1
|
He Y, Wang Z, Cui W, Zhang Q, Zheng M, Li W, Gao J, Yang Z, You J. Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135485. [PMID: 39208632 DOI: 10.1016/j.jhazmat.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Aluminum (Al) toxicity adversely impacts soybean (Glycine max) growth in acidic soil. Reversible protein phosphorylation plays an important role in adapting to adverse environmental conditions by regulating multiple physiological processes including signal transduction, energy coupling and metabolism adjustment in higher plant. This study aimed to reveal the Al-responsive phosphoproteins to understand their putative function and involvement in the regulation of Al resistance in soybean root. We used immobilized metal affinity chromatography to enrich the key phosphoproteins from soybean root apices at 0, 4, or 24 h Al exposure. These phosphoproteins were detected using liquid chromatography-tandem mass spectrometry measurement, verified by parallel reaction monitoring (PRM), and functionally characterized via overexpression in soybean hairy roots. A total of 638 and 686 phosphoproteins were identified as differentially enriched between the 4-h and 0-h, and the 24-h and 0-h Al treatment comparison groups, respectively. Typically, the phosphoproteins involved in biological processes including cell wall modification, and RNA and protein metabolic regulation displayed patterns of decreasing enrichment (clusters 3, 5 and 6), however, the phosphoproteins involved in the transport and metabolic processes of various substrates, and signal transduction pathways showed increased enrichment after 24 h of Al treatment. The enrichment of phosphoproteins in organelle organization bottomed after 4 h of Al treatment (cluster 1). Next, we selected 26 phosphoproteins from the phosphoproteomic profiles, assessed their enrichment status using PRM, and detected enrichment patterns similar to those observed via phosphoproteomic analysis. Among them, 15 phosphoproteins were found to reduce the accumulation of Al and callose in Al-stressed soybean root apices when their corresponding genes were individually overexpressed in soybean hairy roots. In summary, the findings of this study facilitated a comprehensive understanding of the protein phosphorylation events involved in Al resistance responses and revealed some critical phosphoproteins that enhance Al resistance in soybean roots.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhengbiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wenmo Cui
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxiu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meihui Zheng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Gao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenming Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiangfeng You
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Rahimian R, Perlman K, Fakhfouri G, Mpai R, Richard VR, Hercher C, Penney L, Davoli MA, Nagy C, Zahedi RP, Borchers CH, Giros B, Turecki G, Mechawar N. Proteomic evidence of depression-associated astrocytic dysfunction in the human male olfactory bulb. Brain Behav Immun 2024; 122:110-121. [PMID: 39128570 DOI: 10.1016/j.bbi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
The olfactory bulb (OB), a major structure of the limbic system, has been understudied in human investigations of psychopathologies such as depression. To explore more directly the molecular features of the OB in depression, a global comparative proteome analysis was carried out with human post-mortem OB samples from 11 males having suffered from depression and 12 healthy controls. We identified 188 differentially abundant proteins (with adjusted p < 0.05) between depressed cases and controls. Gene ontology and gene enrichment analyses suggested that these proteins are involved in biological processes including the complement and coagulation cascades. Cell type enrichment analysis displayed a significant reduction in several canonical astrocytic proteins in OBs from depressed patients. Furthermore, using RNA-fluorescence in-situ hybridization, we observed a decrease in the percentage of ALDH1L1+ cells expressing canonical astrocytic markers including ALDOC, NFIA, GJA1 (connexin 43) and SLC1A3 (EAAT1). These results are consistent with previous reports of downregulated astrocytic marker expression in other brain regions in depressed patients. We also conducted a comparative phosphoproteomic analysis of OB samples and found a dysregulation of proteins involved in neuronal and astrocytic functions. To determine whether OB astrocytic abnormalities is specific to humans, we also performed proteomics on the OB of socially defeated male mice, a commonly used model of depression. Cell-type specific analysis revealed that in socially defeated animals, the most striking OB protein alterations were associated with oligodendrocyte-lineage cells rather than with astrocytes, highlighting an important species difference. Overall, this study further highlights cerebral astrocytic abnormalities as a consistent feature of depression in humans.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Refilwe Mpai
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Lucy Penney
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - René P Zahedi
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Pathology, McGill University, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Svidelskaya GS, Sorkina VP, Ignatova AA, Ponomarenko EA, Poletaev AV, Seregina EA, Manuvera VA, Zharkov PA, Mindukshev IV, Gambaryan S, Panteleev MA. Assay variables and early clinical evaluation of low-angle light scattering for platelet function analysis. Int J Hematol 2024:10.1007/s12185-024-03859-0. [PMID: 39436623 DOI: 10.1007/s12185-024-03859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The recently developed platelet aggregation technique based on low-angle light scattering (LaSca) in diluted platelet-rich plasma (PRP) requires only a small sample volume and provides information about platelet aggregation and shape change. This study aimed to investigate the influence of preanalytical and analytical variables and to validate the method in a real-life pediatric hematology hospital setting. METHODS Platelet aggregation was induced by ADP in diluted PRP in the presence of 2 mM calcium at 23 °C. The study included healthy adults (n = 30), healthy children (n = 20), and pediatric patients with suspected or diagnosed platelet function abnormalities (n = 25). RESULTS The assay parameters were stable for at least 3 h after isolation of PRP and were sensitive to plasma dilution in the range of 2-8%. The initial aggregation velocity was significantly reduced in pediatric patients compared with healthy children (p < 0.05). ADP-induced light transmission amplitude was moderately correlated with LaSca amplitude of aggregation in healthy children (p = 0.52, p < 0.05) but not in pediatric patients. CONCLUSIONS We standardized the protocol for platelet aggregation assessment by LaSca and characterized the influence of preanalytical and analytical variables on it.
Collapse
Affiliation(s)
- Galina S Svidelskaya
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vera P Sorkina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Anastasia A Ignatova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Evgeniya A Ponomarenko
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Aleksandr V Poletaev
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Elena A Seregina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Pavel A Zharkov
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mikhail A Panteleev
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, Moscow, Russian Federation.
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russian Federation.
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
4
|
Yan R, Xia Y, Zhou K, Liu J, Sun Y, He C, Ge X, Yang M, Sun C, Yuan L, Li S, Yang B, Meng F, Cao L, Ruan C, Dai K. Essential role of glycoprotein Ibα in platelet activation. Blood Adv 2024; 8:3388-3401. [PMID: 38701351 PMCID: PMC11255362 DOI: 10.1182/bloodadvances.2023012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα), the ligand-binding subunit of platelet GPIb-IX complex, interacts with von Willebrand factor (VWF) exposed at the injured vessel wall, initiating platelet adhesion, activation, hemostasis, and thrombus formation. The cytoplasmic tail of GPIbα interacts with 14-3-3ζ, regulating the VWF-GPIbα-elicited signal transduction and VWF binding function of GPIbα. However, we unexpectedly found that the GPIbα-14-3-3ζ association, beyond VWF-dependent function, is essential for general platelet activation. We found that the myristoylated peptide of GPIbα C-terminus MPαC, a potential GPIbα inhibitor, by itself induced platelet aggregation, integrin αIIbβ3 activation, granule secretion, and phosphatidylserine (PS) exposure. Conversely, the deletion of the cytoplasmic tail of GPIbα in mouse platelets (10aa-/-) decreased platelet aggregation, integrin αIIbβ3 activation, granule secretion, and PS exposure induced by various physiological agonists. Phosphoproteome-based kinase activity profiling revealed significantly upregulated protein kinase C (PKC) activity in MPαC-treated platelets. MPαC-induced platelet activation was abolished by the pan-PKC inhibitor and PKCα deletion. Decreased PKC activity was observed in both resting and agonist-stimulated 10aa-/- platelets. GPIbα regulates PKCα activity by sequestering 14-3-3ζ from PKCα. In vivo, the deletion of the GPIbα cytoplasmic tail impaired mouse hemostasis and thrombus formation and protected against platelet-dependent pulmonary thromboembolism. Therefore, our findings demonstrate an essential role for the GPIbα cytoplasmic tail in regulating platelet general activation and thrombus formation beyond the VWF-GPIbα axis.
Collapse
Affiliation(s)
- Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yue Xia
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Jun Liu
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yueyue Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chunyan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinxin Ge
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Liuxia Yuan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Shujun Li
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Biao Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Fanbi Meng
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| |
Collapse
|
5
|
Sudnitsyna J, Ruzhnikova TO, Panteleev MA, Kharazova A, Gambaryan S, Mindukshev IV. Chloride Gradient Is Involved in Ammonium Influx in Human Erythrocytes. Int J Mol Sci 2024; 25:7390. [PMID: 39000500 PMCID: PMC11242273 DOI: 10.3390/ijms25137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl- and HCO3-). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl-] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs.
Collapse
Affiliation(s)
- Julia Sudnitsyna
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Tamara O Ruzhnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Alexandra Kharazova
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| |
Collapse
|
6
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Babur O, Emili A, Aslan JE. Platelet proteomics emerges from the womb: mass spectrometry insights into neonatal platelet biology. J Thromb Haemost 2024; 22:1313-1315. [PMID: 38670684 DOI: 10.1016/j.jtha.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, Massachusetts, USA
| | - Andrew Emili
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
8
|
Provenzale I, Solari FA, Schönichen C, Brouns SLN, Fernández DI, Kuijpers MJE, van der Meijden PEJ, Gibbins JM, Sickmann A, Jones C, Heemskerk JWM. Endothelium-mediated regulation of platelet activation: Involvement of multiple protein kinases. FASEB J 2024; 38:e23468. [PMID: 38334433 DOI: 10.1096/fj.202300360rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.
Collapse
Affiliation(s)
- Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Jones
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| |
Collapse
|
9
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
10
|
Singh PK, Dangelmaier CA, Vari HR, Tsygankov AY, Kunapuli SP. Biochemical characterization of spleen tyrosine kinase (SYK) isoforms in platelets. Platelets 2023; 34:2249549. [PMID: 37661351 PMCID: PMC10502920 DOI: 10.1080/09537104.2023.2249549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Carol A. Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y. Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Verdier H, Thomas P, Batista J, Kempster C, McKinney H, Gleadall N, Danesh J, Mumford A, Heemskerk JWM, Ouwehand WH, Downes K, Astle WJ, Turro E. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. Blood 2023; 142:1895-1908. [PMID: 37647652 PMCID: PMC10733829 DOI: 10.1182/blood.2023021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Institut Pasteur, CNRS UMR 3751, Decision and Bayesian Computation, Université Paris Cité, Paris, France
| | - Patrick Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- South West National Health Service Genomic Medicine Service Alliance, Bristol, United Kingdom
| | | | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
12
|
Khatlani T, Pradhan S, Langlois K, Subramanyam D, Rumbaut RE, Vijayan KV. Opposing Roles for the α Isoform of the Catalytic Subunit of Protein Phosphatase 1 in Inside-Out and Outside-In Integrin Signaling in Murine Platelets. Cells 2023; 12:2424. [PMID: 37887268 PMCID: PMC10605409 DOI: 10.3390/cells12202424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet activation during hemostasis and thrombosis is facilitated by agonist-induced inside-out and integrin αIIbβ3-initiated outside-in signaling via protein kinases and phosphatases. Pharmacological inhibitor studies suggest that the serine/threonine protein phosphatase 1 (PP1) promotes platelet activation. However, since phosphatase inhibitors block all the isoforms of the catalytic subunit of PP1 (PP1c), the role of specific PP1c isoform in platelet signaling remains unclear. Here, we employed a platelet-specific PP1cα-/- mice to explore the contribution of a major PP1 isoform in platelet functions. Loss of PP1cα moderately decreased activation of integrin αIIbβ3, binding of soluble fibrinogen, and aggregation to low-dose thrombin, ADP, and collagen. In contrast, PP1cα-/- platelets displayed increased adhesion to immobilized fibrinogen, fibrin clot retraction, and thrombus formation on immobilized collagen. Mechanistically, post-fibrinogen engagement potentiated p38 mitogen-activated protein kinase (MAPK) activation in PP1cα-/- platelets and the p38 inhibitor blocked the increased integrin-mediated outside-in signaling function. Tail bleeding time and light-dye injury-induced microvascular thrombosis in the cremaster venules and arterioles were not altered in PP1cα-/- mice. Thus, PP1cα displays pleiotropic signaling in platelets as it amplifies agonist-induced signaling and attenuates integrin-mediated signaling with no impact on hemostasis and thrombosis.
Collapse
Affiliation(s)
- Tanvir Khatlani
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Subhashree Pradhan
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Kimberly Langlois
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Pulmonary Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deepika Subramanyam
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Rolando E. Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Pulmonary Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - K. Vinod Vijayan
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| |
Collapse
|
13
|
Zhang P, Solari FA, Heemskerk JWM, Kuijpers MJE, Sickmann A, Walter U, Jurk K. Differential Regulation of GPVI-Induced Btk and Syk Activation by PKC, PKA and PP2A in Human Platelets. Int J Mol Sci 2023; 24:ijms24097776. [PMID: 37175486 PMCID: PMC10178361 DOI: 10.3390/ijms24097776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.
Collapse
Affiliation(s)
- Pengyu Zhang
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
14
|
Cheung HYF, Zou J, Tantiwong C, Fernandez DI, Huang J, Ahrends R, Roest M, Cavill R, Gibbins J, Heemskerk JWM. High-throughput assessment identifying major platelet Ca 2+ entry pathways via tyrosine kinase-linked and G protein-coupled receptors. Cell Calcium 2023; 112:102738. [PMID: 37060673 DOI: 10.1016/j.ceca.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
In platelets, elevated cytosolic Ca2+ is a crucial second messenger, involved in most functional responses, including shape change, secretion, aggregation and procoagulant activity. The platelet Ca2+ response consists of Ca2+ mobilization from endoplasmic reticulum stores, complemented with store-operated or receptor-operated Ca2+ entry pathways. Several channels can contribute to the Ca2+ entry, but their relative contribution is unclear upon stimulation of ITAM-linked receptors such as glycoprotein VI (GPVI) and G-protein coupled receptors such as the protease-activated receptors (PAR) for thrombin. We employed a 96-well plate high-throughput assay with Fura-2-loaded human platelets to perform parallel [Ca2+]i measurements in the presence of EGTA or CaCl2. Per agonist condition, this resulted in sets of EGTA, CaCl2 and Ca2+ entry ratio curves, defined by six parameters, reflecting different Ca2+ ion fluxes. We report that threshold stimulation of GPVI or PAR, with a variable contribution of secondary mediators, induces a maximal Ca2+ entry ratio of 3-7. Strikingly, in combination with Ca2+-ATPase inhibition by thapsigargin, the maximal Ca2+ entry ratio increased to 400 (GPVI) or 40 (PAR), pointing to a strong receptor-dependent enhancement of store-operated Ca2+ entry. By pharmacological blockage of specific Ca2+ channels in platelets, we found that, regardless of GPVI or PAR stimulation, the Ca2+ entry ratio was strongest affected by inhibition of ORAI1 (2-APB, Synta66) > Na+/Ca2+ exchange (NCE) > P2×1 (only initial). In contrast, inhibition of TRPC6, Piezo1/2 or STIM1 was without effect. Together, these data reveal ORAI1 and NCE as dominating Ca2+ carriers regulating GPVI- and PAR-induced Ca2+ entry in human platelets.
Collapse
Affiliation(s)
- Hilaire Yam Fung Cheung
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jinmi Zou
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Chukiat Tantiwong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Delia I Fernandez
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jingnan Huang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Dept. of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Mark Roest
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jon Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands.
| |
Collapse
|
15
|
Solari FA, Krahn D, Swieringa F, Verhelst S, Rassaf T, Tasdogan A, Zahedi RP, Lorenz K, Renné T, Heemskerk JWM, Sickmann A. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol 2023; 73:102253. [PMID: 36689818 DOI: 10.1016/j.cbpa.2022.102253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023]
Abstract
Platelets are small anucleate cell fragments (2-4 μm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Daniel Krahn
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, 6217 KD, Maastricht, the Netherlands
| | - Steven Verhelst
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - Tienush Rassaf
- Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Rene P Zahedi
- Department of Internal Medicine, University of Manitoba, Canada
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Renné
- Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
16
|
Liu Y, Ouyang Y, Feng Z, Jiang Z, Ma J, Zhou X, Cai C, Han Y, Zeng S, Liu S, Shen H. RASGRP2 is a potential immune-related biomarker and regulates mitochondrial-dependent apoptosis in lung adenocarcinoma. Front Immunol 2023; 14:1100231. [PMID: 36817422 PMCID: PMC9936229 DOI: 10.3389/fimmu.2023.1100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Ras guanine nucleotide-releasing protein 2 (RASGRP2), one of the guanine nucleotide exchange factors (GEFs), has attracted much attention in recent years. However, the correlation between RASGRP2 and immune infiltration and malignant features in lung adenocarcinoma (LUAD) has rarely been mentioned. Methods The Limma package and the LASSO regression model were performed to screen for differentially expressed genes. Data from the TCGA and 5 GEO databases were used to explore the expression level of RASGRP2 in LUAD patients. A weighted co-expression network and LinkFinder module were established to find the related genes of RASGRP2. The ESTIMATE algorithm was used to analyze the correlation between RASGRP2 and immune infiltration in LUAD. Tumor-infiltrating immune cells were sorted and sequenced at the single-cell level to analyze differences in RASGRP2. Real-time PCR and immunohistochemistry were performed in the real-world cohort to verify the expression of RASGRP2 and its correlation with immune-related genes. Clone formation and EdU assays were used to verify the proliferation ability. The proportion of apoptotic cells was analyzed by flow cytometry. Observation of mitochondrial membrane potential (MMP) changes by fluorescence microscopy. Results Our results suggested that decreased RASGRP2 was associated with worse clinical parameters and prognosis in LUAD patients. And we constructed a FLI1-HSA-miR-1976-RASGRP2 transcriptional network to support the role of RASGRP2. Enrichment analysis revealed that RASGRP2 was involved in lymphocyte activation and leukocyte adhesion. RASGRP2 was found to be positively correlated with the infiltration of most immune cells, immunoregulators, and chemokines in a subsequent study. Meanwhile, the real-world cohort confirmed that the expression levels of PDCD1, CTLA4, CD40LG, CCL14, CXCR5, and CCR7 were higher in the high-RASGRP2 expression group. Cytological experiments proved that RASGRP2 inhibited cell proliferation in LUAD by regulating mitochondrial-dependent apoptosis. Conclusion RASGRP2 was a potential immune-related biomarker of LUAD. In addition, RASGRP2 was involved in the malignant progression of LUAD through the regulation of mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Ouyang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Liu
- Department of Radiotherapy, Tianjin First Central Hospital, Tianjin, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Schlüter J, Cunningham S, Zimmermann R, Achenbach S, Kramer R, Erdmann M, Beckmann M, Heinzerling L, Hackstein H. Characterization of the impact of immune checkpoint inhibitors on platelet activation and aggregation. Immunobiology 2023; 228:152311. [PMID: 36495598 DOI: 10.1016/j.imbio.2022.152311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are effective oncological drugs which block cellular check-point receptors typically targeted by tumor immune evasion strategies. Despite their benefits, clinicians have reported treatment-associated thromboembolism during ICI therapy in recent years. Though several theories on this ICI-associated pathogenesis exist, the direct effects of ICIs on platelets remains unknown. We therefore investigated the potential direct and indirect effect of PD-1, PD-L1 and CTLA-4-targeting ICIs on platelet functionality in multifaceted in vitro experiments. Interestingly, we could not observe a clear effect of ICI on platelet aggregation and primary hemostasis in whole blood and platelet concentrate-based assays. Furthermore, the presence of ICIs in toll-like receptor stimulation had no significant impact on platelet surface marker expression. In a second approach, we investigated the indirect immunological impact of ICIs on platelet activation by exposing platelets to supernatants from ICI- and Staphylococcal enterotoxin B-exposed PBMCs. Whereas ICIs affected IL-2 levels in supernatants, we could not detect clear differences in the secretion of pro-thrombogenic factors and platelet responses. The obtained data suggest that the direct influence of ICIs on platelet activation or the influence of altered T cell function on platelet activation cannot be considered a major factor in the development of thrombotic events.
Collapse
Affiliation(s)
- Julian Schlüter
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany.
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Rafaela Kramer
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Michael Erdmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Malte Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Lucie Heinzerling
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany; Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich 80539, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| |
Collapse
|
18
|
Qiao C, Jiang P, Yuan X, Su N, Sun P, Lin F. Mammalian STE20-like kinase-1/2 are activated in human platelets stimulated by collagen or thrombin and play a vital role in collagen-activated platelets. Thromb Res 2023; 221:83-91. [PMID: 36495715 DOI: 10.1016/j.thromres.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mammalian ste20-like kinases-1/2 (MST1/2), the core kinases of the Hippo pathway, play critical roles in the biology of hematopoietic cells via noncanonical mechanisms and contributes to megakaryocyte differentiation, polyploidization, and maturation to produce platelets. However, the role of MST1/2 in platelet functions remains unclear. MATERIALS AND METHODS In this study, we investigated this topic by determining platelet aggregation and through flow cytometry, ATP release assay, clot retraction assay, and immunoblotting analysis. RESULTS We found that MST1/2 were rapidly phosphorylated and activated upon platelet stimulation by thrombin and collagen. XMU-MP-1, a specific inhibitor of MST1/2, blocks the activation of MST1/2 in platelets. Inhibitor-pretreated platelets showed impaired platelet aggregation and dense-granule secretion mediated by collagen, thrombin, and U46619, whereas ristocetin or ADP mediated platelet aggregation was unaffected by XMU-MP-1. Although platelet-mediated clot retraction was not affected by MST1/2 inhibitors, integrin αIIbβ3 activation was significantly attenuated in XMU-MP-1-treated platelets. Moreover, MST1/2 inhibition significantly attenuated the mobilization of platelet calcium ions and the secretion of α-granules induced by convulxin. CONCLUSIONS This study is the first to demonstrate that MST1/2 play vital roles in human platelets and contributes to collagen-induced platelet activation and aggregation.
Collapse
Affiliation(s)
- Congchao Qiao
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
19
|
Subtype-specific plasma signatures of platelet-related protein releasate in acute pulmonary embolism. Thromb Res 2022; 220:75-87. [DOI: 10.1016/j.thromres.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
|
20
|
Kunapuli SP, Tsygankov AY. TULA-Family Regulators of Platelet Activation. Int J Mol Sci 2022; 23:ijms232314910. [PMID: 36499237 PMCID: PMC9736690 DOI: 10.3390/ijms232314910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.
Collapse
|
21
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
22
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
23
|
Mindukshev I, Fock E, Dobrylko I, Sudnitsyna J, Gambaryan S, Panteleev MA. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int J Mol Sci 2022; 23:ijms231810667. [PMID: 36142580 PMCID: PMC9505593 DOI: 10.3390/ijms231810667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Hypo- and hyperthermia affect both primary and secondary hemostasis; however, there are controversial data concerning platelet activation and the underlying mechanisms under hypo- and hyperthermia. The discrepancies in the data could be partly explained by different approaches to hemostatic reactions analysis. We applied a new LaSca-TMF laser particle analyzer for a simultaneous fluorescence and laser scattering analysis of platelet responses at different temperatures. Human platelets were activated by ADP in a wide range of temperatures, and platelet transformations (e.g., a shape change reaction, aggregation and clot formation) and the intracellular calcium concentration ([Ca2+]i) were analyzed by LaSca-TMF and confocal microscopy. The platelet shape change reaction gradually increased with a rising temperature. The platelet aggregation strongly decreased at low ADP concentrations with the augmentation of the temperature and was independent of the temperature at high ADP concentrations. In contrast, the clotting time decreased with a temperature increase. Similar to the aggregation response, a rise in [Ca2+]i triggered by low ADP concentrations was higher under hypothermic conditions and the differences were independent of the temperature at high ADP concentrations. We showed that the key reactions of cellular hemostasis are differentially regulated by temperature and demonstrated for the first time that an accelerated aggregation under hypothermic conditions directly correlated with an increased level in [Ca2+]i in platelets.
Collapse
Affiliation(s)
- Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Irina Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Correspondence: (S.G.); (M.A.P.)
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Correspondence: (S.G.); (M.A.P.)
| |
Collapse
|
24
|
Wang M, Zhang B, Zhang C, Zhang X, Tang S, Sun G, Sun X. Quantitative Crotonylome Analysis Reveals the Mechanism of Shenkang Injection on Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7767431. [PMID: 39282151 PMCID: PMC11401665 DOI: 10.1155/2022/7767431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/28/2022] [Indexed: 09/18/2024]
Abstract
Shenkang injection (SKI) has been widely used in the clinical treatment of chronic kidney diseases in China because of its efficacy and safety. However, the underlying mechanism of SKI in diabetic nephropathy (DN) remains unclear. The present study aimed to investigate the renoprotective effects and possible mechanisms of SKI in diabetic db/db mice. We showed that SKI ameliorated hyperglycemia and abnormal renal biochemical parameters in db/db mice. Crotonylome and subsequent bioinformatics analyses indicated that the molecular functions of the significantly different crotonylated proteins regulated by SKI were closely related to oxidoreductase activity and oxidative phosphorylation might be one of the main pathways through which SKI functions in DN. Subsequent PRM validation of the selected crotonylated proteins confirmed these findings. In addition, we determined that SKI could regulate the expression of specific proteins in oxidative phosphorylation complexes and enhance antioxidant capacity. Taken together, our data suggest that SKI exerted the protective effect against DN potentially through reversing the abnormal crotonylation expression of oxidoreductase-related proteins.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Shuang Tang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
| |
Collapse
|
25
|
Jiang FF, Wang RQ, Guo CY, Zheng K, Long-Liu H, Su L, Xie SS, Chen HC, Liu ZF. Phospho-proteomics identifies a critical role of ATF2 in pseudorabies virus replication. Virol Sin 2022; 37:591-600. [PMID: 35688418 PMCID: PMC9437614 DOI: 10.1016/j.virs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Pseudorabies virus (PRV), an etiological agent of pseudorabies in livestock, has negatively affected the porcine industry all over the world. Epithelial cells are reported as the first site of PRV infection. However, the role of host proteins and its related signaling pathways in PRV replication is largely unclear. In this study, we performed a quantitative phosphoproteomics screening on PRV-infected porcine kidney (PK-15) epithelial cells. Totally 5723 phosphopeptides, corresponding to 2180 proteins, were obtained, and the phosphorylated states of 810 proteins were significantly different in PRV-infected cells compared with mock-infected cells (P < 0.05). GO and KEGG analysis revealed that these differentially expressed phosphorylated proteins were predominantly related to RNA transport and MAPK signaling pathways. Further functional studies of NF-κB, transcription activator factor-2 (ATF2), MAX and SOS genes in MAPK signaling pathway were analyzed using RNA interference (RNAi) knockdown. It showed that only ATF2-knockdown reduces both PRV titer and viral genome copy number. JNK pathway inhibition and CRISPR/Cas9 gene knockout showed that ATF2 was required for the effective replication of PRV, especially during the biogenesis of viral genome DNA. Subsequently, by overexpression of the ATF2 gene and point mutation of the amino acid positions 69/71 of ATF2, it was further demonstrated that the phosphorylation of ATF2 promoted PRV replication. These findings suggest that ATF2 may provide potential therapeutic target for inhibiting PRV infection. Phosphoproteomic profiling of PRV-infected PK-15 cells with iTRAQ-quantification. JNK pathway regulates ATF2 phosphorylation and PRV replication. Phosphorylation of ATF2 promotes PRV replication.
Collapse
|
26
|
Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, Ho Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. NATURE CARDIOVASCULAR RESEARCH 2022; 1:223-237. [PMID: 37502132 PMCID: PMC10373053 DOI: 10.1038/s44161-022-00021-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/17/2022] [Indexed: 07/29/2023]
Abstract
Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Melchinger
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Henry Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Finding the “switch” in platelet activation prediction of key mediators involved in reversal of platelet activation using a novel network biology approach. J Proteomics 2022; 261:104577. [DOI: 10.1016/j.jprot.2022.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
|
28
|
Comer SP. Turning Platelets Off and On: Role of RhoGAPs and RhoGEFs in Platelet Activity. Front Cardiovasc Med 2022; 8:820945. [PMID: 35071371 PMCID: PMC8770426 DOI: 10.3389/fcvm.2021.820945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.
Collapse
Affiliation(s)
- Shane P Comer
- ConwaySPHERE Research Group, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Revollo L, Merrill-Skoloff G, De Ceunynck K, Dilks JR, Guo S, Bordoli MR, Peters CG, Noetzli L, Ionescu A, Rosen V, Italiano JE, Whitman M, Flaumenhaft R. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139:104-117. [PMID: 34329392 PMCID: PMC8718620 DOI: 10.1182/blood.2020010342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
Affiliation(s)
- Leila Revollo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James R Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Christian G Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leila Noetzli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
|
31
|
Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome. Chin J Integr Med 2021; 28:99-105. [PMID: 34935097 DOI: 10.1007/s11655-021-3349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.
Collapse
|
32
|
Takino JI, Miyazaki S, Nagamine K, Hori T. The Role of RASGRP2 in Vascular Endothelial Cells-A Mini Review. Int J Mol Sci 2021; 22:ijms222011129. [PMID: 34681791 PMCID: PMC8537898 DOI: 10.3390/ijms222011129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
RAS guanyl nucleotide-releasing proteins (RASGRPs) are important proteins that act as guanine nucleotide exchange factors, which activate small GTPases and function as molecular switches for intracellular signals. The RASGRP family is composed of RASGRP1-4 proteins and activates the small GTPases, RAS and RAP. Among them, RASGRP2 has different characteristics from other RASGRPs in that it targets small GTPases and its localizations are different. Many studies related to RASGRP2 have been reported in cells of the blood cell lineage. Furthermore, RASGRP2 has also been reported to be associated with Huntington's disease, tumors, and rheumatoid arthritis. In addition, we also recently reported RASGRP2 expression in vascular endothelial cells, and clarified the involvement of xenopus Rasgrp2 in the vasculogenesis process and multiple signaling pathways of RASGRP2 in human vascular endothelial cells with stable expression of RASGRP2. Therefore, this article outlines the existing knowledge of RASGRP2 and focuses on its expression and role in vascular endothelial cells, and suggests that RASGRP2 functions as a protective factor for maintaining healthy blood vessels.
Collapse
Affiliation(s)
- Jun-ichi Takino
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
- Correspondence: ; Tel.: +81-823-73-8584
| | - Shouhei Miyazaki
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
| | - Kentaro Nagamine
- Faculty of Health Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
| | - Takamitsu Hori
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
| |
Collapse
|
33
|
Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci 2021; 22:ijms22189860. [PMID: 34576024 PMCID: PMC8468031 DOI: 10.3390/ijms22189860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.
Collapse
|
34
|
Shiravand Y, Walter U, Jurk K. Fine-Tuning of Platelet Responses by Serine/Threonine Protein Kinases and Phosphatases-Just the Beginning. Hamostaseologie 2021; 41:206-216. [PMID: 34192779 DOI: 10.1055/a-1476-7873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Comprehensive proteomic analyses of human and murine platelets established an extraordinary intracellular repertoire of signaling components, which control crucial functions. The spectrum of platelet serine/threonine protein kinases (more than 100) includes the AGC family (protein kinase A, G, C [PKA, PKG, PKC]), the mitogen-activated protein kinases (MAPKs), and others. PKA and PKG have multiple significantly overlapping substrates in human platelets, which possibly affect functions with clear "signaling nodes" of regulation by multiple protein kinases/phosphatases. Signaling nodes are intracellular Ca2+ stores, the contractile system (myosin light chains), and other signaling components such as G-proteins, protein kinases, and protein phosphatases. An example for this fine-tuning is the tyrosine kinase Syk, a crucial component of platelet activation, which is controlled by several serine/threonine and tyrosine protein kinases as well as phosphatases. Other protein kinases including PKA/PKG modulate protein phosphatase 2A, which may be a master regulator of MAPK signaling in human platelets. Protein kinases and in particular MAPKs are targeted by an increasing number of clinically used inhibitors. However, the precise regulation and fine-tuning of these protein kinases and their effects on other signaling components in platelets are only superficially understood-just the beginning. However, promising future approaches are in sight.
Collapse
Affiliation(s)
- Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Huang J, Swieringa F, Solari FA, Provenzale I, Grassi L, De Simone I, Baaten CCFMJ, Cavill R, Sickmann A, Frontini M, Heemskerk JWM. Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions. Sci Rep 2021; 11:12358. [PMID: 34117303 PMCID: PMC8196183 DOI: 10.1038/s41598-021-91661-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43-0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease.
Collapse
Affiliation(s)
- Jingnan Huang
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany.
| | - Frauke Swieringa
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
| | - Ilaria De Simone
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Constance C F M J Baaten
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH, Aachen, Germany
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, FSE, Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
36
|
Loss of the exocyst complex component EXOC3 promotes hemostasis and accelerates arterial thrombosis. Blood Adv 2021; 5:674-686. [PMID: 33560379 DOI: 10.1182/bloodadvances.2020002515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5'-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.
Collapse
|
37
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
38
|
Savage AK, Gutschow MV, Chiang T, Henderson K, Green R, Chaudhari M, Swanson E, Heubeck AT, Kondza N, Burley KC, Genge PC, Lord C, Smith T, Thomson Z, Beaubien A, Johnson E, Goldy J, Bolouri H, Buckner JH, Meijer P, Coffey EM, Skene PJ, Torgerson TR, Li XJ, Bumol TF. Multimodal analysis for human ex vivo studies shows extensive molecular changes from delays in blood processing. iScience 2021; 24:102404. [PMID: 34113805 PMCID: PMC8169801 DOI: 10.1016/j.isci.2021.102404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states. Studies of human blood cells and plasma are highly sensitive to process variability Time variability distorts biology in cutting-edge single-cell and multiplex assays Longitudinal, multi-modal, and aligned data enable data qualification and exploration Dataset holds potential novel, multi-modal biological correlations and hypotheses
Collapse
Affiliation(s)
- Adam K Savage
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Tony Chiang
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Richard Green
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | | | - Nina Kondza
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Palak C Genge
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Cara Lord
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Tanja Smith
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | - Ed Johnson
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Jane H Buckner
- Center for Translational Research, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Paul Meijer
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Peter J Skene
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | |
Collapse
|
39
|
Jurk K, Shiravand Y. Platelet Phenotyping and Function Testing in Thrombocytopenia. J Clin Med 2021; 10:jcm10051114. [PMID: 33800006 PMCID: PMC7962106 DOI: 10.3390/jcm10051114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Patients who suffer from inherited or acquired thrombocytopenia can be also affected by platelet function defects, which potentially increase the risk of severe and life-threatening bleeding complications. A plethora of tests and assays for platelet phenotyping and function analysis are available, which are, in part, feasible in clinical practice due to adequate point-of-care qualities. However, most of them are time-consuming, require experienced and skilled personnel for platelet handling and processing, and are therefore well-established only in specialized laboratories. This review summarizes major indications, methods/assays for platelet phenotyping, and in vitro function testing in blood samples with reduced platelet count in relation to their clinical practicability. In addition, the diagnostic significance, difficulties, and challenges of selected tests to evaluate the hemostatic capacity and specific defects of platelets with reduced number are addressed.
Collapse
Affiliation(s)
- Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-178278
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
40
|
Long-term platelet priming after glycoprotein VI stimulation in comparison to Protease-Activating Receptor (PAR) stimulation. PLoS One 2021; 16:e0247425. [PMID: 33657162 PMCID: PMC7928515 DOI: 10.1371/journal.pone.0247425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/08/2021] [Indexed: 12/05/2022] Open
Abstract
Platelets can respond to multiple antagonists and agonists, implying that their activation state is a consequence of past exposure to these substances. While platelets are often considered as one-time responsive cells, they likely can respond to sequential application of inhibitors and stimuli. We hypothesized that the ability of platelets to sequentially respond depends on the time and type of repeated agonist application. The present proof-of-concept data show that iloprost (cAMP elevation), tirofiban (integrin αIIbβ3 blocker) and Syk kinase inhibition subacutely modulated platelet aggregation, i.e. halted this process even when applied after agonist. In comparison to thrombin-activated receptor (PAR) stimulation, glycoprotein VI (GPVI) stimulation was less sensitive to time-dependent blockage of aggregation, with Syk inhibition as an exception. Furthermore, cytosolic Ca2+ measurements indicated that, when compared to PAR, prior GPVI stimulation induced a more persistent, priming activation state of platelets that influenced the response to a next agent. Overall, these data point to an unexpected priming memory of activated platelets in subacutely responding to another inhibitor or stimulus, with a higher versatility and faster offset after PAR stimulation than after GPVI stimulation.
Collapse
|
41
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
42
|
Tsai HJ, Cheng JC, Kao ML, Chiu HP, Chiang YH, Chen DP, Rau KM, Liao HR, Tseng CP. Integrin αIIbβ3 outside-in signaling activates human platelets through serine 24 phosphorylation of Disabled-2. Cell Biosci 2021; 11:32. [PMID: 33557943 PMCID: PMC7869483 DOI: 10.1186/s13578-021-00532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Bidirectional integrin αIIbβ3 signaling is essential for platelet activation. The platelet adaptor protein Disabled-2 (Dab2) is a key regulator of integrin signaling and is phosphorylated at serine 24 in eukaryotic cells. However, the mechanistic insight and function of Dab2-serine 24 phosphorylation (Dab2-pSer24) in platelet biology are barely understood. This study aimed to define whether and how Dab2 is phosphorylated at Ser24 during platelet activation and to investigate the effect of Dab2-pSer24 on platelet function. Results An antibody with confirmed specificity for Dab2-pSer24 was generated. By using this antibody as a tool, we showed that protein kinase C (PKC)-mediated Dab2-pSer24 was a conservative signaling event when human platelets were activated by the platelet agonists such as thrombin, collagen, ADP, 12-O-tetradecanoylphorbol-13-acetate, and the thromboxane A2 activator U46619. The agonists-stimulated Dab2-pSer24 was attenuated by pretreatment of platelets with the RGDS peptide which inhibits integrin outside-in signaling by competitive binding of integrin αIIb with fibrinogen. Direct activation of platelet integrin outside-in signaling by combined treatment of platelets with manganese dichloride and fibrinogen or by spreading of platelets on fibrinogen also resulted in Dab2-pSer24. These findings implicate that Dab2-pSer24 was associated with the outside-in signaling of integrin. Further analysis revealed that Dab2-pSer24 was downstream of Src-PKC-axis and phospholipase D1 underlying the integrin αIIbβ3 outside-in signaling. A membrane penetrating peptide R11-Ser24 which contained 11 repeats of arginine linked to the Dab2-Ser24 phosphorylation site and its flanking sequences (RRRRRRRRRRR19APKAPSKKEKK29) and the R11-S24A peptide with Ser24Ala mutation were designed to elucidate the functions of Dab2-pSer24. R11-Ser24 but not R11-S24A inhibited agonists-stimulated Dab2-pSer24 and consequently suppressed platelet spreading on fibrinogen, with no effect on platelet aggregation and fibrinogen binding. Notably, Ser24 and the previously reported Ser723 phosphorylation (Dab2-pSer723) occurred exclusively in a single Dab2 molecule and resulted in distinctive subcellular distribution and function of Dab2. Dab2-pSer723 was mainly distributed in the cytosol of activated platelets and associated with integrin inside-out signaling, while Dab2-pSer24 was mainly distributed in the membrane fraction of activated platelets and associated with integrin outside-in signaling. Conclusions These findings demonstrate for the first time that Dab2-pSer24 is conservative in integrin αIIbβ3 outside-in signaling during platelet activation and plays a novel role in the control of cytoskeleton reorganization and platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, Republic of China
| | - Man-Leng Kao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Hung-Pin Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Yi-Hsuan Chiang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, 824, Taiwan, Republic of China.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 824, Taiwan, Republic of China
| | - Hsiang-Ruei Liao
- Graduate institute of Natural Products, College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan, Republic of China.,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China. .,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
43
|
Sonego G, Le TTM, Crettaz D, Abonnenc M, Tissot JD, Prudent M. Sulfenylome analysis of pathogen-inactivated platelets reveals the presence of cysteine oxidation in integrin signaling pathway and cytoskeleton regulation. J Thromb Haemost 2021; 19:233-247. [PMID: 33047470 DOI: 10.1111/jth.15121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Essentials Cysteine oxidation to sulfenic acid plays a key role in redox regulation and signal transduction. Platelet sulfenylome was studied by quantitative proteomics in pathogen inactivated platelets. One hundred and seventy-four sulfenylated proteins were identified in resting platelets. Pathogen inactivation oxidized integrin βIII, which could activate the mitogen-activated protein kinases pathway. ABSTRACT: Background Cysteine-containing protein modifications are involved in numerous biological processes such redox regulation or signal transduction. During the preparation and storage of platelet concentrates, cell functions and protein regulations are impacted. In spite of several proteomic investigations, the platelet sulfenylome, ie, the proteins containing cysteine residues (R-SH) oxidized to sulfenic acid (R-SOH), has not been characterized. Methods A dimedone-based sulfenic acid tagging and enrichment coupled to a mass spectrometry identification workflow was developed to identify and quantify the sulfenic acid-containing proteins in platelet concentrates treated or not with an amotosalen/ultraviolet A (UVA) pathogen inactivation technique. Results One hundred and seventy-four sulfenylated proteins were identified belonging mainly to the integrin signal pathway and cytoskeletal regulation by Rho GTPase. The impact on pathogen inactivated platelet concentrates was weak compared to untreated ones where three sulfenylated proteins (myosin heavy chain 9, integrin βIII, and transgelin 2) were significantly affected by amotosalen/UVA treatment. Of particular interest, the reported oxidation of cysteine residues in integrin βIII is known to activate the receptor αIIbβIII. Following the pathogen inactivation, it might trigger the phosphorylation of p38MAPK and explain the lesions reported in the literature. Moreover, procaspase activating compound-1 (PAC-1) binding assays on platelet activation showed an increased response to adenosine diphosphate exacerbated by the tagging of proteins with dimedone. This result corroborates the hypothesis of an oxidation-triggered activation of αIIbβIII by the pathogen inactivation treatment. Conclusions The present work completes missing information on the platelet proteome and provides new insights on the effect of pathogen inactivation linked to integrin signaling and cytoskeleton regulation.
Collapse
Affiliation(s)
- Giona Sonego
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Truong-Thien Melvin Le
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Mélanie Abonnenc
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Centre de Transfusion Sanguine, Faculté de Biologie et de Médecine, University of Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Centre de Transfusion Sanguine, Faculté de Biologie et de Médecine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Huang M, Deng M, Nie W, Zou D, Wu H, Xu D. Naringenin Inhibits Platelet Activation and Arterial Thrombosis Through Inhibition of Phosphoinositide 3-Kinase and Cyclic Nucleotide Signaling. Front Pharmacol 2021; 12:722257. [PMID: 34475824 PMCID: PMC8406801 DOI: 10.3389/fphar.2021.722257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Citrus flavanoids intake can reduce the risk of cardiovascular diseases. Naringenin, a natural predominant flavonoid abundant in citrus fruits, possesses protective effects against atherothrombotic diseases. As platelet activation plays central roles in atherothrombogenesis, we studied the effects of naringenin on platelet activation, signaling, thrombosis and hemostasis. Naringenin dose-dependently inhibited agonist-induced platelet aggregation in vitro, and exhibited more-potent efficacy on ADP-induced platelet aggregation. It also suppressed platelet aggregation stimulated by ADP ex vivo. Naringenin inhibited ADP-induced platelet α-granule secretion, fibrinogen binding, intracellular calcium mobilization and platelet adhesion on collagen-coated surface. Naringenin also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in integrin signaling. Mechanism studies indicated that naringenin suppressed PI3K-mediated signaling and phosphodiesterase activity in platelets, in addition to increasing cGMP levels and VASP phosphorylation at Ser239. Furthermore, naringenin-induced VASP phosphorylation and inhibition of platelet aggregation were reversed by a PKA inhibitor treatment. Interestingly, naringenin inhibited thrombus formation in the (FeCl3)-induced rat carotid arterial thrombus model, but not cause a prolonged bleeding time in mice. This study suggests that naringenin may represent a potential antiplatelet agent targeting PI3K and cyclic nucleotide signaling, with a low bleeding risk.
Collapse
Affiliation(s)
- Manting Huang
- Department of Vascular Intervention, Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minzhen Deng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqiang Nie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dezhi Zou
- Emergency Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanlin Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Huanlin Wu, ; Danping Xu,
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Huanlin Wu, ; Danping Xu,
| |
Collapse
|
45
|
Balkenhol J, Kaltdorf KV, Mammadova-Bach E, Braun A, Nieswandt B, Dittrich M, Dandekar T. Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics 2020; 21:897. [PMID: 33353544 PMCID: PMC7756956 DOI: 10.1186/s12864-020-07215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07215-4.
Collapse
Affiliation(s)
- Johannes Balkenhol
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Kristin V Kaltdorf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Elmina Mammadova-Bach
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany.,Present address: Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig, Maximilian University of Munich, D-80336, Munich, Germany
| | - Attila Braun
- Member of the German Center for Lung Research (DZL), Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.,Dept of Genetics, Biocenter, Am Hubland, University of Würzburg, Am Hubland, D 97074, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
46
|
Makhoul S, Kumm E, Zhang P, Walter U, Jurk K. The Serine/Threonine Protein Phosphatase 2A (PP2A) Regulates Syk Activity in Human Platelets. Int J Mol Sci 2020; 21:ijms21238939. [PMID: 33255747 PMCID: PMC7728356 DOI: 10.3390/ijms21238939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Distinct membrane receptors activate platelets by Src-family-kinase (SFK)-, immunoreceptor-tyrosine-based-activation-motif (ITAM)-dependent stimulation of spleen tyrosine kinase (Syk). Recently, we reported that platelet activation via glycoprotein (GP) VI or GPIbα stimulated the well-established Syk tyrosine (Y)-phosphorylation, but also stoichiometric, transient protein kinase C (PKC)-mediated Syk serine(S)297 phosphorylation in the regulatory interdomain-B, suggesting possible feedback inhibition. The transient nature of Syk S297 phosphorylation indicated the presence of an unknown Syk pS297 protein phosphatase. In this study, we hypothesize that the S-protein phosphatase 2A (PP2A) is responsible for Syk pS297 dephosphorylation, thereby affecting Syk Y-phosphorylation and activity in human washed platelets. Using immunoblotting, we show that specific inhibition of PP2A by okadaic acid (OA) alone leads to stoichiometric Syk S297 phosphorylation, as analyzed by Zn2+-Phos-tag gels, without affecting Syk Y-phosphorylation. Pharmacological inhibition of Syk by PRT060318 or PKC by GF109203X only minimally reduced OA-induced Syk S297 phosphorylation. PP2A inhibition by OA preceding GPVI-mediated platelet activation induced by convulxin extended Syk S297 phosphorylation but inhibited Syk Y-phosphorylation. Our data demonstrate a novel biochemical and functional link between the S-protein phosphatase PP2A and the Y-protein kinase Syk in human platelets, and suggest that PP2A represents a potential enhancer of GPVI-mediated Syk activity caused by Syk pS297 dephosphorylation.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, D-55131 Mainz, Germany; (S.M.); (E.K.); (P.Z.)
| | - Elena Kumm
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, D-55131 Mainz, Germany; (S.M.); (E.K.); (P.Z.)
| | - Pengyu Zhang
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, D-55131 Mainz, Germany; (S.M.); (E.K.); (P.Z.)
- Leibniz-Institut für Analytische Wissenschaften, D-44227 Dortmund, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, D-55131 Mainz, Germany; (S.M.); (E.K.); (P.Z.)
- Correspondence: (U.W.); (K.J.)
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, D-55131 Mainz, Germany; (S.M.); (E.K.); (P.Z.)
- Correspondence: (U.W.); (K.J.)
| |
Collapse
|
47
|
Babur Ö, Melrose AR, Cunliffe JM, Klimek J, Pang J, Sepp ALI, Zilberman-Rudenko J, Tassi Yunga S, Zheng T, Parra-Izquierdo I, Minnier J, McCarty OJT, Demir E, Reddy AP, Wilmarth PA, David LL, Aslan JE. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs. Blood 2020; 136:2346-2358. [PMID: 32640021 PMCID: PMC7702475 DOI: 10.1182/blood.2020005496] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.
Collapse
Affiliation(s)
- Özgün Babur
- Department of Molecular and Medical Genetics
- Computational Biology Program
| | | | | | | | | | | | | | | | | | | | | | | | - Emek Demir
- Department of Molecular and Medical Genetics
- Computational Biology Program
| | | | | | - Larry L David
- Proteomics Shared Resource
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Joseph E Aslan
- Knight Cardiovascular Institute
- Department of Biomedical Engineering
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| |
Collapse
|
48
|
Barrachina MN, Hermida-Nogueira L, Moran LA, Casas V, Hicks SM, Sueiro AM, Di Y, Andrews RK, Watson SP, Gardiner EE, Abian J, Carrascal M, Pardo M, García Á. Phosphoproteomic Analysis of Platelets in Severe Obesity Uncovers Platelet Reactivity and Signaling Pathways Alterations. Arterioscler Thromb Vasc Biol 2020; 41:478-490. [PMID: 33147989 DOI: 10.1161/atvbaha.120.314485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. Approach and Results: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- and gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulated.
Collapse
Affiliation(s)
- María N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Luis A Moran
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - Sarah M Hicks
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Aurelio M Sueiro
- Grupo de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Servicio de Endocrinología, Xerencia de Xestión Integrada de Santiago (XXS), Santiago de Compostela, Spain (A.M.S.)
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (Y.D., S.P.W.)
| | - Robert K Andrews
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (Y.D., S.P.W.)
| | - Elizabeth E Gardiner
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - María Pardo
- Grupo Obesidómica, CIBEROBN de Fisiopatología de Obesidad y Nutrición, and Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXS), Santiago de Compostela, Spain (M.P.)
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| |
Collapse
|
49
|
Comer S, Nagy Z, Bolado A, von Kriegsheim A, Gambaryan S, Walter U, Pagel O, Zahedi RP, Jurk K, Smolenski A. The RhoA regulators Myo9b and GEF-H1 are targets of cyclic nucleotide-dependent kinases in platelets. J Thromb Haemost 2020; 18:3002-3012. [PMID: 32692911 DOI: 10.1111/jth.15028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Circulating platelets are maintained in an inactive state by the endothelial lining of the vasculature. Endothelium-derived prostacyclin and nitric oxide stimulate cAMP- and cGMP-dependent kinases, PKA and PKG, to inhibit platelets. PKA and PKG effects include the inhibition of the GTPase RhoA, which has been suggested to involve the direct phosphorylation of RhoA on serine 188. OBJECTIVES We wanted to confirm RhoA S188 phosphorylation by cyclic nucleotide-dependent kinases and to identify possible alternative mechanisms of RhoA regulation in platelets. METHODS Phosphoproteomics data of human platelets were used to identify candidate PKA and PKG substrates. Phosphorylation of individual proteins was studied by Western blotting and Phos-tag gel electrophoresis in human platelets and transfected HEK293T cells. Pull-down assays were performed to analyze protein interaction and function. RESULTS Our data indicate that RhoA is not phosphorylated by PKA in platelets. Instead, we provide evidence that cyclic nucleotide effects are mediated through the phosphorylation of the RhoA-specific GTPase-activating protein Myo9b and the guanine nucleotide exchange factor GEF-H1. We identify Myo9b S1354 and guanine nucleotide exchange factor-H1 (GEF-H1) S886 as PKA and PKG phosphorylation sites. Myo9b S1354 phosphorylation enhances its GTPase activating protein function leading to reduced RhoA-GTP levels. GEF-H1 S886 phosphorylation stimulates binding of 14-3-3β and has been shown to inhibit GEF function by facilitating binding of GEF-H1 to microtubules. Microtubule disruption increases RhoA-GTP levels confirming the importance of GEF-H1 in platelets. CONCLUSION Phosphorylation of RhoA regulatory proteins Myo9b and GEF-H1, but not RhoA itself, is involved in cyclic nucleotide-mediated control of RhoA in human platelets.
Collapse
Affiliation(s)
- Shane Comer
- UCD School of Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Zoltan Nagy
- UCD School of Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Alfonso Bolado
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | | | - Stepan Gambaryan
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Albert Smolenski
- UCD School of Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
50
|
Abstract
AbstractThe characterization of platelet concentrates (PCs) in transfusion medicine has been performed with different analytical methods and platelet lesions (from biochemistry to cell biology) have been documented. In routine quality assessment and validation of manufacturing processes of PCs for transfusion purposes, only basic parameters are monitored and the platelet functions are not included. However, PCs undergo several manipulations during the processing and the basic parameters do not provide sensitive analyses to properly picture out the impact of the blood component preparation and storage on platelets. To improve the transfusion supply chain and the platelet functionalities, additional parameters should be used. The present short review will focus on the different techniques to monitor ex vivo platelet lesions from phenotype characterization to advanced omic analyses. Then, the opportunities to use these methods in quality control, process validation, development, and research will be discussed. Functional markers should be considered because they would be an advantage for the future developments in transfusion medicine.
Collapse
|