1
|
Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, Alshammari MS, Alexiou A, Papadakis M, Bahaa MM, Batiha GE. Cyclin-dependent kinase 5 (CDK5) inhibitors in Parkinson disease. J Cell Mol Med 2024; 28:e18412. [PMID: 38842132 PMCID: PMC11154839 DOI: 10.1111/jcmm.18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Haydar M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & Development, AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Kennedy PH, Deh Sheikh AA, Balakar M, Jones AC, Olive ME, Hegde M, Matias MI, Pirete N, Burt R, Levy J, Little T, Hogan PG, Liu DR, Doench JG, Newton AC, Gottschalk RA, de Boer C, Alarcón S, Newby G, Myers SA. Proteome-wide base editor screens to assess phosphorylation site functionality in high-throughput. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566649. [PMID: 38014346 PMCID: PMC10680671 DOI: 10.1101/2023.11.11.566649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of the phosphatase PHLPP1 which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.
Collapse
|
3
|
Klein OR, Ktena YP, Pierce E, Fu HH, Haile A, Liu C, Cooke KR. Defibrotide modulates pulmonary endothelial cell activation and protects against lung inflammation in pre-clinical models of LPS-induced lung injury and idiopathic pneumonia syndrome. Front Immunol 2023; 14:1186422. [PMID: 37441074 PMCID: PMC10335747 DOI: 10.3389/fimmu.2023.1186422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction A multiple organ dysfunction syndrome (MODS) workshop convened by the National Institute of Child Health and Human Development in 2015 identified acute respiratory distress syndrome (ARDS) and complications of allogeneic blood and marrow transplantation (allo-BMT) as contributors to MODS in pediatric patients. Pulmonary dysfunction also remains a significant complication of allo-BMT. Idiopathic pneumonia syndrome (IPS) defines non-infectious, acute, lung injury that occurs post-transplant. Injury and activation to endothelial cells (ECs) contribute to each form of lung inflammation. Methods Two murine models were employed. In an ARDS model, naïve B6 mice receive an intravenous (i.v.) injection of lipopolysaccharide (LPS). In the established model of IPS, naïve B6D2F1 mice receive lethal total body irradiation followed by BMT from either allogeneic (B6) or syngeneic (B6D2F1) donors. Lung inflammation was subsequently assessed in each scenario. Results Intravenous injection of LPS to B6 mice resulted in enhanced mRNA expression of TNFα, IL-6, Ang-2, E-, and P-selectin in whole lung homogenates. The expression of Ang-2 in this context is regulated in part by TNFα. Additionally, EC activation was associated with increased total protein and cellularity in broncho-alveolar lavage fluid (BALF). Similar findings were noted during the development of experimental IPS. We hypothesized that interventions maintaining EC integrity would reduce the severity of ARDS and IPS. Defibrotide (DF) is FDA approved for the treatment of BMT patients with sinusoidal obstruction syndrome and renal or pulmonary dysfunction. DF stabilizes activated ECs and protect them from further injury. Intravenous administration of DF before and after LPS injection significantly reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P-selectin compared to controls. BALF showed decreased cellularity, reflecting less EC damage and leak. Allogeneic BMT mice were treated from day -1 through day 14 with DF intraperitoneally, and lungs were harvested at 3 weeks. Compared to controls, DF treatment reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P- selectin, BALF cellularity, and lung histopathology. Conclusion The administration of DF modulates EC injury in models of ARDS and IPS. Cytokine inhibition in combination with agents that stabilize EC integrity may be an attractive strategy for patients in each setting.
Collapse
Affiliation(s)
- Orly R. Klein
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Yiouli P. Ktena
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Elizabeth Pierce
- Department of Pediatrics, Pediatric Blood and Marrow Transplant Program, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Han-Hsuan Fu
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Azeb Haile
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth R. Cooke
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
4
|
Wuttisarnwattana P, Eid S, Wilson DL, Cooke KR. Assessment of therapeutic role of mesenchymal stromal cells in mouse models of graft-versus-host disease using cryo-imaging. Sci Rep 2023; 13:1698. [PMID: 36717650 PMCID: PMC9886911 DOI: 10.1038/s41598-023-28478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Optimization Theory and Applications for Engineering Systems Research Group, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kenneth R Cooke
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ktena YP, Koldobskiy MA, Barbato MI, Fu HH, Luznik L, Llosa NJ, Haile A, Klein OR, Liu C, Gamper CJ, Cooke KR. Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation. J Clin Invest 2022; 132:e158047. [PMID: 35608905 PMCID: PMC9246380 DOI: 10.1172/jci158047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methyltransferase 3a (DNMT3a) is an important part of the epigenetic machinery that stabilizes patterns of activated T cell responses. We hypothesized that donor T cell DNMT3a regulates alloreactivity after allogeneic blood and marrow transplantation (allo-BMT). T cell conditional Dnmt3a KO mice were used as donors in allo-BMT models. Mice receiving allo-BMT from KO donors developed severe acute graft-versus-host disease (aGVHD), with increases in inflammatory cytokine levels and organ histopathology scores. KO T cells migrated and proliferated in secondary lymphoid organs earlier and demonstrated an advantage in trafficking to the small intestine. Donor T cell subsets were purified after BMT for whole-genome bisulfite sequencing (WGBS) and RNA-Seq. KO T cells had global methylation similar to that of WT cells, with distinct, localized areas of hypomethylation. Using a highly sensitive computational method, we produced a comprehensive profile of the altered epigenome landscape. Hypomethylation corresponded with changes in gene expression in several pathways of T cell signaling and differentiation. Additionally, Dnmt3a-KO T cells resulted in superior graft-versus-tumor activity. Our findings demonstrate a critical role for DNMT3a in regulating T cell alloreactivity and reveal pathways that control T cell tolerance. These results also provide a platform for deciphering clinical data that associate donor DNMT3a mutations with increased GVHD, decreased relapse, and improved survival.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Koldobskiy
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael I. Barbato
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Hsuan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicolas J. Llosa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Azeb Haile
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Orly R. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher J. Gamper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kenneth R. Cooke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Wang QY, Liu HH, Dong YJ, Liang ZY, Yin Y, Liu W, Wang QY, Wang Q, Sun YH, Xu WL, Han N, Li Y, Ren HY. Low-Dose 5-Aza and DZnep Alleviate Acute Graft- Versus-Host Disease With Less Side Effects Through Altering T-Cell Differentiation. Front Immunol 2022; 13:780708. [PMID: 35281001 PMCID: PMC8907421 DOI: 10.3389/fimmu.2022.780708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Previous studies showed that hypomethylating agents (HMAs) could alleviate acute graft-versus-host disease (aGvHD), but affect engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The combination of two different HMAs in lower doses might overcome this problem. This study aimed to evaluate the treatment effect of the combination of two HMAs—azacitidine (5-Aza) and histone H3K27 methyltransferase inhibitor 3-deazaneplanocin (DZNep)—for the prophylaxis of aGvHD after allo-HSCT and to explore the possible mechanisms. Methods We first optimized the concentrations of individual and combinational 5-Aza and DZNep treatments to ensure no obvious toxicities on activated T cells by evaluating T-cell proliferation, viability, and differentiation. A mouse model of aGvHD was then established to assess the prophylactic efficacy of 5-Aza, DZNep, and their combination on aGvHD. The immunomodulatory effect on T cells and the hematopoietic reconstruction were assessed. Additionally, RNA sequencing (RNA-seq) was performed to identify the underlying molecular mechanisms. Results Compared with single treatments, the in vitro application of 5-Aza with DZNep could more powerfully reduce the production of T helper type 1 (Th1)/T cytotoxic type 1 (Tc1) cells and increase the production of regulatory T cells (Tregs). In an allo-HSCT mouse model, in vivo administration of 5-Aza with DZNep could enhance the prophylactic effect for aGvHD compared with single agents. The mechanism study demonstrated that the combination of 5-Aza and DZNep in vivo had an enhanced effect to inhibit the production of Th1/Tc1, increase the proportions of Th2/Tc2, and induce the differentiation of Tregs as in vitro. RNA-seq analysis revealed the cytokine and chemokine pathways as one mechanism for the alleviation of aGvHD with the combination of 5-Aza and DZNep. Conclusion The combination of 5-Aza and DZNep could enhance the prophylactic effect for aGvHD by influencing donor T-cell differentiation through affecting cytokine and chemokine pathways. This study shed light on the effectively prophylactic measure for aGvHD using different epigenetic agent combinations.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Hui Hui Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qing Yun Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Na Han
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Krüger BT, Steppe L, Vettorazzi S, Haffner-Luntzer M, Lee S, Dorn AK, Ignatius A, Tuckermann J, Ahmad M. Inhibition of Cdk5 Ameliorates Skeletal Bone Loss in Glucocorticoid-Treated Mice. Biomedicines 2022; 10:404. [PMID: 35203613 PMCID: PMC8962259 DOI: 10.3390/biomedicines10020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, their long-term use leads to glucocorticoid-induced osteoporosis, increasing morbidity and mortality. Both anabolic and anti-resorptive drugs are used to counteract GC-induced bone loss, however, they are expensive and/or have major side effects. Therefore, identifying new targets for cost-effective, small-molecule inhibitors is essential. We recently identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation and showed that its inhibition with roscovitine promoted osteoblastogenesis, thus improving the skeletal bone mass and fracture healing. Here, we assessed whether Cdk5 knockdown or inhibition could also reverse the GC-mediated suppression of osteoblast differentiation, bone loss, and fracture healing. We first demonstrated that Cdk5 silencing abolished the dexamethasone (Dex)-induced downregulation of alkaline phosphatase (Alp) activity, osteoblast-specific marker gene expression (Runx2, Sp7, Alpl, and Bglap), and mineralization. Similarly, Cdk5 inhibition rescued Dex-induced suppression of Alp activity. We further demonstrated that Cdk5 inhibition reversed prednisolone (Pred)-induced bone loss in mice, due to reduced osteoclastogenesis rather than improved osteoblastogenesis. Moreover, we revealed that Cdk5 inhibition failed to improve Pred-mediated impaired fracture healing. Taken together, we demonstrated that Cdk5 inhibition with roscovitine ameliorated GC-mediated bone loss but did not reverse GC-induced compromised fracture healing in mice.
Collapse
Affiliation(s)
- Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| |
Collapse
|
8
|
Metheny L, Eid S, Wuttisarnwattana P, Auletta JJ, Liu C, Van Dervort A, Paez C, Lee Z, Wilson D, Lazarus HM, Deans R, Vant Hof W, Ktena Y, Cooke KR. Human multipotent adult progenitor cells effectively reduce graft-vs-host disease while preserving graft-vs-leukemia activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1506-1519. [PMID: 34255899 PMCID: PMC8596993 DOI: 10.1002/stem.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2021] [Indexed: 11/13/2022]
Abstract
Graft‐vs‐host disease (GvHD) limits successful outcomes following allogeneic blood and marrow transplantation (allo‐BMT). We examined whether the administration of human, bone marrow‐derived, multipotent adult progenitor cells (MAPCs™) could regulate experimental GvHD. The immunoregulatory capacity of MAPC cells was evaluated in vivo using established murine GvHD models. Injection of MAPC cells on day +1 (D1) and +4 (D4) significantly reduced T‐cell expansion and the numbers of donor‐derived, Tumor Necrosis Factor Alpha (TNFα) and Interferon Gamma (IFNγ)‐producing, CD4+ and CD8+ cells by D10 compared with untreated controls. These findings were associated with reductions in serum levels of TNFα and IFNγ, intestinal and hepatic inflammation and systemic GvHD as measured by survival and clinical score. Biodistribution studies showed that MAPC cells tracked from the lung and to the liver, spleen, and mesenteric nodes within 24 hours after injection. MAPC cells inhibited mouse T‐cell proliferation in vitro and this effect was associated with reduced T‐cell activation and inflammatory cytokine secretion and robust increases in the concentrations of Prostaglandin E2 (PGE2) and Transforming Growth Factor Beta (TGFβ). Indomethacin and E‐prostanoid 2 (EP2) receptor antagonism both reversed while EP2 agonism restored MAPC cell‐mediated in vitro T‐cell suppression, confirming the role for PGE2. Furthermore, cyclo‐oxygenase inhibition following allo‐BMT abrogated the protective effects of MAPC cells. Importantly, MAPC cells had no effect on the generation cytotoxic T lymphocyte activity in vitro, and the administration of MAPC cells in the setting of leukemic challenge resulted in superior leukemia‐free survival. Collectively, these data provide valuable information regarding the biodistribution and regulatory capacity of MAPC cells, which may inform future clinical trial design.
Collapse
Affiliation(s)
- Leland Metheny
- University Hospitals Seidman Cancer CenterClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Saada Eid
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Patiwet Wuttisarnwattana
- Department of Computer EngineeringChiang Mai UniversityChiang MaiThailand
- Department of Biomedical Engineering CenterChiang Mai UniversityChiang MaiThailand
| | - Jeffery J. Auletta
- Host Defense Program, Hematology, Oncology, and Infectious DiseasesNationwide Children's HospitalColumbusOhioUSA
| | - Chen Liu
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Alana Van Dervort
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Conner Paez
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - ZhengHong Lee
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - David Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | | | | | | | - Yiouli Ktena
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| | - Kenneth R. Cooke
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
9
|
Fluvastatin-Pretreated Donor Cells Attenuated Murine aGVHD by Balancing Effector T Cell Distribution and Function under the Regulation of KLF2. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7619849. [PMID: 33415155 PMCID: PMC7769635 DOI: 10.1155/2020/7619849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Prevention of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is still to be explored. Statins are potent immunomodulatory agents that hold promise as novel and safe agents for aGVHD prophylaxis, yet the controversial effect and regulatory mechanism are incompletely understood. Here, in an MHC mismatched murine model, we found that Fluvastatin-pretreated donor cells could attenuate aGVHD severity by remission tissue pathological injury. Fluvastatin served to restrain effector T cells entry into aGVHD target organs from secondary lymphoid organs (SLOs). The potential mechanism of correcting the effector T cell biased distribution was that Fluvastatin elevated CD62L and CCR7 expression while decreased CXCR3 and CD44 levels, which were correlated with Kruppel-like factor 2 (KLF2) sustention in donor-derived cells. In addition, Fluvastatin was contributed to reducing cytokines IFN-γ, TNF-α, and granzyme-B production in allogeneic effector CD4+ and CD8+ T cells. Furthermore, evidence confirmed that Fluvastatin had a long-lasting effect to sustain KLF2 expression both in vitro and in vivo even under the stimulated circumstance. In conclusion, administration of Fluvastatin to donor mice showed protective effects against recipient aGVHD when compared to untreated mice due to the retention of effector T cells in lymphoid organs accompanying with reduction of nonlymphatic infiltration and related inflammatory cytokines.
Collapse
|
10
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
11
|
Sharma S, Sicinski P. A kinase of many talents: non-neuronal functions of CDK5 in development and disease. Open Biol 2020; 10:190287. [PMID: 31910742 PMCID: PMC7014686 DOI: 10.1098/rsob.190287] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclin-dependent kinase 5 (CDK5) represents an unusual member of the family of cyclin-dependent kinases, which is activated upon binding to non-cyclin p35 and p39 proteins. The role of CDK5 in the nervous system has been very well established. In addition, there is growing evidence that CDK5 is also active in non-neuronal tissues, where it has been postulated to affect a variety of functions such as the immune response, angiogenesis, myogenesis, melanogenesis and regulation of insulin levels. Moreover, high levels of CDK5 have been observed in different tumour types, and CDK5 was proposed to play various roles in the tumorigenic process. In this review, we discuss these various CDK5 functions in normal physiology and disease, and highlight the therapeutic potential of targeting CDK5.
Collapse
Affiliation(s)
- Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Abstract
The maturation of dendritic cells is critical for chronic rhinosinusitis with nasal polyps (CRSwNPs), especially eosinophilic chronic rhinosinusitis with nasal polyps (EosCRSwNPs), but the regulation mechanism of dendritic cells (DCs) maturation is still unclear. We identified nasal mucosa of 20 patients with EosCRSwNP, 16 non-EosCRSwNP patients, and inferior turbinate of 14 patients with nasal septum deviation after surgery. The expression of cyclin-dependent kinase 5 (CDK5) and programmed cell death 1 ligand 1 (PD-L1) were detected by immunofluorescent, real-time quantitative PCR, and Western blot in EosCRSwNP. The level of dendritic cell maturation was detected by flow cytometry and immunofluorescence staining after CDK5 expression interference with small interfering RNA (siRNA). The expression of CDK5 and PD-L1 in EosCRSwNP nasal mucosal tissue was significantly higher than that of non-EosCRSwNP and inferior turbinate nasal mucosa tissue, and there was a positive correlation between them. Immunofluorescence staining showed that CDK5 and PD-L1 were co-localized in dendritic cells. Synergistic stimulation of dendritic cells with LPS and TNF-α promotes the maturation of dendritic cells and increases the expression of CDK5 and PD-L1. However, blocking the expression of CDK5 in dendritic cells with siRNAs leads to a blockage of cell maturation. CDK5 can regulate the expression of PD-L1, and its presence is critical for the maturation of dendritic cells. CDK5 may play an important role in the pathogenesis of CRSwNP disease.
Collapse
|