1
|
Bisht K, Merino A, Igarashi R, Gauthier L, Chiron M, Desjonqueres A, Smith E, Briercheck E, Romee R, Alici E, Vivier E, O'Dwyer M, van de Velde H. Natural killer cell biology and therapy in multiple myeloma: challenges and opportunities. Exp Hematol Oncol 2024; 13:114. [PMID: 39538354 PMCID: PMC11562869 DOI: 10.1186/s40164-024-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Despite therapeutic advancements, multiple myeloma (MM) remains incurable. NK cells have emerged as a promising option for the treatment of MM. NK cells are heterogenous and typically classified based on the relative expression of their surface markers (e.g., CD56 and CD16a). These cells elicit an antitumor response in the presence of low mutational burden and without neoantigen presentation via germline-encoded activating and inhibitory receptors that identify the markers of transformation present on the MM cells. Higher NK cell activity is associated with improved survival and prognosis, whereas lower activity is associated with advanced clinical stage and disease progression in MM. Moreover, not all NK cell phenotypes contribute equally toward the anti-MM effect; higher proportions of certain NK cell phenotypes result in better outcomes. In MM, the proportion, phenotype, and function of NK cells are drastically varied between different disease stages; this is further influenced by the bone marrow microenvironment, proportion of activating and inhibitory receptors on NK cells, expression of homing receptors, and bone marrow hypoxia. Antimyeloma therapies, such as autologous stem cell transplant, immunomodulation, proteasome inhibition, and checkpoint inhibition, further modulate the NK cell landscape in the patients. Thus, NK cells can naturally work in tandem with anti-MM therapies and be strategically modulated for improved anti-MM effect. This review article describes immunotypic and phenotypic differences in NK cells along with the functional changes in homeostatic and malignant states and provides expert insights on strategies to harness the potential of NK cells for improving outcomes in MM.
Collapse
Affiliation(s)
- Kamlesh Bisht
- Research and Development, Sanofi, Cambridge, MA, 02141, USA.
| | - Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | - Rob Igarashi
- Research and Development, Sanofi, Cambridge, MA, 02141, USA
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | | - Eric Smith
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Edward Briercheck
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, Marseille, France
- Marseille-Immunopôle, APHM, Hôpital de la Timone, Marseille, France
| | - Michael O'Dwyer
- Department of Haematology, University of Galway, Galway, Ireland
| | | |
Collapse
|
2
|
Lozano E, Mena MP, Garrabou G, Cardús O, Díaz T, Moreno DF, Mañé-Pujol J, Oliver-Caldés A, Battram A, Tovar N, Cibeira MT, Rodríguez-Lobato LG, Bladé J, Fernández de Larrea C, Rosiñol L. Increased PVR Expression on Bone Marrow Macrophages May Promote Resistance to TIGIT Blockade in Multiple Myeloma. Clin Cancer Res 2024; 30:3944-3955. [PMID: 38990101 DOI: 10.1158/1078-0432.ccr-24-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE TIGIT blockade in our ex vivo model of bone marrow (BM) reduced the number of malignant plasma cells (PC) in only half of patients with multiple myeloma. Here, we wanted to investigate whether increased expression of TIGIT ligands may inhibit T-cell immune response promoting resistance to TIGIT blockade. EXPERIMENTAL DESIGN We first characterized the number and phenotype of BM macrophages in different stages of the disease by multiparameter flow cytometry. We assessed the effect of TIGIT ligands on PC survival by performing experiments in the ex vivo BM model and analyzed changes in gene expression by using NanoString technology and real-time PCR. RESULTS The frequency of BM macrophages was significantly decreased in multiple myeloma, which was accompanied by changes in their immunophenotype. Moreover, we found a higher number of malignant PC in ex vivo BM cells cultured onto the poliovirus receptor (PVR) and nectin-2 compared with control, suggesting that both ligands may support PC survival. In addition, the presence of PVR, but not nectin-2, overcame the therapeutic effect of TIGIT blockade or exogenous IL2. Furthermore, exogenous IL2 increased TIGIT expression on both CD4+ and CD8+ T cells and, indirectly, PVR on BM macrophages. Consistently, PVR reduced the number of cytotoxic T cells and promoted a gene signature with reduced effector molecules. CONCLUSIONS IL2 induced TIGIT on T cells in the BM, in which increased PVR expression resulted in cytotoxic T-cell inhibition, promoting PC survival and resistance to TIGIT blockade.
Collapse
Affiliation(s)
- Ester Lozano
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona (UB), Barcelona, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mari-Pau Mena
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences-University of Barcelona, Barcelona, Spain
| | - Oriol Cardús
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Tania Díaz
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - David F Moreno
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Mañé-Pujol
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anthony Battram
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Natalia Tovar
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María-Teresa Cibeira
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Luis-Gerardo Rodríguez-Lobato
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Bladé
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Laura Rosiñol
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
4
|
Ferla V, Farina F, Perini T, Marcatti M, Ciceri F. Monoclonal Antibodies in Smoldering Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance: Current Status and Future Directions. Pharmaceuticals (Basel) 2024; 17:901. [PMID: 39065751 PMCID: PMC11279454 DOI: 10.3390/ph17070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Monoclonal antibodies (MoAbs) targeting several cellular receptors have significantly improved the prognosis of multiple myeloma (MM). Their high effectiveness and safety raise the question of whether earlier therapeutic intervention in monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) influences the natural course of the disease. MM is preceded by clinically recognized conditions such as MGUS and SMM. Numerous studies are investigating the disease biology and immune profile of SMM and MGUS to unravel the intricate relationship between immunosurveillance and disease progression. The standard approach to MGUS and SMM remains close observation. Early studies indicate benefits in terms of progression or even survival for promptly treating high-risk SMM patients. Ongoing debates are focused on which patients with SMM and MGUS to treat, as well as on determining the optimal therapeutic approach. The first approach aims to cure by attempting to eliminate the pathological clone, while the second approach is preventive, aiming to manage disease progression to active MM and restore the immune system. In this review, we focus on the available and emerging data on early treatment, particularly with MoAbs alone or in combination with other therapies, in SMM and MGUS patients.
Collapse
Affiliation(s)
- Valeria Ferla
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Tommaso Perini
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
- Age Related Diseases Laboratory, Division of Genetics and Cell Biology, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
- Faculty of Medicine and Surgery, Vita-Salute IRCCS San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
5
|
Dhodapkar MV. Immune-Pathogenesis of Myeloma. Hematol Oncol Clin North Am 2024; 38:281-291. [PMID: 38195307 DOI: 10.1016/j.hoc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Winship Cancer Institute, 1365 Clifton Road, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Zhang L, Peng X, Ma T, Liu J, Yi Z, Bai J, Li Y, Li L, Zhang L. Natural killer cells affect the natural course, drug resistance, and prognosis of multiple myeloma. Front Cell Dev Biol 2024; 12:1359084. [PMID: 38410372 PMCID: PMC10895066 DOI: 10.3389/fcell.2024.1359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
8
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
9
|
Dhodapkar MV. The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception. Am J Hematol 2023; 98 Suppl 2:S4-S12. [PMID: 36194782 PMCID: PMC9918687 DOI: 10.1002/ajh.26752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS) are distinct disorders that likely originate in the setting of chronic immune activation. Evolution of these lesions is impacted by cross-talk with both innate and adaptive immune systems of the host. Harnessing the immune system may, therefore, be an attractive strategy to prevent clinical malignancy. While clinical MM is characterized by both regional and systemic immune suppression and paresis, immune-based approaches, particularly redirecting T cells have shown remarkable efficacy in MM patients. Optimal application and sequencing of these new immune therapies and their integration into clinical MM management may depend on the underlying immune status, in turn impacted by host, tumor, and environmental features. Immune therapies carry the potential to achieve durable unmaintained responses and cures in MM.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Lagreca I, Nasillo V, Barozzi P, Castelli I, Basso S, Castellano S, Paolini A, Maccaferri M, Colaci E, Vallerini D, Natali P, Debbia D, Pirotti T, Ottomano AM, Maffei R, Bettelli F, Giusti D, Messerotti A, Gilioli A, Pioli V, Leonardi G, Forghieri F, Bresciani P, Cuoghi A, Morselli M, Manfredini R, Longo G, Candoni A, Marasca R, Potenza L, Tagliafico E, Trenti T, Comoli P, Luppi M, Riva G. Prognostic Relevance of Multi-Antigenic Myeloma-Specific T-Cell Assay in Patients with Monoclonal Gammopathies. Cancers (Basel) 2023; 15:cancers15030972. [PMID: 36765928 PMCID: PMC9913154 DOI: 10.3390/cancers15030972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Ilaria Castelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Castellano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Ambra Paolini
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Elisabetta Colaci
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Daniela Vallerini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Daria Debbia
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Pirotti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Anna Maria Ottomano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Rossana Maffei
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Giovanna Leonardi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Paola Bresciani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Angela Cuoghi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Monica Morselli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Longo
- Department of Oncology and Hematology, AOU Modena, 41124 Modena, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Enrico Tagliafico
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Trenti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| | - Giovanni Riva
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| |
Collapse
|
11
|
Monoclonal Gammopathies and the Bone Marrow Microenvironment: From Bench to Bedside and Then Back Again. Hematol Rep 2023; 15:23-49. [PMID: 36648882 PMCID: PMC9844382 DOI: 10.3390/hematolrep15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.
Collapse
|
12
|
Sklavenitis-Pistofidis R, Aranha MP, Redd RA, Baginska J, Haradhvala NJ, Hallisey M, Dutta AK, Savell A, Varmeh S, Heilpern-Mallory D, Ujwary S, Zavidij O, Aguet F, Su NK, Lightbody ED, Bustoros M, Tahri S, Mouhieddine TH, Wu T, Flechon L, Anand S, Rosenblatt JM, Zonder J, Vredenburgh JJ, Boruchov A, Bhutani M, Usmani SZ, Matous J, Yee AJ, Jakubowiak A, Laubach J, Manier S, Nadeem O, Richardson P, Badros AZ, Mateos MV, Trippa L, Getz G, Ghobrial IM. Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma. Cancer Cell 2022; 40:1358-1373.e8. [PMID: 36379208 PMCID: PMC10019228 DOI: 10.1016/j.ccell.2022.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022]
Abstract
Patients with smoldering multiple myeloma (SMM) are observed until progression, but early treatment may improve outcomes. We conducted a phase II trial of elotuzumab, lenalidomide, and dexamethasone (EloLenDex) in patients with high-risk SMM and performed single-cell RNA and T cell receptor (TCR) sequencing on 149 bone marrow (BM) and peripheral blood (PB) samples from patients and healthy donors (HDs). We find that early treatment with EloLenDex is safe and effective and provide a comprehensive characterization of alterations in immune cell composition and TCR repertoire diversity in patients. We show that the similarity of a patient's immune cell composition to that of HDs may have prognostic relevance at diagnosis and after treatment and that the abundance of granzyme K (GZMK)+ CD8+ effector memory T (TEM) cells may be associated with treatment response. Last, we uncover similarities between immune alterations observed in the BM and PB, suggesting that PB-based immune profiling may have diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michelle P Aranha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert A Redd
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joanna Baginska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Margaret Hallisey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ankit K Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexandra Savell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shohreh Varmeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Heilpern-Mallory
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sylvia Ujwary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Oksana Zavidij
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Francois Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nang K Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth D Lightbody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark Bustoros
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sabrin Tahri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ting Wu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lea Flechon
- INSERM UMRS1277, CNRS UMR9020, Lille University, 59000 Lille, France
| | - Shankara Anand
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jeffrey Zonder
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | - Adam Boruchov
- St. Francis Hospital and Cancer Center, Hartford, CT 06105, USA
| | | | | | | | - Andrew J Yee
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | - Jacob Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salomon Manier
- INSERM UMRS1277, CNRS UMR9020, Lille University, 59000 Lille, France; Department of Hematology, CHU Lille, Lille University, 59000 Lille, France
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Paul Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ashraf Z Badros
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Maria-Victoria Mateos
- University Hospital of Salamanca - Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
| | - Lorenzo Trippa
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gad Getz
- Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Prevention of Progression (CPOP), Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022; 12:1038329. [PMID: 36439455 PMCID: PMC9682014 DOI: 10.3389/fonc.2022.1038329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
Collapse
Affiliation(s)
- Lucia Y. Chen
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Termini R, Žihala D, Terpos E, Perez-Montaña A, Jelínek T, Raab M, Weinhold N, Mai EK, Grab AL, Corre J, Vergez F, Sacco A, Chiarini M, Giustini V, Tucci A, Rodriguez S, Moreno C, Perez C, Maia C, Martín-Sánchez E, Guerrero C, Botta C, Garces JJ, Lopez A, Tamariz-Amador LE, Prosper F, Bargay J, Cabezudo ME, Ocio EM, Hájek R, Martinez-Lopez J, Solano F, Iglesias R, Paiva A, Geraldes C, Vitoria H, Gomez C, De Arriba F, Ludwig H, Garcia-Guiñon A, Casanova M, Alegre A, Cabañas V, Sirvent M, Oriol A, de la Rubia J, Hernández-Rivas JÁ, Palomera L, Sarasa M, Rios P, Puig N, Mateos MV, Flores-Montero J, Orfao A, Goldschmidt H, Avet-Loiseau H, Roccaro AM, San-Miguel JF, Paiva B. Circulating Tumor and Immune Cells for Minimally Invasive Risk Stratification of Smoldering Multiple Myeloma. Clin Cancer Res 2022; 28:4771-4781. [PMID: 36074126 DOI: 10.1158/1078-0432.ccr-22-1594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Early intervention in smoldering multiple myeloma (SMM) requires optimal risk stratification to avoid under- and overtreatment. We hypothesized that replacing bone marrow (BM) plasma cells (PC) for circulating tumor cells (CTC), and adding immune biomarkers in peripheral blood (PB) for the identification of patients at risk of progression due to lost immune surveillance, could improve the International Myeloma Working Group 20/2/20 model. EXPERIMENTAL DESIGN We report the outcomes of 150 patients with SMM enrolled in the iMMunocell study, in which serial assessment of tumor and immune cells in PB was performed every 6 months for a period of 3 years since enrollment. RESULTS Patients with >0.015% versus ≤0.015% CTCs at baseline had a median time-to-progression of 17 months versus not reached (HR, 4.9; P < 0.001). Presence of >20% BM PCs had no prognostic value in a multivariate analysis that included serum free light-chain ratio >20, >2 g/dL M-protein, and >0.015% CTCs. The 20/2/20 and 20/2/0.015 models yielded similar risk stratification (C-index of 0.76 and 0.78). The combination of the 20/2/0.015 model with an immune risk score based on the percentages of SLAN+ and SLAN- nonclassical monocytes, CD69+HLADR+ cytotoxic NK cells, and CD4+CXCR3+ stem central memory T cells, allowed patient' stratification into low, intermediate-low, intermediate-high, and high-risk disease with 0%, 20%, 39%, and 73% rates of progression at 2 years. CONCLUSIONS This study showed that CTCs outperform BM PCs for assessing tumor burden. Additional analysis in larger series are needed to define a consensus cutoff of CTCs for minimally invasive stratification of SMM.
Collapse
Affiliation(s)
- Rosalinda Termini
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - David Žihala
- Department of Hematooncology, University Hospital Ostrava and University of Ostrava, Ostrava, Czech Republic
| | - Evangelos Terpos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Tomáš Jelínek
- Department of Hematooncology, University Hospital Ostrava and University of Ostrava, Ostrava, Czech Republic
| | - Marc Raab
- Heidelberg University Clinic Hospital, Department of Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Niels Weinhold
- Heidelberg University Clinic Hospital, Department of Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elias K Mai
- Heidelberg University Clinic Hospital, Department of Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna Luise Grab
- Heidelberg University Clinic Hospital, Department of Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jill Corre
- Centre de Recherche en Cancérologie de Toulouse, Unité 1037, INSERM, Toulouse, France
| | - Francois Vergez
- Centre de Recherche en Cancérologie de Toulouse, Unité 1037, INSERM, Toulouse, France
| | | | | | | | | | - Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Cristina Moreno
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Catarina Maia
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Esperanza Martín-Sánchez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Camilla Guerrero
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Juan-Jose Garces
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | | | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Joan Bargay
- Hospital Sont LLatzer, Palma de Mallorca, Spain
| | | | - Enrique M Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Roman Hájek
- Department of Hematooncology, University Hospital Ostrava and University of Ostrava, Ostrava, Czech Republic
| | | | | | | | - Artur Paiva
- Flow Cytometry Unit (UGOC), Department of Clinical Pathology, Centro Hospitalare Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Catarina Geraldes
- Flow Cytometry Unit (UGOC), Department of Clinical Pathology, Centro Hospitalare Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Helena Vitoria
- Centro Hospitalare Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Felipe De Arriba
- Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Clinic Ottakring, Vienna, Austria
| | | | | | | | - Valentin Cabañas
- Hospital Virgen de la Arrixaca de Murcia, IMIB Arrixaca, Universidad de Murcia, Murcia, Spain
| | | | - Albert Oriol
- Institut Català d'Oncologia Institut Josep Carreras, Badalona, Spain
| | - Javier de la Rubia
- University Hospital de La Fe, School of Medicine and Dentistry, Catholic University of Valencia, CIBERONC CB16/12/00284, Valencia, Spain
| | | | - Luis Palomera
- Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Pablo Rios
- Hospital Nuestra Señora de la Candelara, Santa Cruz de Tenerife, Spain
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria-Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Juan Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Department of Medicine, Cytometry Service, Instituto de Investigación Biosanitaria de Salamanca (IBSAL) and CIBER-ONC (number CB16/12/00400), University of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Department of Medicine, Cytometry Service, Instituto de Investigación Biosanitaria de Salamanca (IBSAL) and CIBER-ONC (number CB16/12/00400), University of Salamanca, Salamanca, Spain
| | - Hartmut Goldschmidt
- Heidelberg University Clinic Hospital, Department of Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hervé Avet-Loiseau
- Centre de Recherche en Cancérologie de Toulouse, Unité 1037, INSERM, Toulouse, France
| | | | - Jesus F San-Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CCUN, CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | | |
Collapse
|
15
|
Tsubokura Y, Yoshimura H, Satake A, Nasa Y, Tsuji R, Ito T, Nomura S. Early administration of lenalidomide after allogeneic hematopoietic stem cell transplantation suppresses graft-versus-host disease by inhibiting T-cell migration to the gastrointestinal tract. Immun Inflamm Dis 2022; 10:e688. [PMID: 36039651 PMCID: PMC9425011 DOI: 10.1002/iid3.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (aHSCT) is a curative treatment for hematopoietic malignancies. Graft-versus-host disease (GVHD) is a major complication of aHSCT. After transplantation, the balance of immune conditions, such as proinflammatory cytokine level and T-cell subset count, influences GVHD magnitude. Lenalidomide (LEN) is an immunomodulatory drug used for treating several hematological malignancies such as multiple myeloma, adult T-cell lymphoma/leukemia, and follicular lymphoma. However, the impact of LEN on immune responses after aHSCT has not been elucidated. METHODS We analyzed the lymphocyte composition in naïve mice treated with LEN. Subsequently, we treated host mice with LEN, soon after aHSCT, and analyzed GVHD severity as well as the composition and characteristics of lymphocytes associated with GVHD. RESULTS Using a mouse model, we demonstrated the beneficial effects of LEN for treating acute GVHD. Although natural killer cells were slightly increased by LEN, it did not significantly change T-cell proliferation and the balance of the T-cell subset in naïve mice. LEN did not modulate the suppressive function of regulatory T cells (Tregs). Unexpectedly, LEN prevented severe GVHD in a mouse acute GVHD model. Donor-derived lymphocytes were more numerous in host mice treated with LEN than in host mice treated with vehicle. Lymphocyte infiltration of the gastrointestinal tract in host mice treated with LEN was less severe compared to that in host mice treated with vehicle. The percentage of LPAM-1 (α4 β7 -integrin)-expressing Foxp3- CD4+ T cells was significantly lower in host mice treated with LEN than in host mice treated with vehicle, whereas that of LPAM-1-expressing Tregs was comparable. CONCLUSIONS LEN may be useful as a prophylactic agent for acute GVHD-induced mortality through the inhibition of lymphocyte migration to the gastrointestinal tract. Our data show the effect of LEN on immune responses early after aHSCT and suggest that cereblon, a molecular target of LEN, may be a therapeutic target for preventing acute GVHD-induced mortality.
Collapse
Affiliation(s)
- Yukie Tsubokura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Hideaki Yoshimura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Yutaro Nasa
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Ryohei Tsuji
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| |
Collapse
|
16
|
T-Cell-Based Cellular Immunotherapy of Multiple Myeloma: Current Developments. Cancers (Basel) 2022; 14:cancers14174249. [PMID: 36077787 PMCID: PMC9455067 DOI: 10.3390/cancers14174249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Over the past two decades, there has been significant progress in the treatment of multiple myeloma. Starting with the approval of bortezomib and lenalidomide, followed by newer agents in the same classes, monoclonal antibodies, and most recently idecabtagene vicleucel and ciltacabtagene autoleucel, which are genetically engineered autologous T-cell-based therapies, our view of this disease has changed from incurable to controllable and potentially curable. In addition to multiple myeloma and B-cell lymphomas, T-cell-based therapies are also actively investigated in various types of hematological and non-hematological malignancies and are considered one of the most impactful evolutions in cancer therapeutics. This review aims to summarize existing data regarding the efficacy, toxicity, and management of unique adverse events in T-cell-based therapies that are both clinically available and under investigation. We will also address undergoing efforts to improve the survival outcomes of multiple myeloma patients through this treatment modality. Abstract T-cell-based cellular therapy was first approved in lymphoid malignancies (B-cell acute lymphoblastic leukemia and large B-cell lymphoma) and expanding its investigation and application both in hematological and non-hematological malignancies. Two anti-BCMA (B cell maturation antigen) CAR (Chimeric Antigen Receptor) T-cell therapies have been recently approved for relapsed and refractory multiple myeloma with excellent efficacy even in the heavily pre-treated patient population. This new therapeutic approach significantly changes our practice; however, there is still room for further investigation to optimize antigen receptor engineering, cell harvest/selection, treatment sequence, etc. They are also associated with unique adverse events, especially CRS (cytokine release syndrome) and ICANS (immune effector cell-associated neurotoxicity syndrome), which are not seen with other anti-myeloma therapies and require expertise for management and prevention. Other T-cell based therapies such as TCR (T Cell Receptor) engineered T-cells and non-genetically engineered adoptive T-cell transfers (Vγ9 Vδ2 T-cells and Marrow infiltrating lymphocytes) are also actively studied and worth attention. They can potentially overcome therapeutic challenges after the failure of CAR T-cell therapy through different mechanisms of action. This review aims to provide readers clinical data of T-cell-based therapies for multiple myeloma, management of unique toxicities and ongoing investigation in both clinical and pre-clinical settings.
Collapse
|
17
|
Vaxman I, Gertz MA. How I approach smoldering multiple myeloma. Blood 2022; 140:828-838. [PMID: 35576526 PMCID: PMC9412010 DOI: 10.1182/blood.2021011670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The current standard of care in smoldering multiple myeloma (SMM) is close surveillance, outside of clinical trials. Efforts are being made to understand the pathobiologic process that leads to the progression of SMM to active MM. This review provides a critical description of available data, including risk factors and risk models of progression, as well as clinical trials investigating interventions for this patient population. We describe 2 cases in which patients were seen before the concept of a myeloma-defining event was established. Today, based on the International Myeloma Working Group criteria, both patients would have been identified as experiencing myeloma-defining events, and therapy would have been initiated. These cases show that occasionally, patients can undergo observation only, even when they exceed criteria for high-risk SMM.
Collapse
Affiliation(s)
- Iuliana Vaxman
- Division of Hematology, Mayo Clinic, Rochester, MN
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; and
- Department of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
18
|
Soekojo CY, Chng WJ. The Evolution Of Immune Dysfunction In Multiple Myeloma. Eur J Haematol 2022; 109:415-424. [PMID: 35880386 DOI: 10.1111/ejh.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This review discusses the role of immune dysfunction at the different stages of MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex disease and immune dysfunction has been known to play an important role in disease pathogenesis, progression, and drug resistance. MM is known to be preceded by asymptomatic precursor states and progression from the precursor states to MM is likely related to a progressive impairment of the immune system. CONCLUSIONS An understanding of the role of the immune system in the progression of MM is important to guide the development of immunotherapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
19
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
20
|
Single-cell profiling of tumour evolution in multiple myeloma - opportunities for precision medicine. Nat Rev Clin Oncol 2022; 19:223-236. [PMID: 35017721 DOI: 10.1038/s41571-021-00593-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy of plasma cells characterized by substantial intraclonal genetic heterogeneity. Although therapeutic advances made in the past few years have led to improved outcomes and longer survival, MM remains largely incurable. Over the past decade, genomic analyses of patient samples have demonstrated that MM is not a single disease but rather a spectrum of haematological entities that all share similar clinical symptoms. Moreover, analyses of samples from monoclonal gammopathy of undetermined significance and smouldering MM have also shown the existence of genetic heterogeneity in precursor stages, in some cases remarkably similar to that of MM. This heterogeneity highlights the need for a greater dissection of underlying disease biology, especially the clonal diversity and molecular events underpinning MM at each stage to enable the stratification of individuals with a high risk of progression. Emerging single-cell sequencing technologies present a superlative solution to delineate the complexity of monoclonal gammopathy of undetermined significance, smouldering MM and MM. In this Review, we discuss how genomics has revealed novel insights into clonal evolution patterns of MM and provide examples from single-cell studies that are beginning to unravel the mutational and phenotypic characteristics of individual cells within the bone marrow tumour, immune microenvironment and peripheral blood. We also address future perspectives on clinical application, proposing that multi-omics single-cell profiling can guide early patient diagnosis, risk stratification and treatment strategies.
Collapse
|
21
|
Visram A, Cook J, Warsame R. Smoldering multiple myeloma: evolving diagnostic criteria and treatment strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:673-681. [PMID: 34889380 PMCID: PMC8791169 DOI: 10.1182/hematology.2021000304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adage for smoldering myeloma (SMM) has been to observe without treatment, until criteria for active multiple myeloma were satisfied. Definitions and risk stratification models have become more sophisticated, with prognostication tailored to include high-risk cytogenetics as per the most recent International Myeloma Working Group 2020 risk model. Moreover, progress in defining genomic evolution and changes in the bone marrow microenvironment through the monoclonal continuum have given insight into the complexities underlying the different patterns of progression observed in SMM. Given recent data showing improved progression-free survival with early intervention in high-risk SMM, the current dilemma is focused on how these patients should be treated. This case-based article maps the significant advancements made in the diagnosis and risk stratification of SMM. Data from landmark clinical trials will also be discussed, and ongoing trials are summarized. Ultimately, we outline our approach to SMM and hope to impart to the reader a sound concept of the current clinical management of SMM.
Collapse
Affiliation(s)
- Alissa Visram
- Division of Hematology, The Ottawa Hospital, Ottawa, ON, Canada
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Joselle Cook
- Division of Hematology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rahma Warsame
- Division of Hematology, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
22
|
Isola I, Brasó-Maristany F, Moreno DF, Mena MP, Oliver-Calders A, Paré L, Rodríguez-Lobato LG, Martin-Antonio B, Cibeira MT, Bladé J, Rosiñol L, Prat A, Lozano E, Fernández de Larrea C. Gene Expression Analysis of the Bone Marrow Microenvironment Reveals Distinct Immunotypes in Smoldering Multiple Myeloma Associated to Progression to Symptomatic Disease. Front Immunol 2021; 12:792609. [PMID: 34880879 PMCID: PMC8646031 DOI: 10.3389/fimmu.2021.792609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background We previously reported algorithms based on clinical parameters and plasma cell characteristics to identify patients with smoldering multiple myeloma (SMM) with higher risk of progressing who could benefit from early treatment. In this work, we analyzed differences in the immune bone marrow (BM) microenvironment in SMM to better understand the role of immune surveillance in disease progression and to identify immune biomarkers associated to higher risk of progression. Methods Gene expression analysis of BM cells from 28 patients with SMM, 22 patients with monoclonal gammopathy of undetermined significance (MGUS) and 22 patients with symptomatic MM was performed by using Nanostring Technology. Results BM cells in SMM compared to both MGUS and symptomatic MM showed upregulation of genes encoding for key molecules in cytotoxicity. However, some of these cytotoxic molecules positively correlated with inhibitory immune checkpoints, which may impair the effector function of BM cytotoxic cells. Analysis of 28 patients with SMM revealed 4 distinct clusters based on immune composition and activation markers. Patients in cluster 2 showed a significant increase in expression of cytotoxic molecules but also inhibitory immune checkpoints compared to cluster 3, suggesting the presence of cytotoxic cells with an exhausted phenotype. Accordingly, patients in cluster 3 had a significantly longer progression free survival. Finally, individual gene expression analysis showed that higher expression of TNF superfamily members (TNF, TNFAIP3, TNFRSF14) was associated with shorter progression free survival. Conclusions Our results suggest that exhausted cytotoxic cells are associated to high-risk patients with SMM. Biomarkers overexpressed in patients with this immune gene profile in combination with clinical parameters and PC characterization may be useful to identify SMM patients with higher risk of progression.
Collapse
Affiliation(s)
- Ignacio Isola
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fara Brasó-Maristany
- Department of Medical Oncology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David F Moreno
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mari-Pau Mena
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aina Oliver-Calders
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laia Paré
- Department of Medical Oncology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María Teresa Cibeira
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Bladé
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laura Rosiñol
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ester Lozano
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Carlos Fernández de Larrea
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| |
Collapse
|
23
|
Visram A, Kourelis TV. Aging-associated immune system changes in multiple myeloma: The dark side of the moon. Cancer Treat Res Commun 2021; 29:100494. [PMID: 34837796 DOI: 10.1016/j.ctarc.2021.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is a disease of the elderly. Changes that occur in the immune system with aging, also known as immunosenescence, have been associated with decreased tumor immunosurveillance and are thought to contribute to the development of MM and other cancers in the elderly. Once MM establishes itself in the bone marrow, immunosenescence related changes have been observed in the immune tumor microenvironment (iTME) and are driven by the malignant cells. The efficacy of novel immunotherapies used to treat MM has been blunted by detrimental iTME changes that occur at later disease stages and are, to some extent, driven by prior therapies. In this review, we discuss general changes that occur in the immune system with aging as well as our current knowledge of immunosenescence in MM. We discuss the differences and overlap between T cell senescence and exhaustion as well as potential methods to prevent or reverse immunosenescence. We focus predominantly on T cell immunosenescence which has been better evaluated in this disease and is more pertinent to novel MM immunotherapies. Our lack of understanding of the drivers of immunosenescence at each stage of the disease, from precursor stages to heavily pretreated MM, represents a major barrier to improving the efficacy of novel and existing therapies.
Collapse
Affiliation(s)
- Alissa Visram
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States; Department of Medicine, Division of Hematology, University of Ottawa, Ottawa Hospital Research Institute, Ontario, Canada
| | - Taxiarchis V Kourelis
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States.
| |
Collapse
|
24
|
Musto P, Engelhardt M, Caers J, Bolli N, Kaiser M, Van de Donk N, Terpos E, Broijl A, De Larrea CF, Gay F, Goldschmidt H, Hajek R, Vangsted AJ, Zamagni E, Zweegman S, Cavo M, Dimopoulos M, Einsele H, Ludwig H, Barosi G, Boccadoro M, Mateos MV, Sonneveld P, Miguel JS. 2021 European Myeloma Network review and consensus statement on smoldering multiple myeloma: how to distinguish (and manage) Dr. Jekyll and Mr. Hyde. Haematologica 2021; 106:2799-2812. [PMID: 34261295 PMCID: PMC8561280 DOI: 10.3324/haematol.2021.278519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
According to the updated International Myeloma Working Group criteria, smoldering multiple myeloma (SMM) is an asymptomatic plasma cell disorder characterized by an M-component >3 g/dL, bone marrow plasma cell infiltration >10% and <60%, and absence of any myeloma-defining event. Active multiple myeloma is preceded by SMM, with a median time to progression of approximately 5 years. Cases of SMM range from the extremes of "monoclonal gammopathy of undetermined significance-like", in which patients never progress during their lifetimes, to "early multiple myeloma", in which transformation into symptomatic disease, based on genomic evolution, may be rapid and devastating. Such a "split personality" makes the prognosis and management of individual patients challenging, particularly with regard to the identification and possible early treatment of high-risk SMM. Outside of clinical trials, the conventional approach to SMM generally remains close observation until progression to active multiple myeloma. However, two prospective, randomized trials have recently demonstrated a significant clinical benefit in terms of time to progression, and of overall survival in one of the two studies, for some patients with higher-risk SMM treated with lenalidomide ± dexamethasone, raising the question of whether such an approach should be considered a new standard of care. In this paper, experts from the European Myeloma Network describe current biological and clinical knowledge on SMM, focusing on novel insights into its molecular pathogenesis, new prognostic scoring systems proposed to identify SMM patients at higher risk of early transformation, and updated results of completed or ongoing clinical trials. Finally, some practical recommendations for the real-life management of these patients, based on Delphi consensus methodology, are provided.
Collapse
Affiliation(s)
- Pellegrino Musto
- "Aldo Moro" University School of Medicine, Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari.
| | - Monika Engelhardt
- Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg
| | - Jo Caers
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium; Laboratory of Hematology, GIGA-I3, University of Liège, Liège
| | - Niccolo' Bolli
- Division of Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milano
| | - Martin Kaiser
- The Institute of Cancer Research, Division of Molecular Pathology, London, UK; The Royal Marsden Hospital, Department of Haematology, London
| | - Niels Van de Donk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam
| | - Evangelos Terpos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens
| | - Annemiek Broijl
- Erasmus MC Cancer Institute and Erasmus University of Rotterdam, Rotterdam
| | - Carlos Fernández De Larrea
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino
| | - Hartmut Goldschmidt
- University Hospital Heidelberg Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg
| | - Roman Hajek
- Department of Hemato-oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Elena Zamagni
- Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna
| | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam
| | - Michele Cavo
- Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna
| | - Meletios Dimopoulos
- National and Kapodistrian University of Athens, School of Medicine, Department of Clinical Therapeutics, Athens
| | - Hermann Einsele
- University Hospital Würzburg, Internal Medicine II, Würzburg
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, 1st Department of Medicine, Center for Oncology, Hematology and Palliative Care, Wilhelminenspital, Vienna
| | | | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino
| | | | - Pieter Sonneveld
- Erasmus MC Cancer Institute and Erasmus University of Rotterdam, Rotterdam
| | | |
Collapse
|
25
|
FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology. Blood Adv 2021; 6:690-703. [PMID: 34587246 PMCID: PMC8791585 DOI: 10.1182/bloodadvances.2021005198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P <.001), and of progression-free (HR: 4.09; P <.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies.
Collapse
|
26
|
Smoldering Myeloma Treatment: Who, What, and When. ACTA ACUST UNITED AC 2021; 27:185-189. [PMID: 34549905 DOI: 10.1097/ppo.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Smoldering multiple myeloma (MM) is a clonal plasma cell disorder characterized by excess marrow involvement and immunoglobulin production. It is the precursor of MM, differing by the lack of end-organ damage. Smoldering MM encompasses a heterogeneous group of patients, with a median risk of progression to active disease of 50% in the first 5 years. Until recently, the standard of care would dictate observation off therapy until the development of end-organ damage. The recognition of high-risk and ultrahigh-risk subgroups of smoldering MM, with more likely evolution to MM, has led to earlier initiation of therapy in the disease course. Ongoing studies to define the ideal timing and patient population are underway, as well as identification of which agents would be of greatest benefit, as the armamentarium for MM continues to grow.
Collapse
|
27
|
Firer MA, Shapira MY, Luboshits G. The Impact of Induction Regimes on Immune Responses in Patients with Multiple Myeloma. Cancers (Basel) 2021; 13:4090. [PMID: 34439244 PMCID: PMC8393868 DOI: 10.3390/cancers13164090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Current standard frontline therapy for newly diagnosed patients with multiple myeloma (NDMM) involves induction therapy, autologous stem cell transplantation (ASCT), and maintenance therapy. Major efforts are underway to understand the biological and the clinical impacts of each stage of the treatment protocols on overall survival statistics. The most routinely used drugs in the pre-ASCT "induction" regime have different mechanisms of action and are employed either as monotherapies or in various combinations. Aside from their direct effects on cancer cell mortality, these drugs are also known to have varying effects on immune cell functionality. The question remains as to how induction therapy impacts post-ASCT immune reconstitution and anti-tumor immune responses. This review provides an update on the known immune effects of melphalan, dexamethasone, lenalidomide, and bortezomib commonly used in the induction phase of MM therapy. By analyzing the actions of each individual drug on the immune system, we suggest it might be possible to leverage their effects to rationally devise more effective induction regimes. Given the genetic heterogeneity between myeloma patients, it may also be possible to identify subgroups of patients for whom particular induction drug combinations would be more appropriate.
Collapse
Affiliation(s)
- Michael A. Firer
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Michael Y. Shapira
- The Hematology Institute, Assuta Medical Center, Tel Aviv 6971028, Israel;
| | - Galia Luboshits
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| |
Collapse
|
28
|
Barilà G, Pavan L, Vedovato S, Berno T, Lo Schirico M, Arangio Febbo M, Teramo A, Calabretto G, Vicenzetto C, Gasparini VR, Fregnani A, Manni S, Trimarco V, Carraro S, Facco M, Piazza F, Semenzato G, Zambello R. Treatment Induced Cytotoxic T-Cell Modulation in Multiple Myeloma Patients. Front Oncol 2021; 11:682658. [PMID: 34211851 PMCID: PMC8239308 DOI: 10.3389/fonc.2021.682658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
The biology of plasma cell dyscrasias (PCD) involves both genetic and immune-related factors. Since genetic lesions are necessary but not sufficient for Multiple Myeloma (MM) evolution, several authors hypothesized that immune dysfunction involving both B and T cell counterparts plays a key role in the pathogenesis of the disease. The aim of this study is to evaluate the impact of cornerstone treatments for Multiple Myeloma into immune system shaping. A large series of 976 bone marrow samples from 735 patients affected by PCD was studied by flow analysis to identify discrete immune subsets. Treated MM samples displayed a reduction of CD4+ cells (p<0.0001) and an increase of CD8+ (p<0.0001), CD8+/DR+ (p<0.0001) and CD3+/CD57+ (p<0.0001) cells. Although these findings were to some extent demonstrated also following bortezomib treatment, a more pronounced cytotoxic polarization was shown after exposure to autologous stem cell transplantation (ASCT) and Lenalidomide (Len) treatment. As a matter of fact, samples of patients who received ASCT (n=110) and Len (n=118) were characterized, towards untreated patients (n=138 and n=130, respectively), by higher levels of CD8+ (p<0.0001 and p<0.0001, respectively), CD8+/DR+ (p=0.0252 and p=0.0001, respectively) and CD3+/CD57+ cells (p<0.0001 and p=0.0006, respectively) and lower levels of CD4+ lymphocytes (p<0.0001 and p=0.0005, respectively). We demonstrated that active MM patients are characterized by a relevant T cell modulation and that most of these changes are therapy-related. Current Myeloma treatments, notably ASCT and Len treatments, polarize immune system towards a dominant cytotoxic response, likely contributing to the anti-Myeloma effect of these regimens.
Collapse
Affiliation(s)
- Gregorio Barilà
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Laura Pavan
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Susanna Vedovato
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Tamara Berno
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Mariella Lo Schirico
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Massimiliano Arangio Febbo
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Antonella Teramo
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Giulia Calabretto
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Cristina Vicenzetto
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Valentina Trimarco
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Samuela Carraro
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Monica Facco
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| |
Collapse
|
29
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
30
|
Schmidt TM, Callander NS. Progress in the Management of Smoldering Multiple Myeloma. Curr Hematol Malig Rep 2021; 16:172-182. [PMID: 33983517 DOI: 10.1007/s11899-021-00623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Smoldering multiple myeloma (SMM) is defined as an asymptomatic clonal proliferation of pre-malignant plasma cells and an increased risk of progression to multiple myeloma (MM) relative to monoclonal gammopathy of undetermined significance. Whether patients with SMM should be treated prior to development of symptomatic disease is fiercely debated and is a highly active area of research. RECENT FINDINGS The ECOG E3A06 study demonstrated that early treatment with lenalidomide significantly reduced the risk of progression to MM compared to observation in patients with high risk SMM. The IMWG recently validated a risk stratification model to include cytogenetics and a personalized risk calculator for individual patients. Beyond this, molecular genomic aberrations and immunological phenomena that promote progression from asymptomatic disease to MM have been recently characterized and may help to more precisely identify patients who are most suitable for early intervention. As highly effective and tolerable therapies for plasma cell disorders evolve, the field is approaching a paradigm shift that involves the adoption of intervention for patients with SMM who are at high risk for progression to symptomatic myeloma in order to prevent morbidity and mortality. This review highlights our current understanding of the biology of patients with SMM, clarifies the rationale for early intervention, and summarizes early results of various treatment strategies for patients with high-risk smoldering myeloma.
Collapse
Affiliation(s)
- Timothy M Schmidt
- University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 3792, USA
| | - Natalie S Callander
- University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 3792, USA.
| |
Collapse
|
31
|
Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 2021; 136:2731-2740. [PMID: 32645135 DOI: 10.1182/blood.2020006540] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Avoiding immune destruction is a hallmark of cancer. Over the past few years, significant advances have been made in understanding immune dysfunction and immunosuppression in multiple myeloma (MM), and various immunotherapeutic approaches have delivered improved clinical responses. However, it is still challenging to completely eliminate malignant plasma cells (PCs) and achieve complete cure. The interplay between the immune system and malignant PCs is implicated throughout all stages of PC dyscrasias, including asymptomatic states called monoclonal gammopathy of undetermined significance and smoldering myeloma. Although the immune system effectively eliminates malignant PCs, or at least induces functional dormancy at early stages, malignant PCs eventually evade immune elimination, leading to progression to active MM, in which dysfunctional effector lymphocytes, tumor-educated immunosuppressive cells, and soluble mediators coordinately act as a barrier for antimyeloma immunity. An in-depth understanding of this dynamic process, called cancer immunoediting, will provide important insights into the immunopathology of PC dyscrasias and MM immunotherapy. Moreover, a growing body of evidence suggests that, together with nonhematopoietic stromal cells, bone marrow (BM) immune cells with unique functions support the survival of normal and malignant PCs in the BM niche, highlighting the diverse roles of immune cells beyond antimyeloma immunity. Together, the immune system critically acts as a rheostat that fine-tunes the balance between dormancy and disease progression in PC dyscrasias.
Collapse
|
32
|
Rubio MT, Dhuyser A, Nguyen S. Role and Modulation of NK Cells in Multiple Myeloma. HEMATO 2021. [DOI: 10.3390/hemato2020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.
Collapse
|
33
|
Minnie SA, Hill GR. Autologous Stem Cell Transplantation for Myeloma: Cytoreduction or an Immunotherapy? Front Immunol 2021; 12:651288. [PMID: 33777050 PMCID: PMC7994609 DOI: 10.3389/fimmu.2021.651288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
The incidence of multiple myeloma (MM), a bone marrow (BM) resident hematological malignancy, is increasing globally. The disease has substantial morbidity and mortality and remains largely incurable. Clinical studies show that autologous stem cell transplantation (ASCT) remains efficacious in eligible patients, providing a progression free survival (PFS) benefit beyond novel therapies alone. Conventionally, improved PFS after ASCT is attributed to cytoreduction from myeloablative chemotherapy. However, ASCT results in immune effects beyond cytoreduction, including inflammation, lymphodepletion, T cell priming via immunogenic cell death, and disruption of the tumor BM microenvironment. In fact, a small subset of patients achieve very long-term control of disease post-ASCT, akin to that seen in the context of immune-mediated graft-vs.-myeloma effects after allogeneic SCT. These clinical observations coupled with recent definitive studies in mice demonstrating that progression after ASCT represents immune escape as a consequence of T cell exhaustion, highlight the potential for new immunotherapy maintenance strategies to prevent myeloma progression following consolidation with ASCT.
Collapse
Affiliation(s)
- Simone A Minnie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Singh AP, Chen W, Zheng X, Mody H, Carpenter TJ, Zong A, Heald DL. Bench-to-bedside translation of chimeric antigen receptor (CAR) T cells using a multiscale systems pharmacokinetic-pharmacodynamic model: A case study with anti-BCMA CAR-T. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:362-376. [PMID: 33565700 PMCID: PMC8099446 DOI: 10.1002/psp4.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
Despite tremendous success of chimeric antigen receptor (CAR) T cell therapy in clinical oncology, the dose-exposure-response relationship of CAR-T cells in patients is poorly understood. Moreover, the key drug-specific and system-specific determinants leading to favorable clinical outcomes are also unknown. Here we have developed a multiscale mechanistic pharmacokinetic (PK)-pharmacodynamic (PD) model for anti-B-cell maturation antigen (BCMA) CAR-T cell therapy (bb2121) to characterize (i) in vitro target cell killing in multiple BCMA expressing tumor cell lines at varying effector to target cell ratios, (ii) preclinical in vivo tumor growth inhibition and blood CAR-T cell expansion in xenograft mice, and (iii) clinical PK and PD biomarkers in patients with multiple myeloma. Our translational PK-PD relationship was able to effectively describe the commonly observed multiphasic CAR-T cell PK profile in the clinic, consisting of the rapid distribution, expansion, contraction, and persistent phases, and accounted for the categorical individual responses in multiple myeloma to effectively calculate progression-free survival rates. Preclinical and clinical data analysis revealed comparable parameter estimates pertaining to CAR-T cell functionality and suggested that patient baseline tumor burden could be more sensitive than dose levels toward overall extent of exposure after CAR-T cell infusion. Virtual patient simulations also suggested a very steep dose-exposure-response relationship with CAR-T cell therapy and indicated the presence of a "threshold" dose, beyond which a flat dose-response curve could be observed. Our simulations were concordant with multiple clinical observations discussed in this article. Moving forward, this framework could be leveraged a priori to explore multiple infusions and support the preclinical/clinical development of future CAR-T cell therapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- B-Cell Maturation Antigen/antagonists & inhibitors
- Biomarkers, Pharmacological/analysis
- Cell Line, Tumor/drug effects
- Computer Simulation
- Dose-Response Relationship, Drug
- Humans
- Immunotherapy, Adoptive/methods
- Infusions, Intravenous
- Mice
- Mice, Inbred NOD
- Models, Theoretical
- Multiple Myeloma/therapy
- Pharmacokinetics
- Progression-Free Survival
- Receptors, Chimeric Antigen/administration & dosage
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Aman P. Singh
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Wenbo Chen
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Xirong Zheng
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Hardik Mody
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Thomas J. Carpenter
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Alice Zong
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| | - Donald L. Heald
- Discovery and Translational ResearchBiologics Development SciencesJanssen BiotherapeuticsSpring HousePennsylvaniaUSA
| |
Collapse
|
35
|
The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel) 2021; 13:cancers13040625. [PMID: 33562441 PMCID: PMC7914424 DOI: 10.3390/cancers13040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between multiple myeloma and immune cells within the bone marrow niche has been identified as an emerging hallmark of this hematological disease. As our knowledge on this interplay increases, it becomes more evident that successful treatment approaches need to boost the body’s natural defenses through immunotherapy. The present review will focus on the mechanisms by which myeloma cancer cells turn immune populations into their “partners in crime”. Additionally, we will provide an overview of currently ongoing pre-clinical studies targeting the bone marrow immune microenvironment. Abstract Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
Collapse
|
36
|
Yamamoto L, Amodio N, Gulla A, Anderson KC. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front Oncol 2021; 10:606368. [PMID: 33585226 PMCID: PMC7873734 DOI: 10.3389/fonc.2020.606368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically “cold” to “hot” MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Collapse
Affiliation(s)
- Leona Yamamoto
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Gulla
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth Carl Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Bolli N, Sgherza N, Curci P, Rizzi R, Strafella V, Delia M, Gagliardi VP, Neri A, Baldini L, Albano F, Musto P. What Is New in the Treatment of Smoldering Multiple Myeloma? J Clin Med 2021; 10:421. [PMID: 33499196 PMCID: PMC7865294 DOI: 10.3390/jcm10030421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Smoldering multiple myeloma (SMM), an asymptomatic plasma cell neoplasm, is currently diagnosed according to the updated IMWG criteria, which reflect an intermediate tumor mass between monoclonal gammopathy of undetermined significance (MGUS) and active MM. However, SMM is a heterogeneous entity and individual case may go from an "MGUS-like" behavior to "early MM" with rapid transformation into symptomatic disease. This wide range of clinical outcomes poses challenges for prognostication and management of individual patients. However, initial studies showed a benefit in terms of progression or even survival for early treatment of high-risk SMM patients. While outside of clinical trials the conventional approach to SMM generally remains that of close observation, these studies raised the question of whether early treatment should be offered in high-risk patients, prompting evaluation of several different therapeutic approaches with different goals. While delay of progression to MM with a non-toxic treatment is clearly achievable by early treatment, a convincing survival benefit still needs to be proven by independent studies. Furthermore, if SMM is to be considered less biologically complex than MM, early treatment may offer the chance of cure that is currently not within reach of any active MM treatment. In this paper, we present updated results of completed or ongoing clinical trials in SMM treatment, highlighting areas of uncertainty and critical issues that will need to be addressed in the near future before the "watch and wait" paradigm in SMM is abandoned in favor of early treatment.
Collapse
Affiliation(s)
- Niccolo’ Bolli
- Division of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.B.); (A.N.); (L.B.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Nicola Sgherza
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
| | - Paola Curci
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
| | - Rita Rizzi
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
| | - Vanda Strafella
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
| | - Mario Delia
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
| | - Vito Pier Gagliardi
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
| | - Antonino Neri
- Division of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.B.); (A.N.); (L.B.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Luca Baldini
- Division of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.B.); (A.N.); (L.B.)
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
| | - Francesco Albano
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy; (N.S.); (P.C.); (R.R.); (M.D.); (V.P.G.); (F.A.)
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
| |
Collapse
|
38
|
Zamagni E, Tacchetti P, Deias P, Patriarca F. The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma. Pharmaceuticals (Basel) 2020; 13:E451. [PMID: 33321731 PMCID: PMC7764080 DOI: 10.3390/ph13120451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
The recent introduction of monoclonal antibodies (MoAbs), with several cellular targets, such as CD-38 (daratumumab and isatuximab) and SLAM F7 (elotuzumab), differently combined with other classes of agents, has significantly extended the outcomes of patients with multiple myeloma (MM) in different phases of the disease. Initially used in advanced/refractory patients, different MoAbs combination have been introduced in the treatment of newly diagnosed transplant eligible patients (NDTEMM), showing a significant improvement in the depth of the response and in survival outcomes, without a significant price in terms of toxicity. In smoldering MM, MoAbs have been applied, either alone or in combination with other drugs, with the goal of delaying the progression to active MM and restoring the immune system. In this review, we will focus on the main results achieved so far and on the main on-going trials using MoAbs in SMM and NDTEMM.
Collapse
Affiliation(s)
- Elena Zamagni
- Istituto di Ematologia “Seragnoli”, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Paola Tacchetti
- Istituto di Ematologia “Seragnoli”, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Paola Deias
- Clinica Ematologica e Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (D.P.); (P.F.)
| | - Francesca Patriarca
- Clinica Ematologica e Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (D.P.); (P.F.)
- Dipartimento di Area Medica, Università di Udine, 33100 Udine, Italy
| |
Collapse
|
39
|
Ninkovic S, Quach H. Shaping the Treatment Paradigm Based on the Current Understanding of the Pathobiology of Multiple Myeloma: An Overview. Cancers (Basel) 2020; 12:E3488. [PMID: 33238653 PMCID: PMC7700434 DOI: 10.3390/cancers12113488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable malignancy which despite progressive improvements in overall survival over the last decade remains characterised by recurrent relapse with progressively shorter duration of response and treatment-free intervals with each subsequent treatment. Efforts to unravel the complex and heterogeneous genomic alterations, the marked dysregulation of the immune system and the multifarious interplay between malignant plasma cells and those of the tumour microenvironment have not only led to improved understanding of myelomagenesis and disease progression but have facilitated the rapid development of novel therapeutics including immunotherapies and small molecules bringing us a step closer to therapies that no doubt will extend survival. Novel therapeutic combinations both in the upfront and relapsed setting as well as novel methods to assess response and guide management are rapidly transforming the management of myeloma.
Collapse
Affiliation(s)
- Slavisa Ninkovic
- Department of Haematology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
- Faculty of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Hang Quach
- Department of Haematology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
- Faculty of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
40
|
Romano A, Cerchione C, Conticello C, Martinelli G, Di Raimondo F. How we manage smoldering multiple myeloma. Hematol Rep 2020; 12:8951. [PMID: 33042502 PMCID: PMC7520850 DOI: 10.4081/hr.2020.8951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Smoldering myeloma (SMM) is an asymptomatic stage characterized by bone marrow plasma cells infiltration between 10-60% in absence of myeloma-defining events and organ damage. Until the revision of criteria of MM to require treatment, two main prognostic models, not overlapping each other, were proposed and used differently in Europe and in US. Novel manageable drugs, like lenalidomide and monoclonal antibodies, with high efficacy and limited toxicity, improvement in imaging and prognostication, challenge physicians to offer early treatment to highrisk SMM. Taking advantage from the debates offered by SOHO Italy, in this review we will update the evidence and consequent clinical practices in US and Europe to offer readers a uniform view of clinical approach at diagnosis, follow-up and supportive care in the SMM setting.
Collapse
Affiliation(s)
- Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC)
| | - Concetta Conticello
- U.O.C. di Ematologia, Azienda Policlinico Rodolico San Marco, Catania, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC)
| | - Francesco Di Raimondo
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania
- U.O.C. di Ematologia, Azienda Policlinico Rodolico San Marco, Catania, Italy
| |
Collapse
|
41
|
Cooke RE, Quinn KM, Quach H, Harrison S, Prince HM, Koldej R, Ritchie D. Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells. Front Immunol 2020; 11:2153. [PMID: 33013907 PMCID: PMC7494758 DOI: 10.3389/fimmu.2020.02153] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
New diagnoses of multiple myeloma (MM) tend to occur after the age of 60, by which time thymic output is severely reduced. As a consequence, lymphocyte recovery after lymphopenia-inducing anti-MM therapies relies on homeostatic proliferation of peripheral T cells rather than replenishment by new thymic emigrants. To assess lymphocyte recovery and phenotype in patients with newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM), we tracked CD4+ and CD8+ T cell populations at serial time points throughout treatment and compared them to age-matched healthy donors (HD). Anti-MM therapies and autologous stem cell transplant (ASCT) caused a permanent reduction in the CD4:8 ratio, a decrease in naïve CD4+ T cells, and an increase in effector memory T cells and PD1-expressing CD4+ T cells. Transcriptional profiling highlighted that genes associated with fatty acid β-oxidation were upregulated in T cells in RRMM, suggesting increased reliance on mitochondrial respiration. High mitochondrial mass was seen in all T cell subsets in RRMM but with relatively suppressed reactive oxygen species and mitochondrial membrane potential, indicating mitochondrial dysfunction. These findings highlight that anti-MM and ASCT therapies perturb the composition of the T cell compartment and drive substantial metabolic remodeling, which may affect the fitness of T cells for immunotherapies. This is particularly pertinent to chimeric antigen receptor (CAR)-T therapy, which might be more efficacious if T cells were stored prior to ASCT rather than at relapse.
Collapse
Affiliation(s)
- Rachel Elizabeth Cooke
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie Margaret Quinn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hang Quach
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simon Harrison
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Henry Miles Prince
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rachel Koldej
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Tu C, Zheng Y, Zhang H, Wang J. Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncol Rep 2020; 44:224-240. [PMID: 32319658 PMCID: PMC7251663 DOI: 10.3892/or.2020.7587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint blockade endows patients with unparalleled success in conquering cancer. Unfortunately, inter-individual heterogeneity causes failure in controlling tumors in many patients. Emerging mass cytometry technology is capable of revealing a multiscale onco-immune landscape that improves the efficacy of cancer immunotherapy. We introduced mass cytometry to determine the personalized immune checkpoint status in bone marrow and peripheral blood samples from 3 patients with multiple myeloma, amyloid light-chain amyloidosis, and solitary bone plasmacytoma and 1 non-hematologic malignancy patient. The expression of 18 immune regulatory receptors and ligands on 17 defined cell populations was simultaneously examined. By single-cell analyses, we identified the T cell clusters that serve as immunosuppressive signal source and revealed integrated immune checkpoint axes of individuals, thereby providing multiple potential immunotherapeutic targets, including programmed cell death protein 1 (PD-1), inducible co-stimulator (ICOS), and cluster of differentiation 28 (CD28), for each patient. Distinguishing the cell populations that function as providers and receivers of the immune checkpoint signals demonstrated a distinct cross-interaction network of immunomodulatory signals in individuals. These in-depth personalized data demonstrate mass cytometry as a powerful innovation to discover the systematical immune status in the primary and peripheral tumor microenvironment.
Collapse
Affiliation(s)
- Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yongjiang Zheng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
43
|
Abstract
Multiple myeloma (MM), a bone marrow-resident hematological malignancy of plasma cells, has remained largely incurable despite dramatic improvements in patient outcomes in the era of myeloma-targeted and immunomodulatory agents. It has recently become clear that T cells from MM patients are able to recognize and eliminate myeloma, although this is subverted in the majority of patients who eventually succumb to progressive disease. T cell exhaustion and a suppressive bone marrow microenvironment have been implicated in disease progression, and once these are established, immunotherapy appears largely ineffective. Autologous stem cell transplantation (ASCT) is a standard of care in eligible patients and results in immune effects beyond cytoreduction, including lymphodepletion, T cell priming via immunogenic cell death, and inflammation; all occur within the context of a disrupted bone marrow microenvironment. Recent studies suggest that ASCT reestablishes immune equilibrium and thus represents a logical platform in which to intervene to prevent immune escape. New immunotherapies based on checkpoint inhibition targeting the immune receptor TIGIT and the deletion of suppressive myeloid populations appear attractive, particularly after ASCT. Finally, the immunologically favorable environment created after ASCT may also represent an opportunity for approaches utilizing bispecific antibodies or chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Simone A. Minnie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Cohen AD, Raje N, Fowler JA, Mezzi K, Scott EC, Dhodapkar MV. How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin Cancer Res 2020; 26:1541-1554. [PMID: 31672768 PMCID: PMC8176627 DOI: 10.1158/1078-0432.ccr-19-2111] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
The progression of multiple myeloma, a hematologic malignancy characterized by unregulated plasma cell growth, is associated with increasing innate and adaptive immune system dysfunction, notably in the T-cell repertoire. Although treatment advances in multiple myeloma have led to deeper and more durable clinical responses, the disease remains incurable for most patients. Therapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and activating the host immune system have recently shown promise in multiple myeloma, particularly in the relapsed and/or refractory disease setting. As the efficacy of T-cell-dependent immuno-oncology therapy is likely affected by the health of the endogenous T-cell repertoire, these therapies may also provide benefit in alternate treatment settings (e.g., precursor disease; after stem cell transplantation). This review describes T-cell-associated changes during the evolution of multiple myeloma and provides an overview of T-cell-dependent immuno-oncology approaches under investigation. Vaccine and checkpoint inhibitor interventions are being explored across the multiple myeloma disease continuum; treatment modalities that redirect patient T cells to elicit an anti-multiple myeloma response, namely, chimeric antigen receptor (CAR) T cells and bispecific antibodies [including BiTE (bispecific T-cell engager) molecules], have been primarily evaluated to date in the relapsed and/or refractory disease setting. CAR T cells and bispecific antibodies/antibody constructs directed against B-cell maturation antigen have generated excitement, with clinical data demonstrating deep responses. An increased understanding of the complex interplay between the immune system and multiple myeloma throughout the disease course will aid in maximizing the potential for T-cell-dependent immuno-oncology strategies in multiple myeloma.
Collapse
Affiliation(s)
- Adam D Cohen
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Noopur Raje
- Departments of Hematology/Oncology and Medicine, Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
45
|
NK cells and CD38: Implication for (Immuno)Therapy in Plasma Cell Dyscrasias. Cells 2020; 9:cells9030768. [PMID: 32245149 PMCID: PMC7140687 DOI: 10.3390/cells9030768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy represents a promising new avenue for the treatment of multiple myeloma (MM) patients, particularly with the availability of Monoclonal Antibodies (mAbs) as anti-CD38 Daratumumab and Isatuximab and anti-SLAM-F7 Elotuzumab. Although a clear NK activation has been demonstrated for Elotuzumab, the effect of anti-CD38 mAbs on NK system is controversial. As a matter of fact, an initial reduction of NK cells number characterizes Daratumumab therapy, limiting the potential role of this subset on myeloma immunotherapy. In this paper we discuss the role of NK cells along with anti-CD38 therapy and their implication in plasma cell dyscrasias, showing that mechanisms triggered by anti-CD38 mAbs ultimately lead to the activation of the immune system against myeloma cell growth.
Collapse
|
46
|
Kourelis TV, Jevremovic D, Jessen E, Dasari S, Villasboas JC, Dispenzieri A, Kumar S. Mass cytometry identifies expansion of double positive and exhausted T cell subsets in the tumour microenvironment of patients with POEMS syndrome. Br J Haematol 2020; 190:79-83. [PMID: 32080834 DOI: 10.1111/bjh.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 11/28/2022]
Abstract
We sought to dissect the tumour microenvironment in a small cohort (N = 10) of patients with POEMS at diagnosis and after therapy using mass cytometry. We included 10 MGUS patients as controls. We identified 29 immune cell subsets in the CD45+ and CD3+ compartments. Double positive T cells and PD-1 positive CD4 T cells were expanded and naïve CD4 T cells were decreased in the bone marrow of patients with newly diagnosed/progressing POEMS. These findings provide evidence for possible antigenic-driven selection as a driver of disease pathogenesis in POEMS.
Collapse
Affiliation(s)
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
47
|
Immunotherapy for Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11122009. [PMID: 31842518 PMCID: PMC6966649 DOI: 10.3390/cancers11122009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Despite therapeutic advances over the past decades, multiple myeloma (MM) remains a largely incurable disease with poor prognosis in high-risk patients, and thus new treatment strategies are needed to achieve treatment breakthroughs. MM represents various forms of impaired immune surveillance characterized by not only disrupted antibody production but also immune dysfunction of T, natural killer cells, and dendritic cells, although immunotherapeutic interventions such as allogeneic stem-cell transplantation and dendritic cell-based tumor vaccines were reported to prolong survival in limited populations of MM patients. Recently, epoch-making immunotherapies, i.e., immunomodulatory drug-intensified monoclonal antibodies, such as daratumumab combined with lenalidomide and chimeric antigen receptor T-cell therapy targeting B-cell maturation antigen, have been developed, and was shown to improve prognosis even in advanced-stage MM patients. Clinical trials using other antibody-based treatments, such as antibody drug-conjugate and bispecific antigen-directed CD3 T-cell engager targeting, are ongoing. The manipulation of anergic T-cells by checkpoint inhibitors, including an anti-T-cell immunoglobulin and ITIM domains (TIGIT) antibody, also has the potential to prolong survival times. Those new treatments or their combination will improve prognosis and possibly point toward a cure for MM.
Collapse
|
48
|
Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 2019; 9:72. [PMID: 31462637 PMCID: PMC6713712 DOI: 10.1038/s41408-019-0234-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Dysproteinemias progress through a series of clonal evolution events in the tumor cell along with the development of a progressively more “permissive” immune tumor microenvironment (iTME). Novel multiparametric cytometry approaches, such as cytometry by time-of-flight (CyTOF) combined with novel gating algorithms can rapidly characterize previously unknown phenotypes in the iTME of tumors and better capture its heterogeneity. Here, we used a 33-marker CyTOF panel to characterize the iTME of dysproteinemia patients (MGUS, multiple myeloma—MM, smoldering MM, and AL amyloidosis) at diagnosis and after standard of care first line therapies (triplet induction chemotherapy and autologous stem cell transplant—ASCT). We identify novel subsets, some of which are unique to the iTME and absent from matched peripheral blood samples, with potential roles in tumor immunosurveillance as well as tumor immune escape. We find that AL amyloidosis has a distinct iTME compared to other dysproteinemias with higher myeloid and “innate-like” T cell subset infiltration. We show that T cell immune senescence might be implicated in disease pathogenesis in patients with trisomies. Finally, we demonstrate that the early post-ASCT period is associated with an increase of senescent and exhausted subsets, which might have implications for the rational selection of post-ASCT therapies.
Collapse
|
49
|
Kibata K, Ito T, Inaba M, Tanaka A, Iwata R, Inagaki-Katashiba N, Phan V, Satake A, Nomura S. The immunomodulatory-drug, lenalidomide, sustains and enhances interferon-α production by human plasmacytoid dendritic cells. J Blood Med 2019; 10:217-226. [PMID: 31372079 PMCID: PMC6635835 DOI: 10.2147/jbm.s206459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Lenalidomide (LEN), an immunomodulatory drug (IMiD), is currently used for treatment of multiple myeloma (MM). LEN potentiates T cell and natural killer cell functions. However, the cellular and molecular mechanisms underlying the immunomodulatory effects of LEN remain unclear. We focused on the effects of LEN on human plasmacytoid dendritic cells (pDCs), which are the major source of interferon (IFN)-α in the blood and play a central role in innate immune responses. Results: We found that bortezomib, a proteasome inhibitor used to treat MM, killed pDCs but that 0.1-3 μM LEN (covering clinical plasma concentration range) did not affect pDC survival or CD86 expression. Bortezomib inhibited pDC-derived IFN-α production in a dose-dependent fashion, but 0.1-3 µM LEN sustained pDC-derived IFN-α production when stimulated with an optimal concentration of CpG-ODN 2216 (3 μM). In pDCs stimulated with a low concentration of CpG-ODN (0.1 μM), LEN enhanced IFN-α production. These results indicated that LEN, when used at a clinically relevant concentration, can potentially enhance IFN-α production by pDCs. Conclusion: Collectively, our findings unveiled a novel target of LEN and extend the repertoire of the drug's known immunomodulatory effects. These effects may explain the low incidence of herpes zoster viral infection observed during LEN treatment compared with bortezomib treatment. LEN may function as an IMiD affecting a wide array of immune cells, including pDCs, leading to amplification of a positive immune axis able to eliminate MM cells.
Collapse
Affiliation(s)
- Kayoko Kibata
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Tomoki Ito
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Muneo Inaba
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Akihiro Tanaka
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Ryoichi Iwata
- Kansai Medical University, Department of Neurosurgery, Osaka, Japan
| | | | - Vien Phan
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Atsushi Satake
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Shosaku Nomura
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| |
Collapse
|
50
|
López-Corral L, Caballero-Velázquez T, López-Godino O, Rosiñol L, Pérez-Vicente S, Fernandez-Avilés F, Krsnik I, Morillo D, Heras I, Morgades M, Rifon JJ, Sampol A, Iniesta F, Ocio EM, Martin J, Rovira M, Cabero M, Castilla-Llorente C, Ribera JM, Torres-Juan M, Moraleda JM, Martinez C, Vázquez A, Gutierrez G, Caballero D, San Miguel JF, Mateos MV, Pérez-Simón JA. Response to Novel Drugs before and after Allogeneic Stem Cell Transplantation in Patients with Relapsed Multiple Myeloma. Biol Blood Marrow Transplant 2019; 25:1703-1712. [PMID: 31054983 DOI: 10.1016/j.bbmt.2019.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/21/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) remains as an incurable disease and, although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative approach, most patients ultimately relapse, and their treatment remains challenging. Because allo-HSCT can modify not only the biology of the disease, but also the immune system and the microenvironment, it can potentially enhance the response to rescue therapies. Information on the efficacy and safety of novel drugs in patients relapsing after allo-HSCT is lacking, however. The objectives of this study were to evaluate the efficacy and toxicity of rescue therapies in patients with MM who relapsed after allo-HSCT, as well as to compare their efficacy before and after allo-HSCT. This retrospective multicenter study included 126 consecutive patients with MM who underwent allo-HSCT between 2000 and 2013 at 8 Spanish centers. All patients engrafted. The incidence of grade II-IV acute graft-versus-host disease (GVHD) was 47%, and nonrelapse mortality within the first 100 days post-transplantation was 13%. After a median follow-up of 92 months, overall survival (OS) was 51% at 2 years and 43% at 5 years. The median progression-free survival after allo-HSCT was 7 months, whereas the median OS after relapse was 33 months. Patients relapsing in the first 6 months after transplantation had a dismal prognosis compared with those who relapsed later (median OS, 11 months versus 120 months; P < .001). The absence of chronic GVHD was associated with reduced OS after relapse (hazard ratio, 3.44; P < .001). Most patients responded to rescue therapies, including proteasome inhibitors (PIs; 62%) and immunomodulatory drugs (IMiDs; 77%), with a good toxicity profile. An in-depth evaluation, including the type and intensity of PI- and IMiD-based combinations used before and after allo-HSCT, showed that the overall response rate and duration of response after allo-HSCT were similar to those seen in the pretransplantation period. Patients with MM who relapse after allo-HSCT should be considered candidates for therapy with new drugs, which can achieve similar response rates with similar durability as seen in the pretransplantation period. This pattern does not follow the usual course of the disease outside the transplantation setting, where response rates and time to progression decreases with each consecutive line of treatment.
Collapse
Affiliation(s)
- Lucia López-Corral
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Centro de Investigación del Cáncer-IBMCC, Spain.
| | - Teresa Caballero-Velázquez
- Hematology Department, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/CIBERON/Universidad de Sevilla, Spain
| | - Oriana López-Godino
- Hematology Department, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, IMIB, Universidad de Murcia, Spain
| | - Laura Rosiñol
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Sabina Pérez-Vicente
- Hematology Department, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/CIBERON/Universidad de Sevilla, Spain
| | | | - Isabel Krsnik
- Hematology Department, Instituto de Investigación Puerta de Hierro Majadahonda, Madrid, Spain
| | - Daniel Morillo
- Hematology Department, Instituto de Investigación Puerta de Hierro Majadahonda, Madrid, Spain
| | - Inmaculada Heras
- Hematology Department, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, IMIB, Universidad de Murcia, Spain
| | - Mireia Morgades
- Department of Hematology, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jose J Rifon
- Hematology Service, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Antonia Sampol
- Hematology Department, Hospital Son Espases, Palma de Mallorca, Spain
| | - Francisca Iniesta
- Hematology Department, University Hospital of Virgen de la Arrixaca, Murcia, Spain
| | - Enrique-María Ocio
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Centro de Investigación del Cáncer-IBMCC, Spain
| | - Jesús Martin
- Hematology Department, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/CIBERON/Universidad de Sevilla, Spain
| | - Montserrat Rovira
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Martín Cabero
- Hematology Department, Instituto de Investigación Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Josep-María Ribera
- Department of Hematology, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marta Torres-Juan
- Hematology Department, Hospital Son Espases, Palma de Mallorca, Spain
| | - Jose María Moraleda
- Hematology Department, University Hospital of Virgen de la Arrixaca, Murcia, Spain
| | - Carmen Martinez
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Alejandro Vázquez
- Hematology Department, Instituto de Investigación Puerta de Hierro Majadahonda, Madrid, Spain
| | - Gonzalo Gutierrez
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Dolores Caballero
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Centro de Investigación del Cáncer-IBMCC, Spain
| | - Jesús F San Miguel
- Hematology Service, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - María-Victoria Mateos
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Centro de Investigación del Cáncer-IBMCC, Spain
| | - Jose Antonio Pérez-Simón
- Hematology Department, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/CIBERON/Universidad de Sevilla, Spain
| |
Collapse
|