1
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Ramamoorthy S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Multi-omics Analysis of a Fecal Microbiota Transplantation Trial Identifies Novel Aspects of Acute GVHD Pathogenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1454-1466. [PMID: 38767452 PMCID: PMC11164016 DOI: 10.1158/2767-9764.crc-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acute GVHD (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (alloHCT) associated with gut microbiota disruptions. However, whether therapeutic microbiota modulation prevents aGVHD is unknown. We conducted a randomized, placebo-controlled trial of third-party fecal microbiota transplantation (FMT) administered at the peak of microbiota injury in 100 patients with acute myeloid leukemia receiving induction chemotherapy and alloHCT recipients. Despite improvements in microbiome diversity, expansion of commensals, and shrinkage of potential pathogens, aGVHD occurred more frequently after FMT than placebo. Although this unexpected finding could be explained by clinical differences between the two arms, we asked whether a microbiota explanation might be also present. To this end, we performed multi-omics analysis of preintervention and postintervention gut microbiome and serum metabolome. We found that postintervention expansion of Faecalibacterium, a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, predicted a higher risk for aGVHD. Faecalibacterium expansion occurred predominantly after FMT and was due to engraftment of unique donor taxa, suggesting that donor Faecalibacterium-derived antigens might have stimulated allogeneic immune cells. Faecalibacterium and ursodeoxycholic acid (an anti-inflammatory secondary bile acid) were negatively correlated, offering an alternative mechanistic explanation. In conclusion, we demonstrate context dependence of microbiota effects where a normally beneficial bacteria may become detrimental in disease. While FMT is a broad, community-level intervention, it may need precision engineering in ecologically complex settings where multiple perturbations (e.g., antibiotics, intestinal damage, alloimmunity) are concurrently in effect. SIGNIFICANCE Post-FMT expansion of Faecalibacterium, associated with donor microbiota engraftment, predicted a higher risk for aGVHD in alloHCT recipients. Although Faecalibacterium is a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, our findings suggest that it may become pathogenic in the setting of FMT after alloHCT. Our results support a future trial with precision engineering of the FMT product used as GVHD prophylaxis after alloHCT.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, Washington
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, Washington
| | - Tauseef U. Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | | | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
2
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
3
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
4
|
Kuba A, Raida L, Brychtova S, Flodr P, Mrazek F, Kriegova E, Faber E, Papajik T. Cellular senescence marker p16 INK4a and NFKB1 gene polymorphisms in lower gastro-intestinal acute graft versus host disease. Transpl Immunol 2023; 76:101768. [PMID: 36470572 DOI: 10.1016/j.trim.2022.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Lower gastrointestinal (GI) graft versus host disease (GVHD) represents a severe complication in allogeneic hematopoietic stem cell transplant (HSCT) recipients with high rates of transplant-related mortality. Deregulated innate immunity reactions are the features of its pathogenesis. Cellular senescence has been considered a program of the innate immunity. We focused on lower GI GVHD from the perspective of cellular senescence. OBJECTIVE We analyzed the impact of p16INK4a expression, a hallmark of cellular senescence, in intestinal biopsies of patients with lower GI GVHD symptoms and NFKB1 gene polymorphisms (rs3774937 C/T and rs3774959 A/G) on HSCT outcome. STUDY DESIGN Fifty-two single-center patients who presented with symptoms of lower GI GVHD were analyzed in a retrospective manner. Two SNPs located in the NFKB1 gene regions (rs3774937 C/T and rs3774959 A/G) were genotyped from the peripheral blood samples collected before the start of the conditioning. All patients underwent proctosigmoidoscopy with biopsy of the mucosa. The expression of p16INK4a was analyzed in normal intestinal crypts and stroma. RESULTS Fifty-two patients (50% male) received HSCT for hematological diseases (acute leukemias in 67%) and developed lower GI symptoms. Patients with p16INK4a expression in the intestinal stroma were in lower risk of developing histological grade 3-4 aGVHD (RR 0.18 [95% CI 0.05-0.65]; p = 0.009). The multivariate linear regression confirmed the independent effect of p16INK4a expression on time of the lower GI aGVHD symptoms onset (Coef. 38.9 [95% CI 12.7-65.1]; p = 0.005). The NFKB1 rs3774937 CC and TT/TC genotype were present in 40 and 80% of patients with p16INK4a expression, respectively (p = 0.04). The rs3774959 AA and GG/AG genotype were present among 43 and 82% of patients with p16INK4a expression, respectively (p = 0.02). Expression of p16INK4a was associated with no clinical variable but NFKB1 genotype. CONCLUSIONS Our results address possible new mechanisms that may lead to better understanding of HSCT-related immune complications. Cellular senescence may bring novel approaches in GVHD diagnostics and therapy.
Collapse
Affiliation(s)
- Adam Kuba
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Ludek Raida
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Svetlana Brychtova
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Frantisek Mrazek
- Department of Immunology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Edgar Faber
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022; 13:1061959. [PMID: 36569860 PMCID: PMC9780665 DOI: 10.3389/fimmu.2022.1061959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
6
|
Iovino L, Cooper K, deRoos P, Kinsella S, Evandy C, Ugrai T, Mazziotta F, Ensbey KS, Granadier D, Hopwo K, Smith C, Gagnon A, Galimberti S, Petrini M, Hill GR, Dudakov JA. Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice. Blood 2022; 139:3655-3666. [PMID: 35357432 PMCID: PMC9227099 DOI: 10.1182/blood.2021013950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Prolonged lymphopenia represents a major clinical problem after cytoreductive therapies such as chemotherapy and the conditioning required for hematopoietic stem cell transplant (HCT), contributing to the risk of infections and malignant relapse. Restoration of T-cell immunity depends on tissue regeneration in the thymus, the primary site of T-cell development, although the capacity of the thymus to repair itself diminishes over its lifespan. However, although boosting thymic function and T-cell reconstitution is of considerable clinical importance, there are currently no approved therapies for treating lymphopenia. Here we found that zinc (Zn) is critically important for both normal T-cell development and repair after acute damage. Accumulated Zn in thymocytes during development was released into the extracellular milieu after HCT conditioning, where it triggered regeneration by stimulating endothelial cell production of BMP4 via the cell surface receptor GPR39. Dietary supplementation of Zn was sufficient to promote thymic function in a mouse model of allogeneic HCT, including enhancing the number of recent thymic emigrants in circulation although direct targeting of GPR39 with a small molecule agonist enhanced thymic function without the need for prior Zn accumulation in thymocytes. Together, these findings not only define an important pathway underlying tissue regeneration but also offer an innovative preclinical approach to treat lymphopenia in HCT recipients.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul deRoos
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cindy Evandy
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tamas Ugrai
- School of Oceanography, University of Washington, Seattle, WA
| | - Francesco Mazziotta
- Department of Hematology, University of Pisa, Pisa, Italy
- School of Oceanography, University of Washington, Seattle, WA
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Kathleen S Ensbey
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David Granadier
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA; and
| | - Kayla Hopwo
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colton Smith
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alex Gagnon
- School of Oceanography, University of Washington, Seattle, WA
| | | | - Mario Petrini
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Geoffrey R Hill
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Wolf D, Barreras H, Copsel SN, Komanduri KV, Levy RB. Improved NK cell recovery following the use of PTCy or Treg expanded donors in experimental MHC-matched allogeneic BMT. Transplant Cell Ther 2022; 28:303.e1-303.e7. [DOI: 10.1016/j.jtct.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
8
|
Ishiyama K, Arakawa-Hoyt J, Aguilar OA, Damm I, Towfighi P, Sigdel T, Tamaki S, Babdor J, Spitzer MH, Reed EF, Sarwal MM, Lanier LL. Mass cytometry reveals single-cell kinetics of cytotoxic lymphocyte evolution in CMV-infected renal transplant patients. Proc Natl Acad Sci U S A 2022; 119:e2116588119. [PMID: 35181606 PMCID: PMC8872722 DOI: 10.1073/pnas.2116588119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.
Collapse
Affiliation(s)
- Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Izabella Damm
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Parhom Towfighi
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Tara Sigdel
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Stanley Tamaki
- Parnassus Flow Cytometry Core, University of California, San Francisco, CA 94143
| | - Joel Babdor
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Minnie M Sarwal
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| |
Collapse
|
9
|
Wang Y. Mesenchymal stem cells (MSC) delays the occurrence of graft-versus-host disease(GVHD) in the inhibition of hematopoietic stem cells in major histocompatibility complex semi-consistent mice by regulating the expression of IFN-γ/IL-6. Bioengineered 2021; 12:4500-4507. [PMID: 34308757 PMCID: PMC8806439 DOI: 10.1080/21655979.2021.1955549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, because of its low immunogenicity and immunosuppression, mesenchymal stem cells (MSCs) have become a potential cell therapy for Graft-versus-host disease (GVHD). However, many experiments now focus on the interference of MSCs on T-cell proliferation in vitro and the prevention of GVHD in vivo. However, whether MSCs can effectively treat GVHD, the timing and conditions of treatment are not systematically studied. In order to clarify the therapeutic effect of MSC on GVHD, In this paper, mice were selected to build a model for study, and group control method was used. Experimental research proved that four mice died after transplantation with allogeneic hematopoietic stem cells treated by IFN- γ, and their white blood cell number remained basically unchanged, and their weight changed slightly. In addition, three groups of mice after allogeneic hematopoietic stem cell transplantation were used the incidence of GVHD was X2 = 20.6, indicating that the incidence of GVHD was significantly reduced and the survival rate of mice was significantly increased.
Collapse
Affiliation(s)
- Ying Wang
- Department of Hematology, the Seventh Affiliated Hopital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Immune control of cytomegalovirus reactivation in stem cell transplantation. Blood 2021; 139:1277-1288. [PMID: 34166512 DOI: 10.1182/blood.2020010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The reactivation of viruses from latency after allogeneic stem cell transplantation (SCT) continues to represent a major clinical challenge requiring sophisticated monitoring strategies in the context of prophylactic and/or pre-emptive antiviral drugs that are associated with significant expense, toxicity, and rates of failure. Accumulating evidence has demonstrated the association of polyfunctional virus-specific T-cells with protection from viral reactivation, affirmed by the ability of adoptively transferred virus-specific T-cells to prevent and treat reactivation and disease. The roles of innate cells (NK cells) in early viral surveillance, and dendritic cells in priming of T-cells have also been delineated. Most recently, a role for strain-specific humoral responses in preventing early cytomegalovirus (CMV) reactivation has been demonstrated in preclinical models. Despite these advances, many unknowns remain: what are the critical innate and adaptive responses over time, is the origin (e.g. recipient versus donor) and localization (e.g. in parenchymal tissue versus lymphoid organs) of these responses important, how does GVHD and the prevention/treatment thereof (e.g. high dose steroids) impact the functionality and relevance of a particular immune axis, do the immune parameters that control latency, reactivation and dissemination differ, and what is the impact of new antiviral drugs on the development of enduring antiviral immunity. Thus, whilst antiviral drugs have provided major improvements over the last two decades, understanding the immunological paradigms underpinning protective antiviral immunity after SCT offers the potential to generate non-toxic immune-based therapeutic approaches for lasting protection from viral reactivation.
Collapse
|
11
|
Robust CD4+ T-cell recovery in adults transplanted with cord blood and no antithymocyte globulin. Blood Adv 2021; 4:191-202. [PMID: 31935291 DOI: 10.1182/bloodadvances.2019000836] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/18/2019] [Indexed: 11/20/2022] Open
Abstract
Quality of immune reconstitution after cord blood transplantation (CBT) without antithymocyte globulin (ATG) in adults is not established. We analyzed immune recovery in 106 engrafted adult CBT recipients (median age 50 years [range 22-70]) transplanted for hematologic malignancies with cyclosporine/mycophenolate mofetil immunoprophylaxis and no ATG. Patients were treated predominantly for acute leukemia (66%), and almost all (96%) underwent myeloablation. Recovery of CD4+ T cells was faster than CD8+ T cells with median CD4+ T-cell counts exceeding 200/mm3 at 4 months. Early post-CBT, effector memory (EM), and central memory cells were the most common CD4+ subsets, whereas effector and EM were the most common CD8+ T-cell subsets. Naive T-cell subsets increased gradually after 6 to 9 months post-CBT. A higher engrafting CB unit infused viable CD3+ cell dose was associated with improved CD4+ and CD4+CD45RA+ T-cell recovery. Cytomegalovirus reactivation by day 60 was associated with an expansion of total, EM, and effector CD8+ T cells, but lower CD4+ T-cell counts. Acute graft-versus-host disease (aGVHD) did not significantly compromise T-cell reconstitution. In serial landmark analyses, higher CD4+ T-cell counts and phytohemagglutinin responses were associated with reduced overall mortality. In contrast, CD8+ T-cell counts were not significant. Recovery of natural killer and B cells was prompt, reaching medians of 252/mm3 and 150/mm3 by 4 months, respectively, although B-cell recovery was delayed by aGVHD. Neither subset was significantly associated with mortality. ATG-free adult CBT is associated with robust thymus-independent CD4+ T-cell recovery, and CD4+ recovery reduced mortality risk.
Collapse
|
12
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
13
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
14
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
15
|
Zhang P, Hill GR. Interleukin-10 mediated immune regulation after stem cell transplantation: Mechanisms and implications for therapeutic intervention. Semin Immunol 2019; 44:101322. [PMID: 31640914 DOI: 10.1016/j.smim.2019.101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is a multi-faceted anti-inflammatory cytokine which plays an essential role in immune tolerance. Indeed, deficiency of IL-10 or its receptor results in aberrant immune responses that lead to immunopathology. Graft-versus-host disease (GVHD) is the limiting complication of allogeneic stem cell transplantation (SCT) and results from an imbalance in pathological versus regulatory immune networks. A number of immune cells exert their immunomodulatory role through secretion of IL-10 or induction of IL-10-secreting cells after SCT. Type-1 regulatory T cells (Tr1 cells) and FoxP3+ regulatory T cells (Tregs) are predominant sources of IL-10 after SCT and the critical role of this cytokine in preventing GVHD is now established. Recently, intriguing interactions among IL-10, immune cells, commensal microbes and host tissues in the gastrointestinal (GI) tract and other barrier surfaces have been uncovered. We now understand that IL-10 secretion is dynamically modulated by the availability of antigen, co-stimulatory signals, cytokines, commensal microbes and their metabolites in the microenvironment. In this review, we provide an overview of the control of IL-10 secretion and signaling after SCT and the therapeutic interventions, with a focus on Tr1 cells.
Collapse
Affiliation(s)
- Ping Zhang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
16
|
Martins JP, Andoniou CE, Fleming P, Kuns RD, Schuster IS, Voigt V, Daly S, Varelias A, Tey SK, Degli-Esposti MA, Hill GR. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 2019; 363:288-293. [PMID: 30655443 DOI: 10.1126/science.aat0066] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/19/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Cytomegalovirus infection is a frequent and life-threatening complication that significantly limits positive transplantation outcomes. We developed preclinical mouse models of cytomegalovirus reactivation after transplantation and found that humoral immunity is essential for preventing viral recrudescence. Preexisting antiviral antibodies decreased after transplant in the presence of graft-versus-host disease and were not replaced, owing to poor reconstitution of donor B cells and elimination of recipient plasma cells. Viral reactivation was prevented by the transfer of immune serum, without a need to identify and target specific antigenic determinants. Notably, serotherapy afforded complete protection, provided that the serum was matched to the infecting viral strain. Thus, we define the mechanisms for cytomegalovirus reactivation after transplantation and identify a readily translatable strategy of exceptional potency, which avoids the constraints of cellular therapies.
Collapse
Affiliation(s)
- Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter Fleming
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Valentina Voigt
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Sheridan Daly
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Ileostomy for steroid-resistant acute graft-versus-host disease of the gastrointestinal tract. Ann Hematol 2019; 98:2407-2419. [PMID: 31338570 PMCID: PMC7101733 DOI: 10.1007/s00277-019-03754-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Steroid-resistant acute graft-versus-host disease (GVHD) of the gastrointestinal tract associates with important morbidity and mortality. While high-dose steroids are the established first-line therapy in GVHD, no second-line therapy is generally accepted. In this analysis of 65 consecutive patients with severe, steroid-resistant, intestinal GVHD (92% stage 4), additional ileostomy surgery significantly reduced overall mortality (hazard ratio 0.54; 95% confidence interval, 0.36-0.81; p = 0.003) compared to conventional GVHD therapy. Median overall survival was 16 months in the ileostomy cohort compared to 4 months in the conventional therapy cohort. In the ileostomy cohort, both infectious- and GVHD-associated mortality were reduced (40% versus 77%). Significantly declined fecal volumes (p = 0.001) after surgery provide evidence of intestinal adaptation following ileostomy. Correlative studies indicated ileostomy-induced immune-modulation with a > 50% decrease of activated T cells (p = 0.04) and an increase in regulatory T cells. The observed alterations of the patients' gut microbiota may also contribute to ileostomy's therapeutic effect. These data show that ileostomy induced significant clinical responses in patients with steroid-resistant GVHD along with a reduction of pro-inflammatory immune cells and changes of the intestinal microbiota. Ileostomy is a treatment option for steroid-resistant acute GVHD of the gastrointestinal tract that needs further validation in a prospective clinical trial.
Collapse
|
18
|
Ni M, Wang L, Yang M, Neuber B, Sellner L, Hückelhoven-Krauss A, Schubert ML, Luft T, Hegenbart U, Schönland S, Wuchter P, Chen BA, Eckstein V, Krüger W, Yerushalmi R, Beider K, Nagler A, Müller-Tidow C, Dreger P, Schmitt M, Schmitt A. Shaping of CD56 bri Natural Killer Cells in Patients With Steroid-Refractory/Resistant Acute Graft-vs.-Host Disease via Extracorporeal Photopheresis. Front Immunol 2019; 10:547. [PMID: 30949182 PMCID: PMC6436423 DOI: 10.3389/fimmu.2019.00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
CD56bri natural killer (NK) cells play an important role in the pathogenesis of graft-vs. -host disease (GVHD) and immune defense in the early period after allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP) as an immunomodulating therapy has been widely used for GVHD treatment. However, the mechanism of action of ECP still remains to be elucidated, particularly the influence of ECP on NK cells. Thirty-four patients with steroid-refractory/resistant acute GVHD (aGVHD) ≥ °II and moderate to severe chronic GVHD (cGVHD) received ECP therapy. Patient samples obtained during intensive and long-term treatment were analyzed. Immunomonitoring with respect to cell phenotype and function was performed on rested peripheral blood mononuclear cells (PBMCs) using multiparametric flow cytometry. NK activity in terms of cytokine release was analyzed by intracellular cytokine staining after co-culture with K562 cells. Moreover, the proliferative capacity of NK cells, CD4+, and CD8+ T cells was determined by carboxyfluorescein succinimidyl ester (CFSE) staining. Clinically, 75% of aGVHD and 78% of cGVHD patients responded to ECP therapy. Moreover, our data show that aGVHD, cGVHD patients and healthy donors (HDs) present distinct NK patterns: aGVHD patients have a higher frequency of CD56bri NK subsets with stronger NKG2D and CD62L expression, while CD56−CD16+ NK cells with higher expression of CD57 and CD11b stand out as a signature population for cGVHD. ECP therapy could significantly decrease CD56briCD16− NK cells with shifting the quality from a cytotoxic to a regulatory pattern and additionally mature CD56dim NK cells via upregulation of CD57 in complete responding aGVHD patients. Moreover, ECP could keep the anti-viral and anti-leukemic effects intact via maintaining specialized anti-viral/leukemic CD57+NKG2C+CD56dim NK cells as well as remaining the quality and quantity of cytokine release by NK cells. The proliferative capacity of effector cells remained constant over ECP therapy. In conclusion, ECP represents an attractive option to treat GVHD without compromising anti-viral/leukemic effects. Shaping of CD56bri NK cell compartment by downregulating the cytotoxic subset while upregulating the regulatory subset contributes to the mechanisms of ECP therapy in aGVHD.
Collapse
Affiliation(s)
- Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Mingya Yang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | | | - Maria-Luisa Schubert
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bao-An Chen
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - William Krüger
- Department of Internal Medicine C, Hematology, Oncology, Stem Cell Transplantation, Palliative Care, University Clinic Greifswald, Greifswald, Germany
| | - Ronit Yerushalmi
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Nguyen H, Kuril S, Bastian D, Kim J, Zhang M, Vaena SG, Dany M, Dai M, Heinrichs JL, Daenthanasanmak A, Iamsawat S, Schutt S, Fu J, Wu Y, Fairlie DP, Atkinson C, Ogretmen B, Tomlinson S, Yu XZ. Complement C3a and C5a receptors promote GVHD by suppressing mitophagy in recipient dendritic cells. JCI Insight 2018; 3:121697. [PMID: 30568037 DOI: 10.1172/jci.insight.121697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT). DCs play critical roles in GVHD induction. Modulating autophagy represents a promising therapeutic strategy for the treatment of immunological diseases. Complement receptors C3aR/C5aR expressed on DCs regulate immune responses by translating extracellular signals into intracellular activity. In the current study, we found that C3aR/C5aR deficiency enhanced ceramide-dependent lethal mitophagy (CDLM) in DCs. Cotransfer of host-type C3aR-/-/C5aR-/- DCs in the recipients significantly improved GVHD outcome after allogeneic HCT, primarily through enhancing CDLM in DCs. C3aR/C5aR deficiency in the host hematopoietic compartment significantly reduced GVHD severity via impairing Th1 differentiation and donor T cell glycolytic activity while enhancing Treg generation. Prophylactic treatment with C3aR/C5aR antagonists effectively alleviated GVHD while maintaining the graft-versus-leukemia (GVL) effect. Altogether, we demonstrate that inhibiting C3aR/C5aR induces lethal mitophagy in DCs, which represents a potential therapeutic approach to control GVHD while preserving the GVL effect.
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Microbiology and Immunology and
| | - Sandeepkumar Kuril
- Division of Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jisun Kim
- Department of Biochemistry and Molecular Biology and
| | | | | | - Mohammed Dany
- Department of Biochemistry and Molecular Biology and
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jessica Lauren Heinrichs
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | - Jianing Fu
- Columbia Center for Translational Immunology, Columbia University, New York City, New York, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology and
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Carl Atkinson
- Department of Microbiology and Immunology and.,Department of Surgery, Transplant Immunobiology Laboratory
| | | | - Stephen Tomlinson
- Department of Microbiology and Immunology and.,Research Service, Ralph H. Johnson Veterans Affairs Medical Center, and
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology and.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Recipient BCL2 inhibition and NK cell ablation form part of a reduced intensity conditioning regime that improves allo-bone marrow transplantation outcomes. Cell Death Differ 2018; 26:1516-1530. [PMID: 30420758 DOI: 10.1038/s41418-018-0228-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is used to treat over 15,000 patients with acute myeloid leukemia (AML) per year. Donor graft-versus-leukemia (GVL) effect can prevent AML relapse; however, alloSCT is limited by significant toxicity related to conditioning intensity, immunosuppression, opportunistic infections, and graft-versus-host disease (GVHD). Reducing the intensity of conditioning regimens prior to alloSCT has improved their tolerability, but does not alter the pattern of GVHD and has been associated with increased rates of graft rejection and relapse. Here, using a murine pre-clinical model, we describe a novel recipient conditioning approach combining reduced intensity conditioning with either genetic or pharmacological inhibition of NK cell numbers that permits efficient donor engraftment and promotes GVL without inducing GVHD. We show that NK cell-specific deletion of Bcl2 or Mcl1 in mice, or pharmacological inhibition of BCL2 impairs radio-resistant NK cell-mediated rejection of allogeneic engraftment and allows reduction of conditioning intensity below that associated with GVHD priming. The combination of reduced intensity conditioning and NK cell targeting in mice allowed successful donor T cell engraftment and protective immunity against AML while avoiding GVHD. These findings suggest that reduced conditioning in combination with targeted therapies against recipient NK cells may allow the delivery of effective alloSCT against AML while reducing the toxicities associated with more intensive conditioning including GVHD.
Collapse
|
21
|
Hu LJ, Zhao XY, Yu XX, Lv M, Han TT, Han W, Huang XJ. Quantity and Quality Reconstitution of NKG2A + Natural Killer Cells Are Associated with Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018; 25:1-11. [PMID: 30142416 DOI: 10.1016/j.bbmt.2018.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
Abstract
The immune mechanism underlying graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (HSCT) remains unclear. Natural killer (NK) cells play a crucial role in mediating pathogen-specific immunity and are the first donor-derived lymphocytes reconstituted post-HSCT. However, NK cells vary at different stages after HSCT. Here, we found that the absolute NKG2A+ subset cell counts and the percentages of NKG2A+ among NK cells were significantly reduced in GVHD patients after HSCT compared with those from non-GVHD patients. Moreover, the reduction in NKG2A+ NK cells in post-HSCT GVHD patients was ascribed to increased apoptosis and a decreased proliferation capacity while retaining a strong graft-versus-leukemia effect. In vitro assays showed that co-culture of T cells with NKG2A+ NK cells significantly reduced IFN-γ secretion by T cells and increased IL-4 secretion. Moreover, the CD25 expression level was decreased, whereas the number of cells with the CD4+CD25+FOXP3+ phenotype was increased. In addition, the NKG2A+ NK cells induced T cell apoptosis and decreased T cell proliferation during the co-culture process. Importantly, NKG2A+ NK cells mainly regulated activated but not resting T cells. In vivo assays showed that the serologic IL-10 level was evidently lower in GVHD than in non-GVHD patients, whereas the IL-1β, IFN-γ, and tumor necrosis factor-α levels were higher in GVHD patients. Furthermore, the NKG2A+ NK cell ratio from GVHD patients was markedly increased by the presence of exogenous IL-10 but not by other cytokines. In contrast, the NKG2A+ cell ratio from non-GVHD patients was not increased by IL-10. Therefore, post-HSCT GVHD may be ascribed to the reduced induction of NKG2A+ NK cells by IL-10, which further overactivates T cells.
Collapse
Affiliation(s)
- Li-Juan Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China
| | - Xing-Xing Yu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Meng Lv
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China
| | - Ting-Ting Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
22
|
Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 2018; 131:2651-2660. [PMID: 29728401 DOI: 10.1182/blood-2017-11-785865] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current approaches to prevent and treat graft-versus-host disease (GVHD) after stem cell transplantation rely principally on pharmacological immune suppression. Such approaches are limited by drug toxicity, nonspecific immune suppression, and a requirement for long-term therapy. Our increased understanding of the regulatory cells and molecular pathways involved in limiting pathogenic immune responses opens the opportunity for the use of these cell subsets to prevent and/or GVHD. The theoretical advantages of this approach is permanency of effect, potential for facilitating tissue repair, and induction of tolerance that obviates a need for ongoing drug therapy. To date, a number of potential cell subsets have been identified, including FoxP3+ regulatory T (Treg) and FoxP3negIL-10+ (FoxP3-negative) regulatory T (Tr1), natural killer (NK) and natural killer T (NKT) cells, innate lymphoid cells, and various myeloid suppressor populations of hematopoietic (eg, myeloid derived suppressor cells) and stromal origin (eg, mesenchymal stem cells). Despite initial technical challenges relating to large-scale selection and expansion, these regulatory lineages are now undergoing early phase clinical testing. To date, Treg therapies have shown promising results in preventing clinical GVHD when infused early after transplant. Results from ongoing studies over the next 5 years will delineate the most appropriate cell lineage, source (donor, host, third party), timing, and potential exogenous cytokine support needed to achieve the goal of clinical transplant tolerance.
Collapse
|
23
|
Yu X, Xu L, Chang Y, Huang X, Zhao X. Rapid reconstitution of NK1 cells after allogeneic transplantation is associated with a reduced incidence of graft-versus-host disease. SCIENCE CHINA-LIFE SCIENCES 2018. [PMID: 29541991 DOI: 10.1007/s11427-017-9160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The balance between immunostimulation and immunoregulation in T cell immunity is achieved by maintaining specific ratios of Th1, Th2, Th3 and Tr1 cells. Here, we investigate levels of type 1 (IFN-gamma; NK1), type 2 (IL-13; NK2), type 3 (TGF-beta; NK3) and regulatory (IL-10; NKr) cytokines in peripheral blood to assess the cytokine profiles of natural killer (NK) cells following human allogeneic hematopoietic stem cell transplantation (allo-HSCT). NK2 and NK3 cell expansion was observed after allo-HSCT; levels of NKr cells reached donor levels at day 15, though levels of NK1 cells were consistently lower than donor levels until day 60 after allo-HSCT. Multivariate analysis showed that a higher level of NK1 cells by day 15 was associated with a lower overall risk of acute graft-versus-host disease (GVHD) (HR 0.157, P=0.010) as well as II-IV acute GVHD (HR 0.260, P=0.059). Furthermore, higher levels of NK1 cells by day 15 were correlated with lower rates of cytomegalovirus (CMV) reactivation (HR 0.040, 0.005-0.348, P=0.003). These results indicate that rapid reconstitution of NK cells, especially NK1 cells, can help prevent the development of GVHD as well as CMV reactivation after allogeneic transplantation.
Collapse
Affiliation(s)
- Xingxing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Lingling Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Yantai YuHuangDing Hospital, Yantai, 264000, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
| |
Collapse
|
24
|
Mohammadpour H, O'Neil R, Qiu J, McCarthy PL, Repasky EA, Cao X. Blockade of Host β2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Modulating APCs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2479-2488. [PMID: 29445008 DOI: 10.4049/jimmunol.1701752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation is a potential curative therapy for hematologic malignancies. Host APCs are pivotal to the desired graft-versus-tumor (GVT) effect. Recent studies have shown that β2-adrenergic receptor (β2AR) signaling can have an important impact on immune cell function, including dendritic cells (DCs). In this article, we demonstrate that pretreatment of host mice with a β2AR blocker significantly increases the GVT effect of donor CD8+ T cells by decreasing tumor burden without increasing graft-versus-host disease. β2AR-deficient host mice have significantly increased effector memory and central memory CD8+ T cells and improved reconstitution of T cells, including CD4+Foxp3+ regulatory T cells. Notably, β2AR deficiency induces increased CD11c+ DC development. Also, β2AR-deficient bone marrow-derived DCs induce higher CD8+ T cell proliferation and improved tumor killing in vitro. Metabolic profiling shows that β2AR deficiency renders DCs more immunogenic through upregulation of mTOR activity and reduction of STAT3 phosphorylation. Altogether, these findings demonstrate an important role for host β2AR signaling in suppressing T cell reconstitution and GVT activity.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Rachel O'Neil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; .,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
25
|
Zhou WJ, Chang KK, Wu K, Yang HL, Mei J, Xie F, Li DJ, Li MQ. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27-Stimulated Cytotoxicity of NK Cells. Neoplasia 2017; 20:69-79. [PMID: 29195127 PMCID: PMC5724748 DOI: 10.1016/j.neo.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC) in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC) are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC) lines (Ishikawa, RL95-2 and KLE) led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130) on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Kai-Kai Chang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Ke Wu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Medical Center of Diagnosis and Treatment for Cervical Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
26
|
The importance of natural killer cell killer immunoglobulin-like receptor-mismatch in transplant outcomes. Curr Opin Hematol 2017; 24:489-495. [DOI: 10.1097/moh.0000000000000384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
The enteric virome in hematopoietic stem cell transplantation: ready for its close-up. Nat Med 2017; 23:1012-1013. [PMID: 28886006 DOI: 10.1038/nm.4403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Simonetta F, Alvarez M, Negrin RS. Natural Killer Cells in Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2017; 8:465. [PMID: 28487696 PMCID: PMC5403889 DOI: 10.3389/fimmu.2017.00465] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a well-established therapeutic modality effective for a variety of hematological malignancies but, unfortunately, is associated with significant morbidity and mortality related to cancer relapse as well as to transplant-related complications including graft-versus-host-disease (GvHD). Natural killer (NK) cells are the first donor-derived lymphocyte subset to recover after HCT, and their crucial role in protection against cancer relapse and infections is well established. Conversely, the role played by NK cells in GvHD is still controversial. Early studies suggested a participation of NK cells in GvHD induction or exacerbation. Subsequently, experimental evidence obtained in mice as well observational studies performed in humans led to a model in which NK cells play a regulatory role in GvHD by repressing alloreactive T cell responses. This widely accepted model has been recently challenged by clinical evidence indicating that NK cells can in some cases promote GvHD. In this review, we summarize available knowledge about the role of NK cells in GVHD pathogenesis. We review studies uncovering cellular mechanisms through which NK cells interact with other immune cell subsets during GvHD leading to a model in which NK cells naturally suppress GvHD through their cytotoxic ability to inhibit T cell activation unless exogenous hyperactivation lead them to produce proinflammatory cytokines that can conversely sustain T cell-mediated GvHD induction.
Collapse
Affiliation(s)
- Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Hematology, Department of Oncology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|