1
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
2
|
Aleman M, Arepally GM, Baglin T, Buitrago L, Davizon-Castillo P, Dayal S, Flick MJ, Gerber G, Hisada Y, Kolev K, O’Loghlen A, Rezaie AR, Sparkenbaugh EM, Stavrou EX, Ünlü B, Vercellotti GM. Coagulation and platelet biology at the intersection of health and disease: illustrated capsules of the 11th Symposium on Hemostasis at the University of North Carolina. Res Pract Thromb Haemost 2024; 8:102395. [PMID: 38699410 PMCID: PMC11063502 DOI: 10.1016/j.rpth.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 05/05/2024] Open
Abstract
The University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology. In keeping with the tradition of the conference, we expect novel cross-disciplinary collaborations to result from bringing together fundamental scientists and physician-scientists from different backgrounds and perspectives. The aim of these collaborations is to springboard the next generation of important advances in the field. This year's program was designed to discuss Coagulation and Platelet Biology at the Intersection of Health and Disease. The goal is to develop a better understanding of the pathophysiologic mechanisms leading to hemostatic and thrombotic disorders as this understanding is critical for the continued development of safe and efficacious therapeutics. Included in this review article are illustrated capsules provided by our speakers that highlight the main conclusions of the invited talks.
Collapse
Affiliation(s)
- Maria Aleman
- Blood Research Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gowthami M. Arepally
- Division of Hematology, Duke University Medical Center, Durham, North Carolina, USA
| | - Trevor Baglin
- Centessa Pharmaceuticals plc, Cheshire, United Kingdom
| | - Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| | - Pavel Davizon-Castillo
- Department of Pediatrics Hematology/Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Matthew J. Flick
- Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gloria Gerber
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohei Hisada
- Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alireza R. Rezaie
- Department of Biochemistry and Molecular Biology, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Erica M. Sparkenbaugh
- Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Evi X. Stavrou
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medicine Service, Section of Hematology-Oncology, Louise Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Betül Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
5
|
Berkowitz S, Chapman J, Dori A, Gofrit SG, Maggio N, Shavit-Stein E. Complement and Coagulation System Crosstalk in Synaptic and Neural Conduction in the Central and Peripheral Nervous Systems. Biomedicines 2021; 9:biomedicines9121950. [PMID: 34944766 PMCID: PMC8698364 DOI: 10.3390/biomedicines9121950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Complement and coagulation are both key systems that defend the body from harm. They share multiple features and are similarly activated. They each play individual roles in the systemic circulation in physiology and pathophysiology, with significant crosstalk between them. Components from both systems are mapped to important structures in the central nervous system (CNS) and peripheral nervous system (PNS). Complement and coagulation participate in critical functions in neuronal development and synaptic plasticity. During pathophysiological states, complement and coagulation factors are upregulated and can modulate synaptic transmission and neuronal conduction. This review summarizes the current evidence regarding the roles of the complement system and the coagulation cascade in the CNS and PNS. Possible crosstalk between the two systems regarding neuroinflammatory-related effects on synaptic transmission and neuronal conduction is explored. Novel treatment based on the modulation of crosstalk between complement and coagulation may perhaps help to alleviate neuroinflammatory effects in diseased states of the CNS and PNS.
Collapse
Affiliation(s)
- Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-50-921-0400
| |
Collapse
|
6
|
Nilsson PH, Johnson C, Quach QH, Macpherson A, Durrant O, Pischke SE, Fure H, Landsem A, Bergseth G, Schjalm C, Haugaard-Kedström LM, Huber-Lang M, van den Elsen J, Brekke OL, Mollnes TE. A Conformational Change of Complement C5 Is Required for Thrombin-Mediated Cleavage, Revealed by a Novel Ex Vivo Human Whole Blood Model Preserving Full Thrombin Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1641-1651. [PMID: 34380648 PMCID: PMC8428748 DOI: 10.4049/jimmunol.2001471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
Thrombin activation of C5 connects thrombosis to inflammation. Complement research in whole blood ex vivo necessitates anticoagulation, which potentially interferes with the inflammatory modulation by thrombin. We challenged the concept of thrombin as an activator of native C5 by analyzing complement activation and C5 cleavage in human whole blood anticoagulated with Gly-Pro-Arg-Pro (GPRP), a peptide targeting fibrin polymerization downstream of thrombin, allowing complete endogenous thrombin generation. GPRP dose-dependently inhibited coagulation but allowed for platelet activation in accordance with thrombin generation. Spontaneous and bacterial-induced complement activation by Escherichia coli and Staphylococcus aureus, analyzed at the level of C3 and C5, were similar in blood anticoagulated with GPRP and the thrombin inhibitor lepirudin. In the GPRP model, endogenous thrombin, even at supra-physiologic concentrations, did not cleave native C5, despite efficiently cleaving commercially sourced purified C5 protein, both in buffer and when added to C5-deficient serum. In normal serum, only exogenously added, commercially sourced C5 was cleaved, whereas the native plasma C5 remained intact. Crucially, affinity-purified C5, eluted under mild conditions using an MgCl2 solution, was not cleaved by thrombin. Acidification of plasma to pH ≤ 6.8 by hydrochloric or lactic acid induced a C5 antigenic change, nonreversible by pH neutralization, that permitted cleavage by thrombin. Circular dichroism on purified C5 confirmed the structural change during acidification. Thus, we propose that pH-induced conformational change allows thrombin-mediated cleavage of C5 and that, contrary to previous reports, thrombin does not cleave plasma C5 in its native form, suggesting that thrombin cleavage of C5 may be restricted to certain pathophysiological conditions.
Collapse
Affiliation(s)
- Per H Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Christina Johnson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Quang Huy Quach
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Alex Macpherson
- UCB, Slough, UK
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Oliver Durrant
- UCB, Slough, UK
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Soeren E Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Clinic for Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Hilde Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Anne Landsem
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | | | - Camilla Schjalm
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, UK; and
| | - Ole-Lars Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Complement and the prothrombotic state. Blood 2021; 139:1954-1972. [PMID: 34415298 DOI: 10.1182/blood.2020007206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
In 2007 and 2009 the regulatory approval of the first-in-class complement inhibitor Eculizumab has revolutionized the clinical management of two rare, life-threatening clinical conditions: paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). While being completely distinct diseases affecting blood cells and the glomerulus, PNH and aHUS remarkably share several features in their etiology and clinical presentation. An imbalance between complement activation and regulation at host surfaces underlies both diseases precipitating in severe thrombotic events that are largely resistant to anti-coagulant and/or anti-platelet therapies. Inhibition of the common terminal complement pathway by Eculizumab prevents the frequently occurring thrombotic events responsible for the high mortality and morbidity observed in patients not treated with anti-complement therapy. While many in vitro and ex vivo studies elaborate numerous different molecular interactions between complement activation products and hemostasis, this review focuses on the clinical evidence that links these two fields in humans. Several non-infectious conditions with known complement involvement are scrutinized for common patterns concerning a prothrombotic statues and the occurrence of certain complement activation levels. Next to PNH and aHUS, germline encoded CD59 or CD55 deficiency (the latter causing the disease Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy; CHAPLE), autoimmune hemolytic anemia (AIHA), (catastrophic) anti-phospholipid syndrome (APS, CAPS) and C3 glomerulopathy are considered. Parallels and distinct features among these conditions are discussed against the background of thrombosis, complement activation, and potential complement diagnostic and therapeutic avenues.
Collapse
|
8
|
Mannes M, Schmidt CQ, Nilsson B, Ekdahl KN, Huber-Lang M. Complement as driver of systemic inflammation and organ failure in trauma, burn, and sepsis. Semin Immunopathol 2021; 43:773-788. [PMID: 34191093 PMCID: PMC8243057 DOI: 10.1007/s00281-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Complement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis. This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Tsai HHC, Moyers JT, Moore CJ, Thinn M. Activated Prothrombin Complex Concentrate-Induced Atypical Hemolytic Uremic Syndrome Treated with Eculizumab. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e929616. [PMID: 33678802 PMCID: PMC7959102 DOI: 10.12659/ajcr.929616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Patient: Male, 58-year-old Final Diagnosis: Atypical hemolytic uremic syndrome • FEIBA induced aHUS Symptoms: Anemia • renal failure • thrombocytopenia Medication: — Clinical Procedure: — Specialty: Hematology • General and Internal Medicine
Collapse
Affiliation(s)
| | - Justin Tyler Moyers
- Division of Hematology and Oncology, Department of Internal Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christie J Moore
- Department of Hematology and Oncology, Providence Cancer Institute, Portland, OR, USA
| | - MieMie Thinn
- Department of Hematology and Oncology, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA
| |
Collapse
|
10
|
Skerka C, Pradel G, Halder LD, Zipfel PF, Zipfel SLH, Strauß O. Factor H-related protein 1: a complement regulatory protein and guardian of necrotic-type surfaces. Br J Pharmacol 2020; 178:2823-2831. [PMID: 33085794 DOI: 10.1111/bph.15290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022] Open
Abstract
Factor H-related protein 1 (FHR-1) is a member of the factor H protein family, which is involved in regulating innate immune complement reactions. Genetic modification of the encoding gene, CFHR1 on human chromosome 1, is involved in diseases such as age-related macular degeneration, C3 glomerulopathy and atypical haemolytic uraemic syndrome, indicating an important role for FHR-1 in human health. Recent research data demonstrate that FHR-1 levels increase in IgA nephropathy and anti-neutrophilic cytoplasmic autoantibodies (ANCA) vasculitis and that FHR-1 induces strong inflammation in monocytes on necrotic-type surfaces, suggesting a complement-independent role. These new results increase our knowledge about the role of this complement protein in pathology and provide a new therapeutic target, particularly in the context of inflammatory diseases induced by necrosis. This review summarizes current knowledge about FHR-1 and discusses its role in complement reactions and inflammation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Svante L H Zipfel
- Department of Cardiovascular Surgery, University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Charité University Medicine, Campus Virchow Clinic, Berlin, Germany
| |
Collapse
|
11
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Dasari P, Koleci N, Shopova IA, Wartenberg D, Beyersdorf N, Dietrich S, Sahagún-Ruiz A, Figge MT, Skerka C, Brakhage AA, Zipfel PF. Enolase From Aspergillus fumigatus Is a Moonlighting Protein That Binds the Human Plasma Complement Proteins Factor H, FHL-1, C4BP, and Plasminogen. Front Immunol 2019; 10:2573. [PMID: 31824478 PMCID: PMC6883375 DOI: 10.3389/fimmu.2019.02573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/17/2019] [Indexed: 11/13/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.
Collapse
Affiliation(s)
- Prasad Dasari
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Naile Koleci
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Iordana A Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Stefanie Dietrich
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Alfredo Sahagún-Ruiz
- Laboratorio de Inmunología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Clarke AR, Christophe BR, Khahera A, Sim JL, Connolly ES. Therapeutic Modulation of the Complement Cascade in Stroke. Front Immunol 2019; 10:1723. [PMID: 31417544 PMCID: PMC6682670 DOI: 10.3389/fimmu.2019.01723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide and an increasing number of ischemic stroke patients are undergoing pharmacological and mechanical reperfusion. Both human and experimental models of reperfused ischemic stroke have implicated the complement cascade in secondary tissue injury. Most data point to the lectin and alternative pathways as key to activation, and C3a and C5a binding of their receptors as critical effectors of injury. During periods of thrombolysis use to treat stroke, acute experimental complement cascade blockade has been found to rescue tissue and improves functional outcome. Blockade of the complement cascade during the period of tissue reorganization, repair, and recovery is by contrast not helpful and in fact is likely to be deleterious with emerging data suggesting downstream upregulation of the cascade might even facilitate recovery. Successful clinical translation will require the right clinical setting and pharmacologic strategies that are capable of targeting the key effectors early while not inhibiting delayed repair. Early reports in a variety of disease states suggest that such pharmacologic strategies appear to have a favorable risk profile and offer substantial hope for patients.
Collapse
Affiliation(s)
- Alison R Clarke
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Brandon R Christophe
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Anadjeet Khahera
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Justin L Sim
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - E Sander Connolly
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
15
|
Nordli HR, Pukstad B, Chinga-Carrasco G, Rokstad AM. Ultrapure Wood Nanocellulose—Assessments of Coagulation and Initial Inflammation Potential. ACS APPLIED BIO MATERIALS 2019; 2:1107-1118. [DOI: 10.1021/acsabm.8b00711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Henriette R. Nordli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Brita Pukstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | | | - Anne M. Rokstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Centre of Molecular Inflammation Research, NO-7491 Trondheim, Norway
- Clinic of Surgery, Centre for Obesity, St. Olavs University Hospital, NO-2006 Trondheim, Norway
| |
Collapse
|
16
|
Landsem A, Fure H, Krey Ludviksen J, Christiansen D, Lau C, Mathisen M, Bergseth G, Nymo S, Lappegård KT, Woodruff TM, Espevik T, Mollnes TE, Brekke OL. Complement component 5 does not interfere with physiological hemostasis but is essential for Escherichia coli-induced coagulation accompanied by Toll-like receptor 4. Clin Exp Immunol 2018; 196:97-110. [PMID: 30444525 PMCID: PMC6422650 DOI: 10.1111/cei.13240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
There is a close cross-talk between complement, Toll-like receptors (TLRs) and coagulation. The role of the central complement component 5 (C5) in physiological and pathophysiological hemostasis has not, however, been fully elucidated. This study examined the effects of C5 in normal hemostasis and in Escherichia coli-induced coagulation and tissue factor (TF) up-regulation. Fresh whole blood obtained from six healthy donors and one C5-deficient individual (C5D) was anti-coagulated with the thrombin inhibitor lepirudin. Blood was incubated with or without E. coli in the presence of the C5 inhibitor eculizumab, a blocking anti-CD14 monoclonal antibody (anti-CD14) or the TLR-4 inhibitor eritoran. C5D blood was reconstituted with purified human C5. TF mRNA was measured by quantitative polymerase chain reaction (qPCR) and monocyte TF and CD11b surface expression by flow cytometry. Prothrombin fragment 1+2 (PTF1·2) in plasma and microparticles exposing TF (TF-MP) was measured by enzyme-linked immunosorbent assay (ELISA). Coagulation kinetics were analyzed by rotational thromboelastometry and platelet function by PFA-200. Normal blood with eculizumab as well as C5D blood with or without reconstitution with C5 displayed completely normal biochemical hemostatic patterns. In contrast, E. coli-induced TF mRNA and TF-MP were significantly reduced by C5 inhibition. C5 inhibition combined with anti-CD14 or eritoran completely inhibited the E. coli-induced monocyte TF, TF-MP and plasma PTF1·2. Addition of C5a alone did not induce TF expression on monocytes. In conclusion, C5 showed no impact on physiological hemostasis, but substantially contributed to E. coli-induced procoagulant events, which were abolished by the combined inhibition of C5 and CD14 or TLR-4.
Collapse
Affiliation(s)
- A Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway.,Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - H Fure
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - J Krey Ludviksen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - D Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - C Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - M Mathisen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - G Bergseth
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - S Nymo
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway.,Division of Medicine, Nordland Hospital Trust, Bodø, Norway
| | - K T Lappegård
- Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Medicine, Nordland Hospital Trust, Bodø, Norway
| | - T M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - T Espevik
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - T E Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway.,Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway.,Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - O-L Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway.,Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
Abstract
: Complement and coagulation are evolutionarily related proteolytic cascades in the blood that are critical for effecting an appropriate innate response to injury that limits bleeding and infection, while promoting healing. Although often viewed as distinct, it has long been recognized that cross-talk likely exists between these pathways. Only recently have molecular links been established. These are providing insights that are revealing opportunities for the development of novel therapeutic strategies to better treat a wide range of thrombotic, inflammatory, immune, infectious, and malignant diseases. In this brief review, the complex relationship between complement and coagulation is highlighted, underlining some of the newly uncovered interactions, in the hopes of stimulating innovative research that will yield improvements in patient outcomes.
Collapse
|
18
|
Leung LLK, Morser J. Carboxypeptidase B2 and carboxypeptidase N in the crosstalk between coagulation, thrombosis, inflammation, and innate immunity. J Thromb Haemost 2018; 16:S1538-7836(22)02219-X. [PMID: 29883024 DOI: 10.1111/jth.14199] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Two basic carboxypeptidases, carboxypeptidase B2 (CPB2) and carboxypeptidase N (CPN) are present in plasma. CPN is constitutively active, whereas CPB2 circulates as a precursor, procarboxypeptidase B2 (proCPB2), that needs to be activated by the thrombin-thrombomodulin complex or plasmin bound to glycosaminoglycans. The substrate specificities of CPB2 and CPN are similar; they both remove C-terminal basic amino acids from bioactive peptides and proteins, thereby inactivating them. The complement cascade is a cascade of proteases and cofactors activated by pathogens or dead cells, divided into two phases, with the second phase only being triggered if sufficient C3b is present. Complement activation generates anaphylatoxins: C3a, which stimulates macrophages; and C5a, which is an activator and attractant for neutrophils. Pharmacological intervention with inhibitors has shown that CPB2 delays fibrinolysis, whereas CPN is responsible for systemic inactivation of C3a and C5a. Among mice genetically deficient in either CPB2 or CPN, in a model of hemolytic-uremic syndrome, Cpb2-/- mice had the worst disease, followed by Cpn-/- mice, with wild-type (WT) mice being the most protected. This model is driven by C5a, and shows that CPB2 is important in inactivating C5a. In contrast, when mice were challenged acutely with cobra venom factor, the reverse phenotype was observed; Cpn-/- mice had markedly worse disease than Cpb2-/- mice, and WT mice were resistant. These observations need to be confirmed in humans. Therefore, CPB2 and CPN have different roles. CPN inactivates C3a and C5a generated spontaneously, whereas proCPB2 is activated at specific sites, where it inactivates bioactive peptides that would overwhelm CPN.
Collapse
Affiliation(s)
- L L K Leung
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J Morser
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
19
|
Skjeflo EW, Christiansen D, Fure H, Ludviksen JK, Woodruff TM, Espevik T, Nielsen EW, Brekke OL, Mollnes TE. Staphylococcus aureus-induced complement activation promotes tissue factor-mediated coagulation. J Thromb Haemost 2018; 16:905-918. [PMID: 29437288 DOI: 10.1111/jth.13979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 12/13/2022]
Abstract
Essentials Complement, Toll-like receptors and coagulation cross-talk in the process of thromboinflammation. This is explored in a unique human whole-blood model of S. aureus bacteremia. Coagulation is here shown as a downstream event of C5a-induced tissue factor (TF) production. Combined inhibition of C5 and CD14 efficiently attenuated TF and coagulation. SUMMARY Background There is extensive cross-talk between the complement system, the Toll-like receptors (TLRs), and hemostasis. Consumptive coagulopathy is a hallmark of sepsis, and is often mediated through increased tissue factor (TF) expression. Objectives To study the relative roles of complement, TLRs and TF in Staphylococcus aureus-induced coagulation. Methods Lepirudin-anticoagulated human whole blood was incubated with the three S. aureus strains Cowan, Wood, and Newman. C3 was inhibited with compstatin, C5 with eculizumab, C5a receptor 1 (C5aR1) and activated factor XII with peptide inhibitors, CD14, TLR2 and TF with neutralizing antibodies, and TLR4 with eritoran. Complement activation was measured by ELISA. Coagulation was measured according to prothrombin fragment 1 + 2 (PTF1 + 2 ) determined with ELISA, and TF mRNA, monocyte surface expression and functional activity were measured with quantitative PCR, flow cytometry, and ELISA, respectively. Results All three strains generated substantial and statistically significant amounts of C5a, terminal complement complex, PTF1 + 2 , and TF mRNA, and showed substantial TF surface expression on monocytes and TF functional activity. Inhibition of C5 cleavage most efficiently and significantly inhibited all six markers in strains Cowan and Wood, and five markers in Newman. The effect of complement inhibition was shown to be completely dependent on C5aR1. The C5 blocking effect was equally potentiated when combined with blocking of CD14 or TLR2, but not TLR4. TF blocking significantly reduced PTF1 + 2 levels to baseline levels. Conclusions S. aureus-induced coagulation in human whole blood was mainly attributable to C5a-induced mRNA upregulation, monocyte TF expression, and plasma TF activity, thus underscoring complement as a key player in S. aureus-induced coagulation.
Collapse
Affiliation(s)
- E W Skjeflo
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - H Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - J K Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - T M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - T Espevik
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E W Nielsen
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Anesthesiology, Nordland Hospital, Bodø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - O L Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | - T E Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology, Oslo University Hospital and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
|