a certain extent, due to issues of low bioavailability, moderate response, occurrence of drug resistance, and/or dose-limiting toxicities. In the past years, polymeric nanomedicines targeting HMs including refractory and relapsed lymphoma, leukemia and multiple myeloma have emerged as a promising chemotherapeutic approach that is shown capable of overcoming drug resistance, delivering drugs not only to cancer cells but also CSCs, and increasing therapeutic index by lessening drug-associated adverse effects. In addition, polymeric nanomedicines have shown to potentiate next-generation anticancer modalities such as therapeutic proteins and nucleic acids in effectively treating HMs. In this review, we highlight recent advance in targeted polymeric nanoformulations that are coated with varying ligands (e.g. cancer cell membrane proteins, antibodies, transferrin, hyaluronic acid, aptamer, peptide, and folate) and loaded with different therapeutic agents (e.g. chemotherapeutics, molecular targeted drugs, therapeutic antibodies, nucleic acid drugs, and apoptotic proteins) for directing to distinct targets (e.g. CD19, CD20, CD22, CD30, CD38, CD44, CD64, CXCR, FLT3, VLA-4, and bone marrow microenvironment) in HMs. The advantages and potential challenges of different designs are discussed.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
32
|
Shen YJ, Mishima Y, Shi J, Sklavenitis-Pistofidis R, Redd RA, Moschetta M, Manier S, Roccaro AM, Sacco A, Tai YT, Mercier F, Kawano Y, Su NK, Berrios B, Doench JG, Root DE, Michor F, Scadden DT, Ghobrial IM. Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood 2021; 137:2360-2372. [PMID: 33150374 PMCID: PMC8085483 DOI: 10.1182/blood.2020005885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Clonal evolution drives tumor progression, dissemination, and relapse in multiple myeloma (MM), with most patients dying of relapsed disease. This multistage process requires tumor cells to enter the circulation, extravasate, and colonize distant bone marrow (BM) sites. Here, we developed a fluorescent or DNA-barcode clone-tracking system on MM PrEDiCT (progression through evolution and dissemination of clonal tumor cells) xenograft mouse model to study clonal behavior within the BM microenvironment. We showed that only the few clones that successfully adapt to the BM microenvironment can enter the circulation and colonize distant BM sites. RNA sequencing of primary and distant-site MM tumor cells revealed a progression signature sequentially activated along human MM progression and significantly associated with overall survival when evaluated against patient data sets. A total of 28 genes were then computationally predicted to be master regulators (MRs) of MM progression. HMGA1 and PA2G4 were validated in vivo using CRISPR-Cas9 in the PrEDiCT model and were shown to be significantly depleted in distant BM sites, indicating their role in MM progression and dissemination. Loss of HMGA1 and PA2G4 also compromised the proliferation, migration, and adhesion abilities of MM cells in vitro. Overall, our model successfully recapitulates key characteristics of human MM disease progression and identified potential new therapeutic targets for MM.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Marrow/metabolism
- Bone Marrow/pathology
- CRISPR-Cas Systems
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Clonal Evolution
- Disease Models, Animal
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- HMGA1a Protein/antagonists & inhibitors
- HMGA1a Protein/genetics
- HMGA1a Protein/metabolism
- Humans
- Mice
- Mice, SCID
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yu Jia Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of Chinese Academy of Sciences, Beijing, China
| | - Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Robert A Redd
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aldo M Roccaro
- ASST Spedali Civili di Brescia, Clinical Research Development and Phase I Unit, CREA Laboratory, Brescia, Italy
| | - Antonio Sacco
- ASST Spedali Civili di Brescia, Clinical Research Development and Phase I Unit, CREA Laboratory, Brescia, Italy
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Francois Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nang Kham Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Brianna Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA; and
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| |
Collapse
|
33
|
Rengifo LY, Smits S, Buedts L, Delforge M, Dehaspe L, Tousseyn T, Boeckx N, Lehnert S, Michaux L, Vermeesch JR, Vandenberghe P, Dewaele B. Ultra-low coverage whole genome sequencing of ccfDNA in multiple myeloma: A tool for laboratory routine? Cancer Treat Res Commun 2021; 28:100380. [PMID: 33962213 DOI: 10.1016/j.ctarc.2021.100380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Multiple myeloma (MM), is a heterogeneous disease in which chromosomal abnormalities are important for prognostic risk stratification. Cytogenetic profiling with FISH on plasma cells from bone marrow samples (BM-PCs) is the current gold standard, but variable infiltration of plasma cells or failed aspiration can hamper this process. Ultra-low coverage sequencing (ULCS) of circulating cell-free DNA (ccfDNA) may offer a minimally invasive alternative for the work-up of these cases. We compared ULCS, aCGH and FISH on selected BM-PCs in a routine setting with ULCS of ccfDNA for the detection of somatic copy number aberrations (CNAs) in MM. METHODS Purified CD138+ BM-PCs of 23 MM patients at initiation of their treatment were subjected to aCGH, FISH and ULCS. Paired samples of peripheral blood-ccfDNA obtained at diagnosis were analyzed by ULCS and compared to the results found in BM-PCs. RESULTS Using ULCS of ccfDNA, cytogenetic markers were identified in 18 out of 23 patients; five cases could not be analyzed due to low (≤3%) tumor fraction (TF). High similarity between CNA profiles of BM-PCs and ccfDNA was found. Moreover, 78% of the ccfDNA profiles resulted in the same risk classification as the routine FISH and/or BM-PCs ULCS and aCGH. Chromothripsis was detected in five patients; these had the highest TF values (range 7.1% to 42%) in our series and their profiles showed other high-risk anomalies. CONCLUSION This proof-of-principle study indicates that ULCS of ccfDNA can reveal CNAs in MM and should be explored further as a cost-efficient alternative, especially in cases where BM-PC purification fails.
Collapse
Affiliation(s)
| | - Sanne Smits
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel Delforge
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Luc Dehaspe
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Risk factors in multiple myeloma: is it time for a revision? Blood 2021; 137:16-19. [PMID: 33024991 DOI: 10.1182/blood.2019004309] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Although therapeutic strategies have been adapted to age and comorbidities for a long time, almost all multiple myeloma (MM) patients currently receive similar treatment, whatever their disease risk category. However, high-risk MM patients still constitute an unmet medical need and should benefit from the most efficient drug combinations. Herein, we review and discuss how to optimally define risk and why a revision of the current definition is urgently needed.
Collapse
|
35
|
A proof-of-concept study for the pathogenetic role of enhancer hypomethylation of MYBPHL in multiple myeloma. Sci Rep 2021; 11:7009. [PMID: 33772052 PMCID: PMC7997988 DOI: 10.1038/s41598-021-86473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Enhancer DNA methylation and expression of MYBPHL was studied in multiple myeloma (MM). By bisulfite genomic sequencing, among the three CpGs inside the MYBPHL enhancer, CpG1 was significantly hypomethylated in MM cell lines (6.7–50.0%) than normal plasma cells (37.5–75.0%) (P = 0.007), which was negatively correlated with qPCR-measured MYBPHL expression. In RPMI-8226 and WL-2 cells, bearing the highest CpG1 methylation, 5-azadC caused enhancer demethylation and expression of MYBPHL. In primary samples, higher CpG1 methylation was associated with lower MYBPHL expression. By luciferase assay, luciferase activity was enhanced by MYBPHL enhancer compared with empty vector control, but reduced by site-directed mutagenesis of each CpG. RNA-seq data of newly diagnosed MM patients showed that MYBPHL expression was associated with t(11;14). MOLP-8 cells carrying t(11;14) express the highest levels of MYBPHL, and its knockdown reduced cellular proliferation and increased cell death. Herein, as a proof-of-concept, our data demonstrated that the MYBPHL enhancer, particularly CpG1, was hypomethylated and associated with increased MYBPHL expression in MM, which was implicated in myelomagenesis.
Collapse
|
36
|
Langerhorst P, Brinkman AB, VanDuijn MM, Wessels HJCT, Groenen PJTA, Joosten I, van Gool AJ, Gloerich J, Scheijen B, Jacobs JFM. Clonotypic Features of Rearranged Immunoglobulin Genes Yield Personalized Biomarkers for Minimal Residual Disease Monitoring in Multiple Myeloma. Clin Chem 2021; 67:867-875. [PMID: 33709101 DOI: 10.1093/clinchem/hvab017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to improved treatment, more patients with multiple myeloma (MM) reach a state of minimal residual disease (MRD). Different strategies for MM MRD monitoring include flow cytometry, allele-specific oligonucleotide-quantitative PCR, next-generation sequencing, and mass spectrometry (MS). The last 3 methods rely on the presence and the stability of a unique immunoglobulin fingerprint derived from the clonal plasma cell population. For MS-MRD monitoring it is imperative that MS-compatible clonotypic M-protein peptides are identified. To support implementation of molecular MRD techniques, we studied the presence and stability of these clonotypic features in the CoMMpass database. METHODS An analysis pipeline based on MiXCR and HIGH-VQUEST was constructed to identify clonal molecular fingerprints and their clonotypic peptides based on transcriptomic datasets. To determine the stability of the clonal fingerprints, we compared the clonal fingerprints during disease progression for each patient. RESULTS The analysis pipeline to establish the clonal fingerprint and MS-suitable clonotypic peptides was successfully validated in MM cell lines. In a cohort of 609 patients with MM, we demonstrated that the most abundant clone harbored a unique clonal molecular fingerprint and that multiple unique clonotypic peptides compatible with MS measurements could be identified for all patients. Furthermore, the clonal immunoglobulin gene fingerprints of both the light and heavy chain remained stable during MM disease progression. CONCLUSIONS Our data support the use of the clonal immunoglobulin gene fingerprints in patients with MM as a suitable MRD target for MS-MRD analyses.
Collapse
Affiliation(s)
- Pieter Langerhorst
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arie B Brinkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn M VanDuijn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia J T A Groenen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joannes F M Jacobs
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
37
|
Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, Tang DG. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front Cell Dev Biol 2021; 9:640587. [PMID: 33763422 PMCID: PMC7982597 DOI: 10.3389/fcell.2021.640587] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Overwhelming evidence indicates that virtually all treatment-naive tumors contain a subpopulation of cancer cells that possess some stem cell traits and properties and are operationally defined as cancer cell stem cells (CSCs). CSCs manifest inherent heterogeneity in that they may exist in an epithelial and proliferative state or a mesenchymal non-proliferative and invasive state. Spontaneous tumor progression, therapeutic treatments, and (epi)genetic mutations may also induce plasticity in non-CSCs and reprogram them into stem-like cancer cells. Intrinsic cancer cell heterogeneity and induced cancer cell plasticity, constantly and dynamically, generate a pool of CSC subpopulations with varying levels of epigenomic stability and stemness. Despite the dynamic and transient nature of CSCs, they play fundamental roles in mediating therapy resistance and tumor relapse. It is now clear that the stemness of CSCs is coordinately regulated by genetic factors and epigenetic mechanisms. Here, in this perspective, we first provide a brief updated overview of CSCs. We then focus on microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA) devoid in many CSCs and advanced tumors. Being a member of the miR-34 family, miR-34a was identified as a p53 target in 2007. It is a bona fide tumor suppressor, and its expression is dysregulated and downregulated in various human cancers. By targeting stemness factors such as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically and negatively regulates the functional properties of CSCs. We shall briefly discuss potential reasons behind the failure of the first-in-class clinical trial of MRX34, a liposomal miR-34a mimic. Finally, we offer several clinical settings where miR-34a can potentially be deployed to therapeutically target CSCs and advanced, therapy-resistant, and p53-mutant tumors in order to overcome therapy resistance and curb tumor relapse.
Collapse
Affiliation(s)
- Wen Jess Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yunfei Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruifang Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
38
|
Mirzaei H, Bagheri H, Ghasemi F, Khoi JM, Pourhanifeh MH, Heyden YV, Mortezapour E, Nikdasti A, Jeandet P, Khan H, Sahebkar A. Anti-Cancer Activity of Curcumin on Multiple Myeloma. Anticancer Agents Med Chem 2021; 21:575-586. [PMID: 32951583 DOI: 10.2174/1871520620666200918113625] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is the third most common and deadly hematological malignancy, which is characterized by a progressive monoclonal proliferation within the bone marrow. MM is cytogenetically heterogeneous with numerous genetic and epigenetic alterations, which lead to a wide spectrum of signaling pathways and cell cycle checkpoint aberrations. MM symptoms can be attributed to CRAB features (hyperCalcemia, Renal failure, Anemia, and Bone lesion), which profoundly affect both the Health-Related Quality of Life (HRQoL) and the life expectancy of patients. Despite all enhancement and improvement in therapeutic strategies, MM is almost incurable, and patients suffering from this disease eventually relapse. Curcumin is an active and non-toxic phenolic compound, isolated from the rhizome of Curcuma longa L. It has been widely studied and has a confirmed broad range of therapeutic properties, especially anti-cancer activity, and others, including anti-proliferation, anti-angiogenesis, antioxidant and anti-mutation activities. Curcumin induces apoptosis in cancerous cells and prevents Multidrug Resistance (MDR). Growing evidence concerning the therapeutic properties of curcumin caused a pharmacological impact on MM. It is confirmed that curcumin interferes with various signaling pathways and cell cycle checkpoints, and with oncogenes. In this paper, we summarized the anti- MM effects of curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bagheri
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | | | | | - Yvan V Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nikdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
A longitudinal analysis of chromosomal abnormalities in disease progression from MGUS/SMM to newly diagnosed and relapsed multiple myeloma. Ann Hematol 2021; 100:437-443. [PMID: 33392702 DOI: 10.1007/s00277-020-04384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022]
Abstract
We analyzed variations in terms of chromosomal abnormalities (CA) by fluorescence in situ hybridization (FISH) analysis on purified bone marrow plasma cells throughout the progression from monoclonal gammopathy of undetermined significance/smoldering multiple myeloma (MGUS/SMM) to newly diagnosed MM/plasma cell leukemia (NDMM/PCL) at diagnosis and from diagnostic samples to progressive disease. High risk was defined by the presence of at least del(17p), t(4;14), and/or t(14;16). 1p/1q detection (in the standard FISH panel from 2012 onward) was not available for all patients. We analyzed 139 MM/PCL diagnostic samples from 144 patients, with a median follow-up of 71 months: high-risk CA at diagnosis (MGUS/SMM or NDMM) was present in 28% of samples, whereas 37-39% showed high-risk CA at relapse. In 115 patients with NDMM who evolved to relapsed/refractory MM, we identified 3 different populations: (1) 31/115 patients (27%) with gain of new CA (del13, del17p, t(4;14), t(14;16) or 1q CA when available); (2) 10/115 (9%) patients with loss of a previously identified CA; and (3) 74 patients with no changes. The CA gain group showed a median overall survival of 66 months vs. 84 months in the third group (HR 0.56, 95% CI 0.34-0.92, p = 0.023). Clonal evolution occurs as disease progresses after different chemotherapy lines. Patients who acquired high-risk CA had the poorest prognosis. Our findings highlight the importance of performing FISH analysis both at diagnosis and at relapse.
Collapse
|
40
|
Wu D, Zhang P, Li F, Shen Y, Chen H, Feng Y, He A, Wang F. CD138 - multiple myeloma cells express high level of CHK1 which correlated to overall survival in MM patient. Aging (Albany NY) 2020; 12:23067-23081. [PMID: 33197893 PMCID: PMC7746343 DOI: 10.18632/aging.104066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
Multiple myeloma (MM) is a disease in which abnormal plasma cells proliferate and secrete monoclonal immunoglobulin in the bone marrow. The main characteristic of plasma cells is the expression of the cell surface antigen syndecan-1 (CD138). However, the expression of CD138 is limited to terminally differentiated plasma cells during B cell development. A small subpopulation (2~5%) of human MM cells that lack CD138 expression has been shown to possess enormous proliferation potential in vitro experiment and in animal models, and they also can differentiate into CD138+ plasma cells. Thus, this small subset of MM cells was regarded as myeloma cancer stem cell (MCSC). However, its characteristics associated with the pathogenesis of MM remain unclear. In this study, we analyzed the gene expression data of CD138 cell lines downloaded from Gene Expression Omnibus (GEO) database. Limma package in RStudio was used to identify differentially expressed genes (DEGs). Genes enrichment and protein-protein interaction (PPI) network analysis were performed on DAVID and STRING databases. Furthermore, overall survival (OS) analysis in MM patient was utilized to screen out the hub-genes closely associate with the MM pathogenesis process. Hub-genes expression validation and receiver operating characteristic curve (ROC) analysis was performed in different stages of plasma cell disorder diseases. Finally, we verified these findings in MM patient samples. Through integrated bioinformatics analysis of MM CD138- and CD138+ cell lines, we found that CDC7, CDK1, and CHK1 are highly expressed in CD138- MM cells. These genes are crucial in the G2/M phase of the cell cycle pathway, which is closely related to the malignant proliferation in various tumor cells. Of note, we found that patients with high expression of CDC7, CDK1, and CHK1 had shorter overall survival time. The expression of CHK1 was significantly increased in MM cells compared with normal plasma cell (NPC) and MGUS. More importantly, we further clarified that the expression of CHK1 in release/refraction MM (R/R MM) has obviously increased compared with new diagnosed MM (ND MM).
Collapse
Affiliation(s)
- Dong Wu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peihua Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fangxia Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers (Basel) 2020; 12:cancers12082158. [PMID: 32759688 PMCID: PMC7463431 DOI: 10.3390/cancers12082158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
The standard model of multiple myeloma (MM) relies on genetic instability in the normal counterparts of MM cells. MM-induced lytic bone lesions are considered as end organ damages. However, bone is a tissue of significance in MM and bone changes could be at the origin/facilitate the emergence of MM. We propose the tissue disruption-induced cell stochasticity (TiDiS) theory for MM oncogenesis that integrates disruption of the microenvironment, differentiation, and genetic alterations. It starts with the observation that the bone marrow endosteal niche controls differentiation. As decrease in cellular stochasticity occurs thanks to cellular interactions in differentiating cells, the initiating role of bone disruption would be in the increase of cellular stochasticity. Thus, in the context of polyclonal activation of B cells, memory B cells and plasmablasts would compete for localizing in endosteal niches with the risk that some cells cannot fully differentiate if they cannot reside in the niche because of a disrupted microenvironment. Therefore, they would remain in an unstable state with residual proliferation, with the risk that subclones may transform into malignant cells. Finally, diagnostic and therapeutic perspectives are provided.
Collapse
|
42
|
Landau HJ, Yellapantula V, Diamond BT, Rustad EH, Maclachlan KH, Gundem G, Medina-Martinez J, Ossa JA, Levine MF, Zhou Y, Kappagantula R, Baez P, Attiyeh M, Makohon-Moore A, Zhang L, Boyle EM, Ashby C, Blaney P, Patel M, Zhang Y, Dogan A, Chung DJ, Giralt S, Lahoud OB, Peled JU, Scordo M, Shah G, Hassoun H, Korde NS, Lesokhin AM, Lu S, Mailankody S, Shah U, Smith E, Hultcrantz ML, Ulaner GA, van Rhee F, Morgan GJ, Landgren O, Papaemmanuil E, Iacobuzio-Donahue C, Maura F. Accelerated single cell seeding in relapsed multiple myeloma. Nat Commun 2020; 11:3617. [PMID: 32680998 PMCID: PMC7368016 DOI: 10.1038/s41467-020-17459-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) progression is characterized by the seeding of cancer cells in different anatomic sites. To characterize this evolutionary process, we interrogated, by whole genome sequencing, 25 samples collected at autopsy from 4 patients with relapsed MM and an additional set of 125 whole exomes collected from 51 patients. Mutational signatures analysis showed how cytotoxic agents introduce hundreds of unique mutations in each surviving cancer cell, detectable by bulk sequencing only in cases of clonal expansion of a single cancer cell bearing the mutational signature. Thus, a unique, single-cell genomic barcode can link chemotherapy exposure to a discrete time window in a patient′s life. We leveraged this concept to show that MM systemic seeding is accelerated at relapse and appears to be driven by the survival and subsequent expansion of a single myeloma cell following treatment with high-dose melphalan therapy and autologous stem cell transplant. In multiple myeloma, disease progresses via seeding to different anatomic sites and clonal expansion. Here, utilising autopsy material, the authors show that systemic seeding accelerates at relapse following treatment.
Collapse
Affiliation(s)
- Heather J Landau
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Venkata Yellapantula
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin T Diamond
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Even H Rustad
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kylee H Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunes Gundem
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Medina-Martinez
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Arango Ossa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max F Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yangyu Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Attiyeh
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvin Makohon-Moore
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lance Zhang
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Minal Patel
- Center for Hematological Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J Chung
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sergio Giralt
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Oscar B Lahoud
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael Scordo
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gunjan Shah
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hani Hassoun
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neha S Korde
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander M Lesokhin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sydney Lu
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Urvi Shah
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Smith
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Malin L Hultcrantz
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Ola Landgren
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Alegre A, de la Rubia J, Sureda Balari A, Encinas Rodríguez C, Suárez A, Blanchard MJ, Bargay Lleonart J, Rodríguez-Otero P, Insunza A, Palomera L, Peñarrubia MJ, Ríos-Tamayo R, Casado Montero LF, González MS, Potamianou A, Couturier C, Pei H, Hevia H, Milionis I, Gaudig M, Mateos MV. Results of an Early Access Treatment Protocol of Daratumumab Monotherapy in Spanish Patients With Relapsed or Refractory Multiple Myeloma. Hemasphere 2020; 4:e380. [PMID: 32647799 PMCID: PMC7306316 DOI: 10.1097/hs9.0000000000000380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/18/2020] [Indexed: 01/02/2023] Open
Abstract
Daratumumab is a human CD38-targeted monoclonal antibody approved as monotherapy for heavily pretreated relapsed and refractory multiple myeloma. We report findings for the Spanish cohort of an open-label treatment protocol that provided early access to daratumumab monotherapy and collected safety and patient-reported outcomes data for patients with relapsed or refractory multiple myeloma. At 15 centers across Spain, intravenous daratumumab (16 mg/kg) was administered to 73 patients who had ≥3 prior lines of therapy, including a proteasome inhibitor and an immunomodulatory drug, or who were double refractory to both. The median duration of daratumumab treatment was 3.3 (range: 0.03-13.17) months, with a median number of 12 (range: 1-25) infusions. Grade 3/4 treatment-emergent adverse events were reported in 74% of patients and included lymphopenia (28.8%), thrombocytopenia (27.4%), neutropenia (21.9%), leukopenia (19.2%), and anemia (15.1%). Common (>5%) serious treatment-emergent adverse events included respiratory tract infection (9.6%), general physical health deterioration (6.8%), and back pain (5.5%). Infusion-related reactions occurred in 45% of patients. The median change from baseline in all domains of the EQ-5D-5L and EORTC QLQ-C30 was mostly 0. A total of 18 (24.7%) patients achieved a partial response or better, with 10 (13.7%) patients achieving a very good partial response or better. Median progression-free survival was 3.98 months. The results of this early access treatment protocol are consistent with previously reported trials of daratumumab monotherapy and confirm its safety and antitumoral efficacy in Spanish patients with heavily treated relapsed or refractory multiple myeloma. European Clinical Trials Database number: 2015-002993-19.
Collapse
Affiliation(s)
- Adrián Alegre
- Hospital Universitario de La Princesa, Madrid, Spain
| | - Javier de la Rubia
- Hospital Dr. Peset and School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | | | - Cristina Encinas Rodríguez
- Hospital General Universitario Gregorio Marañón, Instituto de Investigacion Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alexia Suárez
- Hospital Universitario Gran Canaria Dr. Negrin, Las Palmas, Spain
| | | | | | | | - Andrés Insunza
- Department of Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Luis Palomera
- Hospital Clínico Universitario Lozano Blesa, Instituto de Investigación de Aragón, Zaragoza, Spain
| | | | | | | | | | | | | | - Huiling Pei
- Janssen Research & Development, Horsham, Pennsylvania, United States
| | - Henar Hevia
- Janssen-Cilag Medical Affairs, Madrid, Spain
| | - Iordanis Milionis
- EMEA Medical Affairs, Janssen-Cilag Pharmaceutical SACI, Athens, Greece
| | | | | |
Collapse
|
44
|
Alagpulinsa DA, Szalat RE, Poznansky MC, Shmookler Reis RJ. Genomic Instability in Multiple Myeloma. Trends Cancer 2020; 6:858-873. [PMID: 32487486 DOI: 10.1016/j.trecan.2020.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Genomic instability (GIN), an increased tendency to acquire genomic alterations, is a cancer hallmark. However, its frequency, underlying causes, and disease relevance vary across different cancers. Multiple myeloma (MM), a plasma cell malignancy, evolves through premalignant phases characterized by genomic abnormalities. Next-generation sequencing (NGS) methods are deconstructing the genomic landscape of MM across the continuum of its development, inextricably linking malignant transformation and disease progression with increasing acquisition of genomic alterations, and illuminating the mechanisms that generate these alterations. Although GIN drives disease evolution, it also creates vulnerabilities such as dependencies on 'superfluous' repair mechanisms and the induction of tumor-specific antigens that can be targeted. We review the mechanisms of GIN in MM, the associated vulnerabilities, and therapeutic targeting strategies.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Raphael E Szalat
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
45
|
Kinahan C, Mangone MA, Scotto L, Visentin M, Marchi E, Cho HJ, O'Connor OA. The anti-tumor activity of pralatrexate (PDX) correlates with the expression of RFC and DHFR mRNA in preclinical models of multiple myeloma. Oncotarget 2020; 11:1576-1589. [PMID: 32405334 PMCID: PMC7210016 DOI: 10.18632/oncotarget.27516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. While major advances have been made in the disease, it is still incurable. Although antifolate-based drugs are not commonly used to treat myeloma, new generation analogs with distinct patterns of preclinical and clinical activity may offer an opportunity to identify new classes of potentially active drugs. Pralatrexate (PDX), which was approved for the treatment of relapsed or refractory peripheral T-cell lymphoma in 2009, may be one such drug. Pralatrexate exhibits a potency and pattern of activity distinct from its predecessors like methotrexate (MTX). We sought to understand the activity and mechanisms of resistance of multiple myeloma to these drugs, which could also offer potential strategies for selective use of the drug. We demonstrate that PDX and MTX both induce a significant decrease in cell viability in the low nanomolar range, with PDX exhibiting a more potent effect. We identified a series of myeloma cell lines exhibiting markedly different patterns of sensitivity to the drugs, with some lines frankly resistant, and others exquisitely sensitive. These differences were largely attributed to the basal RFC (Reduced Folate Carrier) mRNA expression levels. RFC mRNA expression correlated directly with rates of drug uptake, with the most sensitive lines exhibiting the most significant intracellular accumulation of pralatrexate. This mechanism explains the widely varying patterns of sensitivity and resistance to pralatrexate in multiple myeloma cell lines. These findings could have implications for this class of drugs and their role in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cristina Kinahan
- Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA.,Co-first authors
| | - Michael A Mangone
- Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA.,Co-first authors
| | - Luigi Scotto
- Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Enrica Marchi
- Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Hearn Jay Cho
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Owen A O'Connor
- Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| |
Collapse
|
46
|
Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Shirolkar A, Islam S, Santra MK, Rapole S. Proteomics and functional study reveal marginal zone B and B1 cell specific protein as a candidate marker of multiple myeloma. Int J Oncol 2020; 57:325-337. [PMID: 32377723 DOI: 10.3892/ijo.2020.5056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell‑associated cancer and accounts for 13% of all hematological malignancies, worldwide. MM still remains an incurable plasma cell malignancy with a poor prognosis due to a lack of suitable markers. Therefore, discovering novel markers and targets for diagnosis and therapeutics of MM is essential. The present study aims to identify markers associated with MM malignancy using patient‑derived MM mononuclear cells (MNCs). Label‑free quantitative proteomics analysis revealed a total of 192 differentially regulated proteins, in which 79 proteins were upregulated and 113 proteins were found to be downregulated in MM MNCs as compared to non‑hematological malignant samples. The identified differentially expressed candidate proteins were analyzed using various bioinformatics tools, including Ingenuity Pathway Analysis (IPA), Protein Analysis THrough Evolutionary Relationships (PANTHER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Database for Annotation, Visualization and Integrated Discovery (DAVID) to determine their biological context. Among the 192 candidate proteins, marginal zone B and B1 cell specific protein (MZB1) was investigated in detail using the RPMI-8226 cell line model of MM. The functional studies revealed that higher expression of MZB1 is associated with promoting the progression of MM pathogenesis and could be established as a potential target for MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tathagata Chatterjee
- Army Hospital (Research and Referral), Dhaula Kuan, New Delhi, Delhi 110010, India
| | | | - Amey Shirolkar
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Sehbanul Islam
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Manas K Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
47
|
Liang L, He Y, Wang H, Zhou H, Xiao L, Ye M, Kuang Y, Luo S, Zuo Y, Feng P, Yang C, Cao W, Liu T, Roy M, Xiao X, Liu J. The Wee1 kinase inhibitor MK1775 suppresses cell growth, attenuates stemness and synergises with bortezomib in multiple myeloma. Br J Haematol 2020; 191:62-76. [PMID: 32314355 DOI: 10.1111/bjh.16614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Multiple myeloma stem-like cells (MMSCs) are responsible for initiation and relapse, though novel treatment paradigms that effectively eradicate MMSCs are yet to be developed. Selective inhibition of the cell cycle regulatory kinase Wee1 by MK1775 is being explored as a potential anti-cancer therapeutic. We report that higher expression of Wee1 is correlated with poor survival in multiple myeloma (MM). The MM models and patient-derived CD138+ plasma cells are particularly sensitive to the growth-inhibitory effects of the Wee1 inhibitor MK1775. MK1775 induces Mus81-Eme1 endonuclease-mediated DNA damage in S-phase cell cycle that results in a blockade of replication and then apoptosis. Furthermore, MK1775 strongly suppresses the features of stemness in vitro, in vivo and in primary CD138+ cells by decreasing ALDH1+ cell fraction and the expression of ALDH1. In addition, co-treatment of MK1775 with bortezomib is synergistic in vitro and in vivo. Bortezomib, although it enhances ALDH1+ cells, when combined with MK1775 abrogates this stimulatory effect on stemness. Considering MM as an invariably incurable malignancy due to the presence of heterogenic myeloma stem-like cells, our study presents inhibition of Wee1 as a promising targeted therapy for MM and provides a compelling rationale to further investigate the activity of MK1775 against myeloma in clinical settings.
Collapse
Affiliation(s)
- Long Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiqin Wang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Hui Zhou
- Lymphoma & Hematology Department, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yijin Kuang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Saiqun Luo
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yuna Zuo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Wenjie Cao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China.,Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Taohua Liu
- Department of Clinical Medicine, Xiangya Medical School, Changsha, China
| | - Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
48
|
Engelhardt M, Ihorst G, Duque-Afonso J, Wedding U, Spät-Schwalbe E, Goede V, Kolb G, Stauder R, Wäsch R. Structured assessment of frailty in multiple myeloma as a paradigm of individualized treatment algorithms in cancer patients at advanced age. Haematologica 2020; 105:1183-1188. [PMID: 32241848 PMCID: PMC7193478 DOI: 10.3324/haematol.2019.242958] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Monika Engelhardt
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jesus Duque-Afonso
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Ernst Spät-Schwalbe
- Vivantes Klinikum Spandau, Innere Medizin, Hämatologie, Onkologie, Palliativmedizin, Berlin, Germany
| | | | - Gerald Kolb
- Bonifatius Hospital Lingen, Medizinische Klinik, Fachbereich Geriatrie, Akademisches Lehrkrankenhaus der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Reinhard Stauder
- Universitätsklinik für Innere Medizin V (Hämatologie und Onkologie), Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Ralph Wäsch
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Huang X, Gu H, Zhang E, Chen Q, Cao W, Yan H, Chen J, Yang L, Lv N, He J, Yi Q, Cai Z. The NEDD4-1 E3 ubiquitin ligase: A potential molecular target for bortezomib sensitivity in multiple myeloma. Int J Cancer 2020; 146:1963-1978. [PMID: 31390487 PMCID: PMC7027789 DOI: 10.1002/ijc.32615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/04/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
E3 ubiquitin ligases primarily determine the substrate specificity of the ubiquitin-proteasome system and play an essential role in the resistance to bortezomib in multiple myeloma (MM). Neural precursor cell-expressed developmentally downregulated gene 4-1 (NEDD4-1, also known as NEDD4) is a founding member of the NEDD4 family of E3 ligases and is involved in the proliferation, migration, invasion and drug sensitivity of cancer cells. In the present study, we investigated the role of NEDD4-1 in MM cells and explored its underlying mechanism. Clinically, low NEDD4-1 expression has been linked to poor prognosis in patients with MM. Functionally, NEDD4-1 knockdown (KD) resulted in bortezomib resistance in MM cells in vitro and in vivo. The overexpression (OE) of NEDD4-1, but not an enzyme-dead NEDD4-1-C867S mutant, had the opposite effect. Furthermore, the overexpression of NEDD4-1 in NEDD4-1 KD cells resensitized the cells to bortezomib in an add-back rescue experiment. Mechanistically, pAkt-Ser473 levels and Akt signaling were elevated and decreased by NEDD4-1 KD and OE, respectively. NEDD4-1 ubiquitinated Akt and targeted pAkt-Ser473 for proteasomal degradation. More importantly, the NEDD4-1 KD-induced upregulation of Akt expression sensitized MM cells to growth inhibition after treatment with an Akt inhibitor. Collectively, our results suggest that high NEDD4-1 levels may be a potential new therapeutic target in MM.
Collapse
Affiliation(s)
- Xi Huang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Huiyao Gu
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Enfan Zhang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Wen Cao
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Haimeng Yan
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jing Chen
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Li Yang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ning Lv
- Department of PharmacyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qing Yi
- Center for Hematologic Malignancy Research Institute, Houston MethodistHoustonTX
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Institute of Hematology, Zhejiang UniversityChina
| |
Collapse
|
50
|
Li Q, Huang HJ, Ma J, Wang Y, Cao Z, Karlin-Neumann G, Janku F, Liu Z. RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer 2020; 11:3543-3550. [PMID: 32284750 PMCID: PMC7150446 DOI: 10.7150/jca.43729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 11/05/2022] Open
Abstract
Purpose: To evaluate the detection of gene mutations in bone marrow biopsy and circulating free DNA (cfDNA) from plasma in multiple myeloma (MM). Experimental design: We used cell-free DNA from plasma and bone marrow to test BRAF V600, KRAS G12/G13, NRAS G12/G13 and NRAS Q61 mutations using multiplex assays for droplet digital PCR (ddPCR), and evaluated results with clinical outcomes. Results: We found of 83 patients, the detectable mutation frequencies for the above four genes were 4 (5%), 13 (16%), 3 (4%) and 14 (17%) in bone marrow, respectively. The median variant allelic frequency (VAF) in most mutations were 1.595%. In 17 paired cfDNA samples, the detectable mutation frequencies for the above four genes were 5 (30%), 1 (6%), 0 (0%) and 3 (18%) respectively, and the median VAF rate was 2.9%. Agreement between bone marrow DNA and plasma cfDNA were 76%, 100%, 100% and 100% compared to the tissue detections, respectively. In 17 patients with paired bone marrow and plasma samples, the above four mutations were 3 (18%), 1 (6%), 0 (0%) and 2 (12%) respectively, with the agreement rates of 88%, 88%, 100% and 100% compared to tissue detections. Of 57 patients with available outcome data, high mutation VAF had a shorter median survival than patients with low mutation VAF (P=0.0322). Conclusions: Oncogenic mutations in BRAF, KRAS and NRAS genes can be detected in the bone marrow and plasma cfDNA with ddPCR in patients with MM patients and high VAF is associated with short survival.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Helen J Huang
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Ma
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zeng Cao
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| |
Collapse
|