1
|
Georgakopoulou A, Li C, Kiem HP, Lieber A. In vitro and in vivo expansion of CD33/HBG promoter-edited HSPCs with Mylotarg. Mol Ther Methods Clin Dev 2024; 32:101343. [PMID: 39429723 PMCID: PMC11490927 DOI: 10.1016/j.omtm.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
We developed an in vivo HSC gene therapy approach that consists of HSC mobilization and intravenous injection of HSC-tropic HDAd vectors. To achieve therapeutically relevant numbers of corrected cells, we incorporated in vivo expansion of transduced cells. We used an HDAd vector for a multiplex adenine base editing approach to (1) remove the region within CD33 that is recognized by gemtuzumab ozogamicin (GO) (Mylotarg), and (2) create therapeutic edits within the HBG1/2 promoters to reactivate γ-globin/HbF. In vitro studies with HDAd-transduced human CD34+ cells showed editing of both targeted sites and a 2- to 3-fold GO-mediated expansion of edited erythroid/myeloid progenitors. After erythroid in vitro differentiation, up to 40% of erythrocytes were HbF positive. For in vivo studies, mice were transplanted with human CD34+ cells. After engraftment, HSCs were mobilized with G-CSF/AMD3100 followed by an intravenous HDAd injection and GO-mediated in vivo selection. Two months later, editing in human cells within the bone marrow was significantly higher in GO-treated mice. The percentage of HbF+ human erythroid cells was 2.5-fold greater compared with untreated mice. These data indicate that in vivo GO selection can increase edited erythroid cells.
Collapse
Affiliation(s)
- Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Chang Li
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Goldenberg M, Lanzkron S, Pecker LH. Late effects of hemopoietic stem cell transplant for sickle cell disease: monitoring and management. Expert Rev Hematol 2024:1-15. [PMID: 39499235 DOI: 10.1080/17474086.2024.2423368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Allogeneic hemopoietic stem cell transplantation (HSCT) is a curative therapy for sickle cell disease (SCD). Exposure to both SCD and HSCT conditioning regimens is associated with late health effects. AREAS COVERED This review addresses post-HSCT outcomes and late health effects among individuals with SCD exposed to allogeneic HSCT regimens, summarizes recommendations for long-term care, and identifies future survivorship research needs. EXPERT OPINION Individuals with SCD exposed to HSCT and gene therapy require multidisciplinary care to monitor late health effects. To optimize care, multi-disciplinary clinics that include experts in late effects of HSCT exposure, SCD, complex chronic pain, mental health, and social work are needed. Research defining the late effects of exposure is needed to inform patient management and build clinical care infrastructure.
Collapse
Affiliation(s)
- Marti Goldenberg
- Pediatric Hematology Program, Division of Pediatric Hematology, Bloomberg Children's Center at John's Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Lanzkron
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lydia H Pecker
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Shaikh A, Gangaplara A, Kone A, Almengo K, Kabore MD, Ali MA, Xu X, Saxena A, Lopez-Ocasio M, McCoy JP, Fitzhugh CD. Galectin-1 is associated with hematopoietic cell engraftment in murine MHC-mismatched allotransplantation. Front Immunol 2024; 15:1411392. [PMID: 39351218 PMCID: PMC11439684 DOI: 10.3389/fimmu.2024.1411392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Haploidentical hematopoietic cell transplantation (haplo-HCT) is associated with an increased risk of allograft rejection. Here, we employed a major histocompatibility complex (MHC)-mismatched allogeneic HCT (allo-HCT) murine model to better understand the role of Gal-1 in immune tolerance. Transplanted mice were classified into either rejected or engrafted based on donor chimerism levels. We noted significantly higher frequencies of CD4+ T cells, CD8+ T cells, natural killer cells, IFN-γ and TNF-α producing CD4+ T cells, and IFN-γ producing dendritic cells and macrophages in rejected mice. Conversely, we found significantly increased frequencies of regulatory T cells (Tregs), predominantly Helios+, IL-10-producing CD4+ T cells, type 1 regulatory (Tr1) cells, and the proportion of Tr1+Gal-1+ cells in engrafted mice. Further, Gal-1 specific blockade in Tregs reduced suppression of effector T cells in engrafted mice. Lastly, effector T cells from engrafted mice were more prone to undergo apoptosis. Collectively, we have shown that Gal-1 may favor HSC engraftment in an MHC-mismatched murine model. Our results demonstrate that Gal-1-expressing Tregs, especially at earlier time points post-transplant, are associated with inducing immune tolerance and stable mixed chimerism after HCT.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Biology, The Catholic University of America, Washington, DC, United States
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Miltenyi Biotec, Research and Development, Gaithersburg, MD, United States
| | - Abdoul Kone
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine Almengo
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mariama D. Kabore
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mohamed A.E. Ali
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xin Xu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - J. Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Courtney D. Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Wang H, Georgakopoulou A, Nizamis E, Mok KW, Eluère R, Policastro RA, Valdmanis PN, Lieber A. Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2. Mol Ther Methods Clin Dev 2024; 32:101319. [PMID: 39282078 PMCID: PMC11399618 DOI: 10.1016/j.omtm.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3' UTR truncated HMGA2 gene and a GFP reporter gene. A SB100x transposase vector mediated random integration of the tHMGA2/GFP transgene cassette. HSCs in mice were mobilized by subcutaneous injections of G-CSF and AMD3100/Plerixafor and intravenously injected with the integrating tHMGA2/GFP vector. This resulted in a slow but progressive, competitive expansion of GFP+ PBMCs, reaching about 50% by week 44 with further expansion in secondary recipients. Expansion occurred at the level of HSCs as well as at the levels of myeloid, lymphoid, and erythroid progenitors within the bone marrow and spleen. Importantly, based on genome-wide integration site analyses, expansion was polyclonal, without any signs of clonal dominance. Whole-exome sequencing did not show significant differences in the genomic instability indices between tHGMGA2/GFP mice and untreated control mice. Auto-expansion by tHMGA2 was validated in humanized mice. This is the first demonstration that simple injections of mobilization drugs and HDAd vectors can trigger auto-expansion of in vivo transduced HSCs resulting in transgene-marking rates that, theoretically, are curative for hemoglobinopathies.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | | | | | - Paul N Valdmanis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Riley JS, Berkowitz CL, Luks VL, Dave A, Cyril-Olutayo MC, Pogoriler J, Flake AW, Abdulmalik O, Peranteau WH. Immune modulation permits tolerance and engraftment in a murine model of late-gestation transplantation. Blood Adv 2024; 8:4523-4538. [PMID: 38941538 PMCID: PMC11395771 DOI: 10.1182/bloodadvances.2023012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In utero hematopoietic cell transplantation is an experimental nonmyeloablative therapy with potential applications in hematologic disorders, including sickle cell disease (SCD). Its clinical utility has been limited due to the early acquisition of T-cell immunity beginning at ∼14 weeks gestation, posing significant technical challenges and excluding treatment fetuses evaluated after the first trimester. Using murine neonatal transplantation at 20 days postcoitum (DPC) as a model for late-gestation transplantation (LGT) in humans, we investigated whether immune modulation with anti-CD3 monoclonal antibody (mAb) could achieve donor-specific tolerance and sustained allogeneic engraftment comparable with that of the early-gestation fetal recipient at 14 DPC. In allogeneic wild-type strain combinations, administration of anti-CD3 mAb with transplantation resulted in transient T-cell depletion followed by central tolerance induction confirmed by donor-specific clonal deletion and skin graft tolerance. Normal immune responses to third-party major histocompatibility complex and viral pathogens were preserved, and graft-versus-host disease did not occur. We further demonstrated the successful application of this approach in the Townes mouse model of SCD. These findings confirm the developing fetal T-cell response as a barrier to LGT and support transient T-cell depletion as a safe and effective immunomodulatory strategy to overcome it.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie L. Luks
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mojisola C. Cyril-Olutayo
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alan W. Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
6
|
Oved JH, Russell A, DeZern A, Prockop SE, Bonfim C, Sharma A, Purtill D, Lakkaraja M, Bidgoli A, Bhoopalan SV, Soni S, Boelens JJ, Abraham A. The role of the conditioning regimen for autologous and ex vivo genetically modified hematopoietic stem cell-based therapies: recommendations from the ISCT stem cell engineering committee. Cytotherapy 2024:S1465-3249(24)00838-7. [PMID: 39320295 DOI: 10.1016/j.jcyt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The advent of autologous gene modified cell therapies to treat monogenic disorders has been a major step forward for the field of hematopoietic stem cell transplantation (HCT) and cellular therapies. The need for disease-specific conditioning to enable these products to provide a potential cure has required extrapolation from experience in myeloablative and non-myeloablative HCT for these disorders. METHODS In this manuscript, we review the current datasets and clinical experience using different conditioning regimens for autologous gene therapies in hemoglobinopathies, metabolic and lysosomal disorders, inborn errors of immunity (IEI) and bone marrow failure (BMF) syndromes. RESULTS The disease specific and unique conditioning requirements of each disorder are considered in order to achieve maximal benefit while minimizing associated toxicities. CONCLUSIONS Standardized recommendations based on these data are made for each set of disorders to harmonize treatment. Future directions and the possibility of non-genotoxic conditioning regimens for autologous gene therapies are also discussed. Ethical Statement: The authors followed all relevant ethical considerations in writing this manuscript.
Collapse
Affiliation(s)
- Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA.
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Susan E Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital and PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Madhavi Lakkaraja
- Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandeep Soni
- Pediatrics, University of California, San Francisco, California, USA; Crispr Therapeutics AG, Boston, Massachusetts, USA; ISCT Immune-Gene Therapy Committee, ISCT, Vancouver, California, USA
| | - Jaap Jan Boelens
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Youssry I, Ayad N. Sickle cell disease: combination new therapies vs. CRISPR-Cas9 potential and challenges - review article. Ann Hematol 2024; 103:2613-2619. [PMID: 37867187 DOI: 10.1007/s00277-023-05510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
In 2022, sickle cell disease (SCD) continues to affect the lives of millions of people, being one of the most frequently inherited blood disorders worldwide. Recently, several new therapies have been FDA approved for the treatment of SCD. The complexity of the pathophysiology of sickling has given opportunity to the evolution of several modalities of therapies. Nonetheless, the potential for complementary targeting of HbS polymerization, vasocclusion, and other inflammatory pathways remains controversial. None of these drugs can be considered a single curative line of treatment. With the advancement of CRISPR/Cas9 technology, autologous transplant of gene-edited hematopoietic stem cells could possibly provide a cure for most patients with SCD. The advantage of this approach over the conventional stem cell transplantation is that it decreases the need for immuno-suppressive drugs and the risk of graft-versus-host disease. In addition, recent technological advances can reduce the off-target effects, but long-term monitoring is needed to ensure the reliability of these methods in the clinical setting. This review explores the efficacy and safety of combination therapies and contrasting this alternative with the challenges that exist with sickle cell gene therapy using CRISPR.
Collapse
Affiliation(s)
- Ilham Youssry
- Pediatric Hematology and BMT Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nardeen Ayad
- Pediatric Hematology and BMT Unit, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Moiani A, Letort G, Lizot S, Chalumeau A, Foray C, Felix T, Le Clerre D, Temburni-Blake S, Hong P, Leduc S, Pinard N, Marechal A, Seclen E, Boyne A, Mayer L, Hong R, Pulicani S, Galetto R, Gouble A, Cavazzana M, Juillerat A, Miccio A, Duclert A, Duchateau P, Valton J. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024; 15:4965. [PMID: 38862518 PMCID: PMC11166989 DOI: 10.1038/s41467-024-49353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.
Collapse
Affiliation(s)
| | - Gil Letort
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Sabrina Lizot
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Anne Chalumeau
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Chloe Foray
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Tristan Felix
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Patrick Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Sophie Leduc
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Noemie Pinard
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Alan Marechal
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | | | - Alex Boyne
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Louisa Mayer
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Robert Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | | | - Roman Galetto
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Agnès Gouble
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR1163, Paris Cité University, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Julien Valton
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France.
| |
Collapse
|
10
|
Pandey S, Gao XD, Krasnow NA, McElroy A, Tao YA, Duby JE, Steinbeck BJ, McCreary J, Pierce SE, Tolar J, Meissner TB, Chaikof EL, Osborn MJ, Liu DR. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat Biomed Eng 2024:10.1038/s41551-024-01227-1. [PMID: 38858586 DOI: 10.1038/s41551-024-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Methods for the targeted integration of genes in mammalian genomes suffer from low programmability, low efficiencies or low specificities. Here we show that phage-assisted continuous evolution enhances prime-editing-assisted site-specific integrase gene editing (PASSIGE), which couples the programmability of prime editing with the ability of recombinases to precisely integrate large DNA cargoes exceeding 10 kilobases. Evolved and engineered Bxb1 recombinase variants (evoBxb1 and eeBxb1) mediated up to 60% donor integration (3.2-fold that of wild-type Bxb1) in human cell lines with pre-installed recombinase landing sites. In single-transfection experiments at safe-harbour and therapeutically relevant sites, PASSIGE with eeBxb1 led to an average targeted-gene-integration efficiencies of 23% (4.2-fold that of wild-type Bxb1). Notably, integration efficiencies exceeded 30% at multiple sites in primary human fibroblasts. PASSIGE with evoBxb1 or eeBxb1 outperformed PASTE (for 'programmable addition via site-specific targeting elements', a method that uses prime editors fused to recombinases) on average by 9.1-fold and 16-fold, respectively. PASSIGE with continuously evolved recombinases is an unusually efficient method for the targeted integration of genes in mammalian cells.
Collapse
Affiliation(s)
- Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Nicholas A Krasnow
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Amber McElroy
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Y Allen Tao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jordyn E Duby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Benjamin J Steinbeck
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Julia McCreary
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sarah E Pierce
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Torsten B Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Mark J Osborn
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Brow D, Shike H, Kendrick J, Pettersson L, Mineishi S, Claxton DF, Wirk B, Cioccio J, Greiner RJ, Viswanatha D, Kharfan-Dabaja MA, Li Z, Tyler J, Elrefaei M. Assessment of chimerism by next generation sequencing: A comparison to STR/qPCR methods. Hum Immunol 2024; 85:110794. [PMID: 38553384 DOI: 10.1016/j.humimm.2024.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024]
Abstract
Chimerism analysis is used to evaluate patients after allogeneic hematopoietic stem cell transplant (allo-HSCT) for engraftment and minimal measurable residual disease (MRD) monitoring. A combination of short-tandem repeat (STR) and quantitative polymerase chain reaction (qPCR) was required to achieve both sensitivity and accuracy in the patients with various chimerism statuses. In this study, an insertion/deletion-based multiplex chimerism assay by next generation sequencing (NGS) was evaluated using 5 simulated unrelated donor-recipient combinations from 10 volunteers. Median number of informative markers detected was 8 (range = 5 - 11). The limit of quantitation (LoQ) was determined to be 0.1 % recipient. Assay sample number/batch was 10-20 and total assay time was 19-31 h (manual labor = 2.1 h). Additionally, 50 peripheral blood samples from 5 allo-HSCT recipients (related: N = 4; unrelated: N = 1) were tested by NGS and STR/qPCR. Median number of informative markers detected was 7 (range = 4 - 12). Results from both assays demonstrated a strong correlation (Y = 0.9875X + 0.333; R2 = 0.9852), no significant assay bias (difference mean - 0.08), and 100 % concordant detection of percent recipient increase ≥ 0.1 % (indicator of increased relapse risk). NGS-based chimerism assay can support all allo-HSCT for engraftment and MRD monitoring and simplify clinical laboratory workflow compared to STR/qPCR.
Collapse
Affiliation(s)
- Darren Brow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroko Shike
- Penn State Hershey Medical Center, Pathology, Hershey, PA, USA
| | - Jasmine Kendrick
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Shin Mineishi
- Penn State Hershey Medical Center, Hematology Oncology, Hershey, PA, USA
| | - David F Claxton
- Penn State Hershey Medical Center, Hematology Oncology, Hershey, PA, USA
| | - Baldeep Wirk
- Penn State Hershey Medical Center, Hematology Oncology, Hershey, PA, USA
| | - Joseph Cioccio
- Penn State Hershey Medical Center, Hematology Oncology, Hershey, PA, USA
| | - Robert J Greiner
- Penn State Hershey Medical Center, Pediatric Hematology Oncology, Hershey, PA, USA
| | - David Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL, USA
| | - Zhuo Li
- Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Jennifer Tyler
- Penn State Hershey Medical Center, Pathology, Hershey, PA, USA
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Kabore MD, McElrath CC, Ali MAE, Almengo K, Gangaplara A, Fisher C, Barreto MA, Shaikh A, Olkhanud PB, Xu X, Gaskin D, Lopez-Ocasio M, Saxena A, McCoy JP, Fitzhugh CD. Low dose post-transplant cyclophosphamide and sirolimus induce mixed chimerism with CTLA4-Ig or lymphocyte depletion in an MHC-mismatched murine allotransplantation model. Bone Marrow Transplant 2024; 59:615-624. [PMID: 38347187 PMCID: PMC11073977 DOI: 10.1038/s41409-024-02237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) offers a curative option for patients with certain non-malignant hematological diseases. High-dose post-transplant cyclophosphamide (PT-Cy) (200 mg/kg) and sirolimus (3 mg/kg), (HiC) synergistically induce stable mixed chimerism. Further, sirolimus and cytotoxic T lymphocyte-associated antigen-4 immunoglobulin (CTLA4-Ig), also known as Abatacept (Aba), promote immune tolerance and allograft survival. Here, in a major histocompatibility complex (MHC)-mismatched allo-HCT murine model, we combined Aba and/or T-cell depleting anti-Thy1.2 (Thy) with a lower dose of PT-Cy (50 mg/kg) and Sirolimus (3 mg/kg), (LoC). While mice in the LoC group showed graft rejection, the addition of Thy to LoC induced similar donor chimerism levels when compared to the HiC group. However, the addition of Aba to LoC led to graft acceptance only in younger mice. When Thy was added to the LoC+Aba setting, graft acceptance was restored in both age groups. Engrafted groups displayed significantly reduced frequencies of recipient-specific interferon-γ-producing T cells as well as an increased frequency in regulatory T cells (Tregs) except in the LoC+Aba group. Splenocytes from engrafted mice showed no proliferation upon restimulation with Balb/c stimulators. Collectively, in combination with Aba or Thy, LoC may be considered to reduce graft rejection in patients who undergo allo-HCT.
Collapse
Affiliation(s)
- Mariama D Kabore
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corbin C McElrath
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mohamed A E Ali
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine Almengo
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Miltenyi Biotec, Gaithersburg, MD, 20878, USA
| | - Cameron Fisher
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mauricio A Barreto
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Xu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deanna Gaskin
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Leonard AK, Furstenau D, Inam Z, Luckett C, Chu R, Demirci S, Essawi K, Gudmundsdottir B, Hinds M, DiNicola J, Li Q, Eaton WA, Cellmer T, Wang X, Thein SL, Macari ER, VanNest S, Hsieh MM, Bonner M, Pierciey FJ, Tisdale JF. In vivo measurement of RBC survival in patients with sickle cell disease before or after hematopoietic stem cell transplantation. Blood Adv 2024; 8:1806-1816. [PMID: 38181784 PMCID: PMC11006808 DOI: 10.1182/bloodadvances.2023011397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Stable, mixed-donor-recipient chimerism after allogeneic hematopoietic stem cell transplantation (HSCT) for patients with sickle cell disease (SCD) is sufficient for phenotypic disease reversal, and results from differences in donor/recipient-red blood cell (RBC) survival. Understanding variability and predictors of RBC survival among patients with SCD before and after HSCT is critical for gene therapy research which seeks to generate sufficient corrected hemoglobin to reduce polymerization thereby overcoming the red cell pathology of SCD. This study used biotin labeling of RBCs to determine the lifespan of RBCs in patients with SCD compared with patients who have successfully undergone curative HSCT, participants with sickle cell trait (HbAS), and healthy (HbAA) donors. Twenty participants were included in the analysis (SCD pre-HSCT: N = 6, SCD post-HSCT: N = 5, HbAS: N = 6, and HbAA: N = 3). The average RBC lifespan was significantly shorter for participants with SCD pre-HSCT (64.1 days; range, 35-91) compared with those with SCD post-HSCT (113.4 days; range, 105-119), HbAS (126.0 days; range, 119-147), and HbAA (123.7 days; range, 91-147) (P<.001). RBC lifespan correlated with various hematologic parameters and strongly correlated with the average final fraction of sickled RBCs after deoxygenation (P<.001). No adverse events were attributable to the use of biotin and related procedures. Biotin labeling of RBCs is a safe and feasible methodology to evaluate RBC survival in patients with SCD before and after HSCT. Understanding differences in RBC survival may ultimately guide gene therapy protocols to determine hemoglobin composition required to reverse the SCD phenotype as it relates directly to RBC survival. This trial was registered at www.clinicaltrials.gov as #NCT04476277.
Collapse
Affiliation(s)
- Alexis K. Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Dana Furstenau
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zaina Inam
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
| | - Christina Luckett
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Bjorg Gudmundsdottir
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malikiya Hinds
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Julia DiNicola
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Quan Li
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - William A. Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Troy Cellmer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Matthew M. Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
McCuskee S, Curtis S. Long live the red blood cell: biotin tagging in SCD. Blood Adv 2024; 8:1804-1805. [PMID: 38592713 PMCID: PMC11006811 DOI: 10.1182/bloodadvances.2023012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Affiliation(s)
- Sarah McCuskee
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susanna Curtis
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
15
|
Locatelli F, Corbacioglu S, Hobbs W, Frangoul H, Walters MC. Defining curative endpoints for sickle cell disease in the era of gene therapy and gene editing. Am J Hematol 2024; 99:430-438. [PMID: 38010293 DOI: 10.1002/ajh.27164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
A growing number of gene therapy- and gene editing-based treatments for patients with sickle cell disease (SCD) are entering clinical trials. These treatments, designed to target the underlying cause of SCD, have the potential to provide functional cures, which until now were possible only through allogeneic hematopoietic stem cell transplant. However, as these novel approaches advance from early- to late-stage clinical trials, it is essential to identify physiologically and clinically relevant endpoints that can demonstrate the achievement of a functional cure for SCD. Here, we present an overview of the pathophysiology of SCD and current treatment options, review ongoing SCD clinical trials using gene therapy or gene editing approaches, and identify the most relevant endpoints for demonstrating the attainment of a functional cure for SCD.
Collapse
Affiliation(s)
- Franco Locatelli
- Catholic University of the Sacred Heart, Rome, Italy
- IRCCS, Ospedale Pediatrico Bambino, Gesù, Rome, Italy
| | | | - William Hobbs
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Haydar Frangoul
- Sarah Cannon Research Institute and The Children's Hospital at TriStar Centennial, Nashville, Tennessee, USA
| | - Mark C Walters
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| |
Collapse
|
16
|
Nucera S, Sindoni MM, Bugarin C, Villa T, Biondi A, Balduzzi A, Gaipa G. A novel flow-cytometric based method to assess post-HSCT donor chimerism exploiting RNA hybridization. Bone Marrow Transplant 2024; 59:171-177. [PMID: 37935782 PMCID: PMC10849949 DOI: 10.1038/s41409-023-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Analysis of donor-recipient chimerism after hematopoietic stem cell transplantation (HSCT) is of pivotal importance for patient's clinical management, especially in the context of mixed chimerism. Patients are routinely monitored for chimerism in sorted subsets of peripheral blood cells. However, measurement of chimerism in sorted immune cell subsets is technically challenging and time consuming. We here propose a novel, flow cytometry-based approach to detect donor cell chimerism in sex-mismatched HSCT. We exploit RNA PrimeFlow™ system, based on RNA hybridization, to detect mRNA from a lysine demethylase encoded by Y chromosome, KDM5D. This approach allows to distinguish male and female derived cells with around 1% sensitivity. The procedure can be coupled with multiparametric immunophenotyping to assess chimerism in specific immune cell subsets without the need for prior FACS-sorting. We apply this method to a cohort of HSCT patients (n = 10) and we show that it is consistent with standard PCR-based method. We also show that different T lymphocyte subsets display variable degrees of donor chimerism, especially in CD8+ T cell compartment where we observe an enrichment for recipient chimerism in central memory T cells. This method can be exploited to advance current knowledge on immune reconstitution focusing on specific subsets avoiding prior FACS-sorting.
Collapse
Affiliation(s)
- Silvia Nucera
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy.
| | - Marco M Sindoni
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Cristina Bugarin
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Tiziana Villa
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy.
| | - Adriana Balduzzi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Giuseppe Gaipa
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
17
|
Petty NE, Radtke S, Fields E, Humbert O, Llewellyn MJ, Laszlo GS, Zhu H, Jerome KR, Walter RB, Kiem HP. Efficient long-term multilineage engraftment of CD33-edited hematopoietic stem/progenitor cells in nonhuman primates. Mol Ther Methods Clin Dev 2023; 31:101121. [PMID: 37868209 PMCID: PMC10585325 DOI: 10.1016/j.omtm.2023.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Current immunotherapeutic targets are often shared between neoplastic and normal hematopoietic stem and progenitor cells (HSPCs), leading to unwanted on-target, off-tumor toxicities. Deletion or modification of such targets to protect normal HSPCs is, therefore, of great interest. Although HSPC modifications commonly aim to mimic naturally occurring phenotypes, the long-term persistence and safety of gene-edited cells need to be evaluated. Here, we deleted the V-set domain of CD33, the immune-dominant domain targeted by most anti-CD33 antibodies used to treat CD33-positive malignancies, including acute myeloid leukemia, in the HSPCs of two rhesus macaques, performed autologous transplantation after myeloablative conditioning, and followed the animals for up to 3 years. CD33-edited HSPCs engrafted without any delay in recovery of neutrophils, the primary cell type expressing CD33. No impact on the blood composition, reconstitution of the bone marrow stem cell compartment, or myeloid differentiation potential was observed. Up to 20% long-term gene editing in HSPCs and blood cell lineages was seen with robust loss of CD33 detection on myeloid lineages. In conclusion, deletion of the V-set domain of CD33 on HSPCs, progenitors, and myeloid lineages did not show any adverse effects on their homing and engraftment potential or the differentiation and functionality of myeloid progenitors and lineages.
Collapse
Affiliation(s)
- Nicholas E. Petty
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Emily Fields
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Olivier Humbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mallory J. Llewellyn
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Petty NE, Thomas J, Radtke S, Kiem HP. Now you see me, now you don't: New approaches to sparing nonmalignant cells from CAR T cell therapies. MED 2023; 4:749-751. [PMID: 37951207 DOI: 10.1016/j.medj.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
While new immunotherapies have revolutionized the field of oncology, they have been limited by their inability to distinguish between cancerous cells and healthy HSPCs. Work by Casirati et al.1 and Wellhausen et al.2 in epitope editing antigens commonly expressed on AML and HSPCs has unlocked several new targets for immunotherapies.
Collapse
Affiliation(s)
- Nicholas E Petty
- Stem Cell and Gene Therapy Program, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Justin Thomas
- Stem Cell and Gene Therapy Program, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Shah NC, Rangarajan HG, Ngwube A, Shenoy S. Mixed donor chimerism following stem cell transplantation for sickle cell disease. Curr Opin Hematol 2023; 30:187-193. [PMID: 37694765 DOI: 10.1097/moh.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sickle cell disease is a debilitating hemoglobinopathy with high morbidity and mortality. Hematopoietic stem cell transplantation (HCT) is curative, but the presence of mixed donor/recipient chimerism post-HCT raises concerns about disease control long-term. Mixed donor/recipient chimerism is reported in significant numbers even after aggressive HCT conditioning regimens. Post-HCT, adequacy of donor erythropoiesis is crucial for disease control. This review explores the relationship between mixed donor/recipient chimerism and outcomes post-HCT. Serial chimerism analysis in lineage specific manner in erythroid or myeloid cells post-HCT predicts for disease control and HCT success. Adequate and stable donor-derived erythropoiesis is essential for reversing SCD manifestations. Myeloid lineage chimerism mirrors erythropoiesis is commercially available, and a reliable indicator of adequacy. Using this tool, the minimum threshold of donor chimerism is required to prevent SCD-related complications and maintain sickle hemoglobin less than 50% is approximately 20-25% even when a donor has Hb S trait. Curative interventions should, at a minimum, meet this goal long-term. Achieving a balance between successful engraftment while minimizing toxicity is important in patients vulnerable because of age or preexisting morbidity and is the objective of recent clinical trials. As HCT and gene therapies evolve, efficient long-term follow-up that includes durability assessment of mixed donor/recipient chimerism will be crucial.
Collapse
Affiliation(s)
- Niketa C Shah
- Section of Pediatric Hematology/Oncology and Stem cell Transplant, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Hemalatha G Rangarajan
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Shalini Shenoy
- Division of Pediatric Hematology Oncology, Washington University, St. Louis, Missouri. USA
| |
Collapse
|
20
|
Inam Z, Tisdale JF, Leonard A. Outcomes and long-term effects of hematopoietic stem cell transplant in sickle cell disease. Expert Rev Hematol 2023; 16:879-903. [PMID: 37800996 DOI: 10.1080/17474086.2023.2268271] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplant (HSCT) is the only readily available curative option for sickle cell disease (SCD). Cure rates following human leukocyte antigen (HLA)-matched related donor HSCT with myeloablative or non-myeloablative conditioning are >90%. Alternative donor sources, including haploidentical donor and autologous with gene therapy, expand donor options but are limited by inferior outcomes, limited data, and/or shorter follow-up and therefore remain experimental. AREAS COVERED Outcomes are improving with time, with donor type and conditioning regimens having the greatest impact on long-term complications. Patients with stable donor engraftment do not experience SCD-related symptoms and have stabilization or improvement of end-organ pathology; however, the long-term effects of curative strategies remain to be fully established and have significant implications in a patient's decision to seek therapy. This review covers currently published literature on HSCT outcomes, including organ-specific outcomes implicated in SCD, as well as long-term effects. EXPERT OPINION HSCT, both allogeneic and autologous gene therapy, in the SCD population reverses the sickle phenotype, prevents further organ damage, can resolve prior organ dysfunction in both pediatric and adult patients. Data support greater success with HSCT at a younger age, thus, curative therapies should be discussed early in the patient's life.
Collapse
Affiliation(s)
- Zaina Inam
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
21
|
Everette KA, Newby GA, Levine RM, Mayberry K, Jang Y, Mayuranathan T, Nimmagadda N, Dempsey E, Li Y, Bhoopalan SV, Liu X, Davis JR, Nelson AT, Chen PJ, Sousa AA, Cheng Y, Tisdale JF, Weiss MJ, Yen JS, Liu DR. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023; 7:616-628. [PMID: 37069266 PMCID: PMC10195679 DOI: 10.1038/s41551-023-01026-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBBS) to wild type (HBBA) at frequencies of 15%-41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBBA levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBBA, exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBBA-derived adult haemoglobin at 28%-43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBBS to HBBA, does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.
Collapse
Affiliation(s)
- Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Rachel M Levine
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoonjeong Jang
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Nikitha Nimmagadda
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin Dempsey
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xiong Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Yong Cheng
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023; 141:2085-2099. [PMID: 36800642 PMCID: PMC10163316 DOI: 10.1182/blood.2022018252] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of βS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Theodore Koob
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lishan Huang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Eapen M, Brazauskas R, Williams DA, Walters MC, St Martin A, Jacobs BL, Antin JH, Bona K, Chaudhury S, Coleman-Cowger VH, DiFronzo NL, Esrick EB, Field JJ, Fitzhugh CD, Kanter J, Kapoor N, Kohn DB, Krishnamurti L, London WB, Pulsipher MA, Talib S, Thompson AA, Waller EK, Wun T, Horowitz MM. Secondary Neoplasms After Hematopoietic Cell Transplant for Sickle Cell Disease. J Clin Oncol 2023; 41:2227-2237. [PMID: 36623245 PMCID: PMC10448940 DOI: 10.1200/jco.22.01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To report the incidence and risk factors for secondary neoplasm after transplantation for sickle cell disease. METHODS Included are 1,096 transplants for sickle cell disease between 1991 and 2016. There were 22 secondary neoplasms. Types included leukemia/myelodysplastic syndrome (MDS; n = 15) and solid tumor (n = 7). Fine-Gray regression models examined for risk factors for leukemia/MDS and any secondary neoplasm. RESULTS The 10-year incidence of leukemia/MDS was 1.7% (95% CI, 0.90 to 2.9) and of any secondary neoplasm was 2.4% (95% CI, 1.4 to 3.8). After adjusting for other risk factors, risks for leukemia/MDS (hazard ratio, 22.69; 95% CI, 4.34 to 118.66; P = .0002) or any secondary neoplasm (hazard ratio, 7.78; 95% CI, 2.20 to 27.53; P = .0015) were higher with low-intensity (nonmyeloablative) regimens compared with more intense regimens. All low-intensity regimens included total-body irradiation (TBI 300 or 400 cGy with alemtuzumab, TBI 300 or 400 cGy with cyclophosphamide, TBI 200, 300, or 400 cGy with cyclophosphamide and fludarabine, or TBI 200 cGy with fludarabine). None of the patients receiving myeloablative and only 23% of those receiving reduced-intensity regimens received TBI. CONCLUSION Low-intensity regimens rely on tolerance induction and establishment of mixed-donor chimerism. Persistence of host cells exposed to low-dose radiation triggering myeloid malignancy is one plausible etiology. Pre-existing myeloid mutations and prior inflammation may also contribute but could not be studied using our data source. Choosing conditioning regimens likely to result in full-donor chimerism may in part mitigate the higher risk for leukemia/MDS.
Collapse
Affiliation(s)
- Mary Eapen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Ruta Brazauskas
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
| | - David A. Williams
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Mark C. Walters
- University of California San Francisco Benioff Children's Hospital, Oakland, CA
| | - Andrew St Martin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Benjamin L. Jacobs
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph H. Antin
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA
| | - Kira Bona
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA
| | | | | | | | - Erica B. Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Joshua J. Field
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Courtney D. Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Julie Kanter
- University of Alabama Birmingham, Birmingham, AL
| | - Neena Kapoor
- Children's Hospital of Los Angeles, Los Angeles, CA
| | - Donald B. Kohn
- David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Wendy B. London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | | | - Sohel Talib
- California Institute for Regenerative Medicine, San Francisco, CA
| | | | | | - Ted Wun
- University of California Davis School of Medicine, Davis, CA
| | - Mary M. Horowitz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
24
|
Klein OR, Bonfim C, Abraham A, Ruggeri A, Purtill D, Cohen S, Wynn R, Russell A, Sharma A, Ciccocioppo R, Prockop S, Boelens JJ, Bertaina A. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. Cytotherapy 2023; 25:463-471. [PMID: 36710227 DOI: 10.1016/j.jcyt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.
Collapse
Affiliation(s)
- Orly R Klein
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA.
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Allistair Abraham
- Center for Cancer and Immunology Research, Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC, USA
| | - Annalisa Ruggeri
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Duncan Purtill
- Department of Hematology, Fiona Stanley Hospital, Perth, Australia
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
25
|
Bhalla N, Bhargav A, Yadav SK, Singh AK. Allogeneic hematopoietic stem cell transplantation to cure sickle cell disease: A review. Front Med (Lausanne) 2023; 10:1036939. [PMID: 36910492 PMCID: PMC9995916 DOI: 10.3389/fmed.2023.1036939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Sickle cell disease (SCD) had first been mentioned in the literature a century ago. Advancement in the molecular basis of the pathophysiology of the disease opens the door for various therapeutic options. Though life-extending treatments are available for treating patients with SCD, allogeneic hematopoietic stem cell transplantation (HSCT) is the only option as of yet. A major obstacle before HSCT to cure patients with SCD is the availability of donors. Matched sibling donors are available only for a small percentage of patients. To expand the donor pool, different contrasting approaches of allogeneic HSCT like T-cell replete and deplete have been tested. None of those tested approaches have been without the risk of GvHD and graft rejection. Other limitations such as transplantation-related infections and organ dysfunction caused by the harsh conditioning regimen need to be addressed on a priority basis. In this review, we will discuss available allogeneic HSCT approaches to cure SCD, as well as recent advancements to make the approach safer. The center of interest is using megadose T-cell-depleted bone marrow in conjugation with donor-derived CD8 veto T cells to achieve engraftment and tolerance across MHC barriers, under reduced intensity conditioning (RIC). This approach is in phase I/II clinical trial at the MD Anderson Cancer Centre and is open to patients with hemoglobinopathies.
Collapse
Affiliation(s)
- Nishka Bhalla
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamilnadu, India
| | - Anjali Bhargav
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamilnadu, India
| | | | - Aloukick Kumar Singh
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamilnadu, India
| |
Collapse
|
26
|
Increased incidence of hematologic malignancies in SCD after HCT in adults with graft failure and mixed chimerism. Blood 2022; 140:2514-2518. [PMID: 36044658 PMCID: PMC9837433 DOI: 10.1182/blood.2022017960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Lawal et al report on a 45-fold increase in secondary hematologic malignancy in 120 patients following hematopoietic stem cell transplantation (HSCT) for sickle cell disease (SCD), comparable to what has been reported following gene therapy. Notably, the cohort is enriched for older patients and for haploidentical transplant recipients with mixed chimerism following HSCT. These data further support the idea that pre-existing premalignant myeloid clones undergo clonal selection in the setting of nonmyeloablative HSCT and contribute to secondary malignancy.
Collapse
|
27
|
Crossley M, Christakopoulos GE, Weiss MJ. Effective therapies for sickle cell disease: are we there yet? Trends Genet 2022; 38:1284-1298. [PMID: 35934593 PMCID: PMC9837857 DOI: 10.1016/j.tig.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Sickle cell disease (SCD) is a common genetic blood disorder associated with acute and chronic pain, progressive multiorgan damage, and early mortality. Recent advances in technologies to manipulate the human genome, a century of research and the development of techniques enabling the isolation, efficient genetic modification, and reimplantation of autologous patient hematopoietic stem cells (HSCs), mean that curing most patients with SCD could soon be a reality in wealthy countries. In parallel, ongoing research is pursuing more facile treatments, such as in-vivo-delivered genetic therapies and new drugs that can eventually be administered in low- and middle-income countries where most SCD patients reside.
Collapse
Affiliation(s)
- Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052.
| | | | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Eckrich MJ, Frangoul H. Gene Editing for Sickle Cell Disease and Transfusion Dependent Thalassemias- A cure within reach. Semin Hematol 2022; 60:3-9. [PMID: 37080708 DOI: 10.1053/j.seminhematol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Sickle cell disease (SCD) is associated with significant morbidity and shortened life expectancy. Similarly, patients with transfusion dependent beta thalassemia (TdT) require life-long transfusion therapy, chelation therapy and significant organ dysfunction. Allogeneic transplantation from a matched family donor provided the only curative option for patients with SCD and TdT. Unfortunately, less than 20% of patients have a fully matched related donor and results using unrelated donor transplant were associated with high rate of complications. Ex vivo gene therapy through globin gene addition has been investigated extensively and recent encouraging preliminary data resulted in regulatory approval in patients with TdT. Recent improvements in our understanding of the molecular pathways controlling erythropoiesis and globin switching from fetal hemoglobin to adult hemoglobin offer a new and exciting therapeutic options. Rapid and substantial advances in genome editing tools using CRISPR/Cas9, have raised the possibility of genetic editing and correction in patient derived hematopoietic stem and progenitor cells. We will review results of gene editing approach that can induce fetal hemoglobin production in patients with SCD and TdT.
Collapse
|
29
|
John T, Namazzi R, Chirande L, Tubman VN. Global perspectives on cellular therapy for children with sickle cell disease. Curr Opin Hematol 2022; 29:275-280. [PMID: 36206076 PMCID: PMC10107365 DOI: 10.1097/moh.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Low-income and middle-income countries (LMICs), primarily in sub-Saharan Africa (SSA), predominantly experience the burden of sickle cell disease (SCD). High frequency of acute and chronic complications leads to increased utilization of healthcare, which burdens fragile health systems. Mortality for children with limited healthcare access remains alarmingly high. Cellular based therapies such as allogeneic hematopoietic stem cell transplant (HSCT) are increasingly used in resource-rich settings as curative therapy for SCD. Broad access to curative therapies for SCD in SSA would dramatically alter the global impact of the disease. RECENT FINDINGS Currently, application of cellular based therapies in LMICs is limited by cost, personnel, and availability of HSCT-specific technologies and supportive care. Despite the challenges, HSCT for SCD is moving forward in LMICs. Highly anticipated gene modification therapies have recently proven well tolerated and feasible in clinical trials in resource-rich countries, but access remains extremely limited. SUMMARY Translation of curative cellular based therapies for SCD should be prioritized to LMICs where the disease burden and cost of noncurative treatments is high, and long-term quality of life is poor. Focus on thoughtful modifications of current and future therapies to meet the need in LMICs, especially in SSA, will be especially impactful.
Collapse
Affiliation(s)
- Tami John
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lulu Chirande
- School of Medicine, The Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Venée N. Tubman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Alsultan A, Abujoub R, Elbashir E, Essa MF. The effect of intensity of conditioning regimen on the outcome of HSCT in children with sickle cell disease. Clin Transplant 2022; 36:e14787. [PMID: 35929611 DOI: 10.1111/ctr.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for patients with sickle cell disease (SCD). This study describes the effect of conditioning regimen intensity on HSCT outcomes among children younger than 14 years with SCD. METHODS Transplants from HLA-matched related donors (MRD) and unrelated donors (MUD) using either myeloablative conditioning (MAC) regimens or reduced intensity conditioning (RIC) regimens were considered. Event-free survival (EFS) was the primary endpoint. Secondary endpoints included overall survival (OS) and occurrence of GVHD. RESULTS 48 SCD patients underwent HSCT, 45 (93.8%) patients had MRD, 1 (2.1%) had 9/10 related donor, and 2 (4.1%) had MUD. The median age at transplant was 8.6 years (range, 3.1-13.8). Conditioning regimens were myeloablative (MAC) in 41 (85.4%) patients and of reduced intensity in 7 (14.6%) patients. EFS at 2 years was 100% among MAC group compared to 29% in the RIC group (p < .001). The median follow-up was 43.4 months (range 26.8-134). All events in the RIC group were secondary graft failure. However, OS was 100% in both groups at 2 years. Acute GVHD II-IV was diagnosed in 2 (4.1%) patients. Chronic GVHD occurred in 2 (4.1%) patients. GVHD did not occur in patients who underwent MUD HSCT. CONCLUSIONS MAC in children with SCD is well tolerated and associated with an excellent outcome for HLA-matched HSCT in SCD. There was a high rate of secondary graft failure with the use of RIC. Future studies are needed to optimize RIC regimens in HSCT of children with SCD.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Rodina Abujoub
- Department of Nursing, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Enas Elbashir
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed F Essa
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Demirci S, Essawi K, Germino-Watnick P, Liu X, Hakami W, Tisdale JF. Advances in CRISPR Delivery Methods: Perspectives and Challenges. CRISPR J 2022; 5:660-676. [PMID: 36260301 PMCID: PMC9835311 DOI: 10.1089/crispr.2022.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With the advent of new genome editing technologies and the emphasis placed on their optimization, the genetic and phenotypic correction of a plethora of diseases sit on the horizon. Ideally, genome editing approaches would provide long-term solutions through permanent disease correction instead of simply treating patients symptomatically. Although various editing machinery options exist, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated protein) editing technique has emerged as the most popular due to its high editing efficiency, simplicity, and affordability. However, while CRISPR technology is gradually being perfected, optimization is futile without accessible, effective, and safe delivery to the desired cell or tissue. Therefore, it is important that scientists simultaneously focus on inventing and improving delivery modalities for editing machinery as well. In this review, we will discuss the critical details of viral and nonviral delivery systems, including payload, immunogenicity, efficacy in delivery, clinical application, and future directions.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: Selami Demirci, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Xiong Liu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: John F. Tisdale, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| |
Collapse
|
32
|
Kassim AA, Leonard A. Debating the Future of Sickle Cell Disease Curative Therapy: Haploidentical Hematopoietic Stem Cell Transplantation vs. Gene Therapy. J Clin Med 2022; 11:jcm11164775. [PMID: 36013014 PMCID: PMC9409766 DOI: 10.3390/jcm11164775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a well-established curative therapy for patients with sickle cell disease (SCD) when using a human leukocyte antigen (HLA)-matched sibling donor. Most patients with SCD do not have a matched sibling donor, thereby significantly limiting the accessibility of this curative option to most patients. HLA-haploidentical HSCT with post-transplant cyclophosphamide expands the donor pool, with current approaches now demonstrating high overall survival, reduced toxicity, and an effective reduction in acute and chronic graft-vs.-host disease (GvHD). Alternatively, autologous genetic therapies appear promising and have the potential to overcome significant barriers associated with allogeneic HSCT, such as donor availability and GvHD. Here the authors each take a viewpoint and discuss what will be the future of curative options for patients with SCD outside of a matched sibling transplantation, specifically haploidentical HSCT vs. gene therapy.
Collapse
Affiliation(s)
- Adetola A. Kassim
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt Meharry Sickle Cell Center of Excellence, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Correspondence: (A.A.K.); or (A.L.)
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, USA
- Division of Hematology, Children’s National Hospital, Washington, DC 20010, USA
- Correspondence: (A.A.K.); or (A.L.)
| |
Collapse
|
33
|
Liu B, Brendel C, Vinjamur DS, Zhou Y, Harris C, McGuinness M, Manis JP, Bauer DE, Xu H, Williams DA. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Mol Ther 2022; 30:2693-2708. [PMID: 35526095 PMCID: PMC9372373 DOI: 10.1016/j.ymthe.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022] Open
Abstract
A promising treatment for β-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from β-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating β-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yu Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
34
|
Ngwube A, Franay C, Shah N. Post-transplant CD34+ selected stem cell boost as an intervention for declining mixed chimerism following reduced intensity conditioning allogeneic stem cell transplant in children and young adults with sickle cell disease: A case series. Pediatr Hematol Oncol 2022; 39:475-480. [PMID: 35147476 DOI: 10.1080/08880018.2021.2013369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Cara Franay
- Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Niketa Shah
- Yale University and Yale New Haven Children's Hospital, New Haven, CT, USA
| |
Collapse
|
35
|
Umbilical Cord Blood as a Hematopoietic Stem Cell Source in Transplantation for Pediatric Sickle Cell Disease: Current Challenges and Strategies. Transfus Apher Sci 2022; 61:103554. [DOI: 10.1016/j.transci.2022.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Dhedin N, Chevillon F, Castelle M, Lavoipière V, Vasseur L, Dalle JH, Joseph L, Beckerich F, Buchbinder N, Coman T, Garban F, Ferster A, Nguyen S, Boissel N, Arlet JB, Pondarre C. HLA-matched related-donor hematopoietic stem cell transplantation is a suitable treatment in adolescents and adults with sickle cell disease: comparison of myeloablative and non-myeloablative approaches. Am J Hematol 2022; 97:E359-E362. [PMID: 35802796 DOI: 10.1002/ajh.26656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Nathalie Dhedin
- Hematology Unit for Adolescents and Young Adults, Saint Louis Hospital, Paris, France
| | - Florian Chevillon
- Hematology Unit for Adolescents and Young Adults, Saint Louis Hospital, Paris, France
| | | | - Virginie Lavoipière
- Internal Medicine and Clinical Immunology, Conception Hospital, Marseille. France; Internal Medicine, Martigues Hospital, France
| | - Loic Vasseur
- Hematology Unit for Adolescents and Young Adults, Saint Louis Hospital, Paris, France
| | | | | | | | | | - Tereza Coman
- Department of Hematology, Gustave Roussy Hospital, Villejuif, France
| | | | - Alina Ferster
- Hemato-Oncology and Transplantation Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - S Nguyen
- Department of Hematology, Pitié Salpetrière Hospital, Sorbonne University, Paris, France
| | - Nicolas Boissel
- Hematology Unit for Adolescents and Young Adults, Saint Louis Hospital, Paris, France
| | - Jean-Benoit Arlet
- French Sickle Cell Referral Center, Internal Medicine Department, Georges Pompidou European Hospital, and Université de Paris, Paris, France
| | - Corinne Pondarre
- Pediatric Department, Sickle Cell Referral Center, Centre Hospitalier Intercommunal de Créteil, France and Inserm U955, Université Paris XII, Créteil, France
| | | |
Collapse
|
37
|
Across the Myeloablative Spectrum: Hematopoietic Cell Transplant Conditioning Regimens for Pediatric Patients with Sickle Cell Disease. J Clin Med 2022; 11:jcm11133856. [PMID: 35807140 PMCID: PMC9267729 DOI: 10.3390/jcm11133856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
One out of every five hundred African American children in the United States has sickle cell disease (SCD). While multiple disease-modifying therapies are available, hematopoietic cell transplantation (HCT) remains the only curative option for children with SCD. HLA-matched sibling HCT has demonstrated excellent efficacy, but its availability remains limited; alternative donor strategies are increasingly explored. While Busulfan-Cyclophosphamide has become the most widespread conditioning regimen employed in HCT for pediatric SCD, many other regimens have been examined. This review explores different conditioning regimens across the intensity spectrum: from myeloablative to non-myeloablative. We describe survival and organ function outcomes in pediatric SCD patients who have received HCT and discuss the strengths and weaknesses of the various conditioning intensities. Finally, we posit novel directions in allogeneic HCT for SCD.
Collapse
|
38
|
DeFilipp Z, Hefazi M, Chen YB, Blazar BR. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for nonmalignant diseases. Blood 2022; 139:3583-3593. [PMID: 34614174 PMCID: PMC9728560 DOI: 10.1182/blood.2020009014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Many congenital or acquired nonmalignant diseases (NMDs) of the hematopoietic system can be potentially cured by allogeneic hematopoietic cell transplantation (HCT) with varying types of donor grafts, degrees of HLA matching, and intensity of conditioning regimens. Unique features that distinguish the use of allogeneic HCT in this population include higher rates of graft failure, immune-mediated cytopenias, and the potential to achieve long-term disease-free survival in a mixed chimerism state. Additionally, in contrast to patients with hematologic malignancies, a priority is to completely avoid graft-versus-host disease in patients with NMD because there is no theoretical beneficial graft-versus-leukemia effect that can accompany graft-versus-host responses. In this review, we discuss the current approach to each of these clinical issues and how emerging novel therapeutics hold promise to advance transplant care for patients with NMDs.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | | | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
39
|
Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022; 11:cells11111843. [PMID: 35681538 PMCID: PMC9180595 DOI: 10.3390/cells11111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Autologous hematopoietic stem cell (HSC)-targeted gene therapy provides a one-time cure for various genetic diseases including sickle cell disease (SCD) and β-thalassemia. SCD is caused by a point mutation (20A > T) in the β-globin gene. Since SCD is the most common single-gene disorder, curing SCD is a primary goal in HSC gene therapy. β-thalassemia results from either the absence or the reduction of β-globin expression, and it can be cured using similar strategies. In HSC gene-addition therapy, patient CD34+ HSCs are genetically modified by adding a therapeutic β-globin gene with lentiviral transduction, followed by autologous transplantation. Alternatively, novel gene-editing therapies allow for the correction of the mutated β-globin gene, instead of addition. Furthermore, these diseases can be cured by γ-globin induction based on gene addition/editing in HSCs. In this review, we discuss HSC-targeted gene therapy in SCD with gene addition as well as gene editing.
Collapse
|
40
|
Clonal Hematopoiesis and the Risk of Hematologic Malignancies after Curative Therapies for Sickle Cell Disease. J Clin Med 2022; 11:jcm11113160. [PMID: 35683547 PMCID: PMC9181510 DOI: 10.3390/jcm11113160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022] Open
Abstract
Sickle cell disease (SCD) is associated with severe morbidity and early mortality. Two large population studies found an increased risk for leukemia in individuals with SCD. Notably, while the relative risk of leukemia development is high, the absolute risk is low in individuals with SCD who do not receive cell-based therapies. However, the risk of leukemia in SCD is high after graft rejection and with gene therapy. Clonal hematopoiesis (CH) is a well-recognized premalignant condition in the general population and in patients after high-dose myelotoxic therapies. Recent studies suggest that CH may be more common in SCD than in the general population, outside the cell-based therapy setting. Here, we review risk factors for CH and progression to leukemia in SCD. We surmise why patients with SCD are at an increased risk for CH and why leukemia incidence is unexpectedly high after graft rejection and gene therapy for SCD. Currently, we are unable to reliably assess genetic risk factors for leukemia development after curative therapies for SCD. Given our current knowledge, we recommend counseling patients about leukemia risk and discussing the importance of an individualized benefit/risk assessment that incorporates leukemia risk in patients undergoing curative therapies for SCD.
Collapse
|
41
|
Magis W, DeWitt MA, Wyman SK, Vu JT, Heo SJ, Shao SJ, Hennig F, Romero ZG, Campo-Fernandez B, Said S, McNeill MS, Rettig GR, Sun Y, Wang Y, Behlke MA, Kohn DB, Boffelli D, Walters MC, Corn JE, Martin DI. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 2022; 25:104374. [PMID: 35633935 PMCID: PMC9130532 DOI: 10.1016/j.isci.2022.104374] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected β-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation. The gene editing protocol corrects the sickle mutation in ∼30% of engrafting cells Random assortment of engrafting stem cell clones without clonal dominance was shown Corrected erythroid cells are preferentially enriched compared with unedited cells
Collapse
|
42
|
Leonard A, Tisdale JF, Bonner M. Gene Therapy for Hemoglobinopathies. Hematol Oncol Clin North Am 2022; 36:769-795. [DOI: 10.1016/j.hoc.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Sansbury BM, Hewes AM, Tharp OM, Masciarelli SB, Kaouser S, Kmiec EB. Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas. Sci Rep 2022; 12:8132. [PMID: 35581233 PMCID: PMC9114366 DOI: 10.1038/s41598-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Gene correction is often referred to as the gold standard for precise gene editing and while CRISPR-Cas systems continue to expand the toolbox for clinically relevant genetic repair, mechanistic hurdles still hinder widespread implementation. One of the most prominent challenges to precise CRISPR-directed point mutation repair centers on the prevalence of on-site mutagenesis, wherein insertions and deletions appear at the targeted site following correction. Here, we introduce a pathway model for Homology Directed Correction, specifically point mutation repair, which enables a foundational analysis of genetic tools and factors influencing precise gene editing. To do this, we modified an in vitro gene editing system which utilizes a cell-free extract, CRISPR-Cas RNP and donor DNA template to catalyze point mutation repair. We successfully direct correction of four unique point mutations which include two unique nucleotide mutations at two separate targeted sites and visualize the repair profiles resulting from these reactions. This extension of the cell-free gene editing system to model point mutation repair may provide insight for understanding the factors influencing precise point mutation correction.
Collapse
Affiliation(s)
- Brett M Sansbury
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Amanda M Hewes
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Olivia M Tharp
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Sophia B Masciarelli
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Salma Kaouser
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.
| |
Collapse
|
44
|
Kricke S, Rao K, Adams S. The significance of mixed chimaerism and cell lineage chimaerism monitoring in paediatric patients post haematopoietic stem cell transplant. Br J Haematol 2022; 198:625-640. [PMID: 35421255 DOI: 10.1111/bjh.18190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Haematopoietic stem cell transplants (HSCTs) are carried out across the world to treat haematological and immunological diseases which would otherwise prove fatal. Certain diseases are predominantly encountered in paediatric patients, such severe primary immunodeficiencies (PID) and diseases of inborn errors of metabolism (IEM). Chimaerism testing for these disorders has different considerations compared to adult diseases. This review focuses on the importance of cell-lineage-specific chimaerism testing and examines the appropriate cell populations to be assessed in individual paediatric patient groups. By analysing disease-associated subpopulations, abnormalities are identified significantly earlier than in whole samples and targeted clinical decisions can be made. Chimaerism methods have evolved over time and lead to an ever-increasing level of sensitivity and biomarker arrays to distinguish between recipient and donor cells. Short tandem repeat (STR) is still the gold standard for routine chimaerism assessment, and hypersensitive methods such as quantitative and digital polymerase chain reaction (PCR) are leading the forefront of microchimaerism testing. The rise of molecular methods operating with minute DNA amounts has been hugely beneficial to chimaerism testing of paediatric samples. As HSCTs are becoming increasingly personalised and risk-adjusted towards a child's individual needs, chimaerism testing needs to adapt alongside these medical advances ensuring the best possible care.
Collapse
Affiliation(s)
- Susanne Kricke
- Specialist Integrated Haematology and Malignancy Diagnostic Service, Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Kanchan Rao
- Department of Blood and Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK
| | - Stuart Adams
- Specialist Integrated Haematology and Malignancy Diagnostic Service, Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
45
|
Shaikh A, Olkhanud PB, Gangaplara A, Kone A, Patel S, Gucek M, Fitzhugh CD. Thrombospondin-1, Platelet Factor 4, and Galectin-1 are Associated with Engraftment in Patients with Sickle Cell Disease Who Underwent Haploidentical HSCT. Transplant Cell Ther 2022; 28:249.e1-249.e13. [PMID: 35131485 PMCID: PMC9176382 DOI: 10.1016/j.jtct.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is an inherited red blood cell disorder that leads to significant morbidity and early mortality. The most widely available curative approach remains allogeneic hematopoietic stem cell transplantation (HSCT). HLA-haploidentical (haplo) HSCT expands the donor pool considerably and is a practical alternative for these patients, but traditionally with an increased risk of allograft rejection. Biomarkers in patient plasma could potentially help predict HSCT outcome and allow treatment at an early stage to reverse or prevent graft rejection. Reliable, noninvasive methods to predict engraftment or rejection early after HSCT are needed. We sought to detect variations in the plasma proteomes of patients who engrafted compared with those who rejected their grafts. We used a mass spectrometry-based proteomics approach to identify candidate biomarkers associated with engraftment and rejection by comparing plasma samples obtained from 9 engrafted patients and 10 patients who experienced graft rejection. A total of 1378 proteins were identified, 45 of which were differentially expressed in the engrafted group compared with the rejected group. Based on bioinformatics analysis results, information from the literature, and immunoassay availability, 7 proteins-thrombospondin-1 (Tsp-1), platelet factor 4 (Pf-4), talin-1, moesin, cell division control protein 42 homolog (CDC42), galectin-1 (Gal-1), and CD9-were selected for further analysis. We compared these protein concentrations among 35 plasma samples (engrafted, n = 9; rejected, n = 10; healthy volunteers, n = 8; nontransplanted SCD, n = 8). ELISA analysis confirmed the significant up-regulation of Tsp-1, Pf-4, and Gal-1 in plasma samples from engrafted patients compared with rejected patients, healthy African American volunteers, and the nontransplanted SCD group (P < .01). By receiver operating characteristic analysis, these 3 proteins distinguished engrafted patients from the other groups (area under the curve, >0.8; P < .05). We then evaluated the concentration of these 3 proteins in samples collected pre-HSCT and at days +30, +60, +100, and +180 post-HSCT. The results demonstrate that Tsp-1 and Pf-4 stratified engrafted patients as early as day 60 post-HSCT (P < .01), and that Gal-1 was significantly higher in engrafted patients as early as day 30 post-HSCT (P < .01). We also divided the rejected group into those who experienced primary (n = 5) and secondary graft rejection (n = 5) and found that engrafted patients had significantly higher Tsp-1 levels compared with patients who developed primary graft rejection at days +60 and +100 (P < .05), as well as higher Pf-4 levels compared with patients who developed primary graft rejection at post-transplantation (PT) day 100. Furthermore, Tsp-1 levels were significantly higher at PT days 60 and 100 and Pf-4 levels were higher at PT day 100 in engrafted patients compared with those who experienced secondary graft rejection. Increased concentrations of plasma Gal-1, Tsp-1, and Pf-4 could reflect increased T regulatory cells, IL-10, and TGF-β, which are essential players in the initiation of immunologic tolerance. These biomarkers may provide opportunities for preemptive intervention to minimize the incidence of graft rejection.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biology, The Catholic University of America, Washington, DC; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Abdoul Kone
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sajni Patel
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
46
|
Leibovitch JN, Tambe AV, Cimpeanu E, Poplawska M, Jafri F, Dutta D, Lim SH. l-glutamine, crizanlizumab, voxelotor, and cell-based therapy for adult sickle cell disease: Hype or hope? Blood Rev 2022; 53:100925. [PMID: 34991920 DOI: 10.1016/j.blre.2021.100925] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
For more than two decades, hydroxyurea was the only therapeutic agent approved by the Food and Drug Administration (FDA) for sickle cell disease (SCD). Although curative allogeneic hematopoietic stem cell transplants (allo-HSCT) were also available, only very few patients underwent the procedure due to lack of matched-related donors. However, therapeutic options for SCD patients increased dramatically in the last few years. Three new agents, l-glutamine, crizanlizumab, and voxelotor, were approved by the FDA for use in SCD patients. The number of SCD patients who underwent allo-HSCT also increased as a result of advances in the prevention of graft failure and graft-versus-host disease from using mismatched donor HSC. More recently gene therapy was made available on clinical trials. The increased treatment options for SCD have led to a sense of optimism and excitement among many physicians that these new approaches would alter the clinical course and disease burden. Although these newer agents do provide hope to SCD patients, the hyped-up responses need to be evaluated in the context of reality. In this review, we will discuss and compare these new agents and cell-based therapy, evaluate their clinical and economic impacts, and examine their roles in reducing the disease burden.
Collapse
Affiliation(s)
- Jennifer N Leibovitch
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Ajay V Tambe
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Emanuela Cimpeanu
- Division of Hematology and Oncology, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Firas Jafri
- Division of Hematology and Oncology, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, United States of America; Division of Hematology and Oncology, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, United States of America; Division of Hematology and Oncology, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
47
|
Bhat DK, Olkhanud PB, Gangaplara A, Seifuddin F, Pirooznia M, Biancotto A, Fantoni G, Pittman C, Francis B, Dagur PK, Saxena A, McCoy JP, Pfeiffer RM, Fitzhugh CD. Early Myeloid Derived Suppressor Cells (eMDSCs) Are Associated With High Donor Myeloid Chimerism Following Haploidentical HSCT for Sickle Cell Disease. Front Immunol 2021; 12:757279. [PMID: 34917079 PMCID: PMC8669726 DOI: 10.3389/fimmu.2021.757279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a widely available curative option for patients with sickle cell disease (SCD). Our original non-myeloablative haplo-HSCT trial employing post-transplant (PT) cyclophosphamide had a low incidence of GVHD but had high rejection rates. Here, we aimed to evaluate immune reconstitution following haplo-HSCT and identify cytokines and cells associated with graft rejection/engraftment. 50 cytokines and 10 immune cell subsets were screened using multiplex-ELISA and flow cytometry, respectively, at baseline and PT-Days 30, 60, 100, and 180. We observed the most significant differences in cytokine levels between the engrafted and rejected groups at PT-Day 60, corresponding with clinical findings of secondary graft rejection. Of the 44 cytokines evaluated, plasma concentrations of 19 cytokines were different between the two groups at PT-Day 60. Factor analysis suggested two independent factors. The first factor (IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, and TGFb1 contributed significantly) was strongly associated with engraftment with OR = 2.7 (95%CI of 1.4 to 5.4), whereas the second factor (GROa and IL-18 contributed significantly) was not significantly associated with engraftment. Sufficient donor myeloid chimerism (DMC) is critical for the success of HSCT; here, we evaluated immune cells among high (H) DMC (DMC≥20%) and low (L) DMC (DMC<20%) groups along with engrafted and rejected groups. We found that early myeloid-derived suppressor cell (eMDSC) frequencies were elevated in engrafted patients and patients with HDMC at PT-Day 30 (P< 0.04 & P< 0.003, respectively). 9 of 20 patients were evaluated for the source of eMDSCs. The HDMC group had high mixed chimeric eMDSCs as compared to the LDMC group (P< 0.00001). We found a positive correlation between the frequencies of eMDSCs and Tregs at PT-Day 100 (r=0.72, P <0.0007); eMDSCs at BSL and Tregs at PT-Day 100 (r=0.63, P <0.004). Of 10 immune regulatory cells and 50 cytokines, we observed mixed chimeric eMDSCs and IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, TGFb1 as potential hits which could serve as prognostic markers in predicting allograft outcome towards engraftment following haploidentical HSCT employing post-transplant cyclophosphamide. The current findings need to be replicated and further explored in a larger cohort.
Collapse
Affiliation(s)
- Deepali K Bhat
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovanna Fantoni
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Corinne Pittman
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Berline Francis
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
48
|
Krishnamurti L. Hematopoietic cell transplantation for sickle cell disease: updates and future directions. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:181-189. [PMID: 34889368 PMCID: PMC8791142 DOI: 10.1182/hematology.2021000251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excellent outcomes in hematopoietic cell transplantation (HCT) from HLA-identical siblings, improvements in conditioning regimens, novel graft-versus-host disease prophylaxis, and the availability of alternative donors have all contributed to the increased applicability and acceptability of HCT for sickle cell disease (SCD). In young children with symptomatic SCD with an available HLA-identical related donor, HCT should be carefully considered. HCT from alternative donors is typically undertaken only in patients with severe symptoms, causing or likely to cause organ damage, and in the context of clinical trials. Patients undergoing HCT for SCD require careful counseling and preparation. They require careful monitoring of unique organ toxicities and complications during HCT. Patients must be prospectively followed for a prolonged time to determine the long-term outcomes and late effects of HCT for SCD. Thus, there is a need for a universal, longitudinal clinical registry to follow patients after HCT for SCD in conjunction with individuals who do not receive HCT to compare outcomes. Antibody-based conditioning and ex-vivo umbilical cord blood expansion are likely to improve the availability and acceptability of HCT. In addition, new disease-modifying drugs and the emerging option of the autologous transplantation of gene-modified hematopoietic progenitor cells are likely to expand the available therapeutic options and make decision-making by patients, physicians, and caregivers even more complicated. Future efforts must also focus on determining the impact of socioeconomic status on access to and outcomes of HCT and the long-term impact of HCT on patients, families, and society.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurti
- Correspondence Lakshmanan Krishnamurti, Children's Healthcare of Atlanta-Egleston, 1405 Clifton Road NE, Atlanta, GA 30322; e-mail:
| |
Collapse
|
49
|
Leonard A, Bertaina A, Bonfim C, Cohen S, Prockop S, Purtill D, Russell A, Boelens JJ, Wynn R, Ruggeri A, Abraham A. Curative therapy for hemoglobinopathies: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee review comparing outcomes, accessibility and cost of ex vivo stem cell gene therapy versus allogeneic hematopoietic stem cell transplantation. Cytotherapy 2021; 24:249-261. [PMID: 34879990 DOI: 10.1016/j.jcyt.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022]
Abstract
Thalassemia and sickle cell disease (SCD) are the most common monogenic diseases in the world and represent a growing global health burden. Management is limited by a paucity of disease-modifying therapies; however, allogeneic hematopoietic stem cell transplantation (HSCT) and autologous HSCT after genetic modification offer patients a curative option. Allogeneic HSCT is limited by donor selection, morbidity and mortality from transplant conditioning, graft-versus-host disease and graft rejection, whereas significant concerns regarding long-term safety, efficacy and cost limit the broad applicability of gene therapy. Here the authors review current outcomes in allogeneic and autologous HSCT for transfusion-dependent thalassemia and SCD and provide our perspective on issues surrounding accessibility and costs as barriers to offering curative therapy to patients with hereditary hemoglobinopathies.
Collapse
Affiliation(s)
- Alexis Leonard
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Susan Prockop
- Stem Cell Transplantation and Cellular Therapies, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Annalisa Ruggeri
- Department of Hematology and bone marrow transplantation, IRCCS Ospedale San Raffaele, Segrate, Milan, Italy
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
50
|
Rosanwo TO, Bauer DE. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy. Mol Ther 2021; 29:3163-3178. [PMID: 34628053 PMCID: PMC8571174 DOI: 10.1016/j.ymthe.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and β-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the β-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.
Collapse
Affiliation(s)
- Tolulope O Rosanwo
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston MA, USA; Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Daniel E Bauer
- Department of Pediatrics, Harvard Medical School, Boston MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|