1
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
3
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
5
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
6
|
Crespiatico I, Zaghi M, Mastini C, D'Aliberti D, Mauri M, Mercado CM, Fontana D, Spinelli S, Crippa V, Inzoli E, Manghisi B, Civettini I, Ramazzotti D, Sangiorgio V, Gengotti M, Brambilla V, Aroldi A, Banfi F, Barone C, Orsenigo R, Riera L, Riminucci M, Corsi A, Breccia M, Morotti A, Cilloni D, Roccaro A, Sacco A, Stagno F, Serafini M, Mottadelli F, Cazzaniga G, Pagni F, Chiarle R, Azzoni E, Sessa A, Gambacorti-Passerini C, Elli EM, Mologni L, Piazza R. First-hit SETBP1 mutations cause a myeloproliferative disorder with bone marrow fibrosis. Blood 2024; 143:1399-1413. [PMID: 38194688 DOI: 10.1182/blood.2023021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.
Collapse
Affiliation(s)
- Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mattia Zaghi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Carl Mirko Mercado
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Inzoli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Beatrice Manghisi
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Ivan Civettini
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Sangiorgio
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Michele Gengotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Banfi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristiana Barone
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Roberto Orsenigo
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Barcelona UAB, Barcelona, Spain
| | - Ludovica Riera
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Department of Translational and Precision Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Aldo Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Stagno
- Division of Hematology, Azienda Ospedaliero Universitaria Policlinico G. Rodolico-S. Marco, Catania, Italy
| | - Marta Serafini
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Mottadelli
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Pathology, University of Milan-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA
- European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico, Division of Haematopathology, Milan, Italy
| | - Emanuele Azzoni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alessandro Sessa
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
7
|
Cao H, Naik SH, Amann-Zalcenstein D, Hickey P, Salim A, Cao B, Nilsson SK, Keightley MC, Lieschke GJ. Late fetal hematopoietic failure results from ZBTB11 deficiency despite abundant HSC specification. Blood Adv 2023; 7:6506-6519. [PMID: 37567157 PMCID: PMC10632610 DOI: 10.1182/bloodadvances.2022009580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.
Collapse
Affiliation(s)
- Huimin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Shalin H. Naik
- Department of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter Hickey
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Agus Salim
- Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
- Melbourne School of Population and Global Health, School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Susan K. Nilsson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - M. Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Wang D, Tanaka-Yano M, Meader E, Kinney MA, Morris V, Lummertz da Rocha E, Liu N, Liu T, Zhu Q, Orkin SH, North TE, Daley GQ, Rowe RG. Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Rep 2022; 39:110587. [PMID: 35385744 PMCID: PMC9029260 DOI: 10.1016/j.celrep.2022.110587] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis changes over life to meet the demands of maturation and aging. Here, we find that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from gestation into adulthood, a process regulated by the heterochronic Lin28b/let-7 axis. Native fetal and neonatal HSPCs distribute with a pro-lymphoid/erythroid bias with a shift toward myeloid output in adulthood. By mining transcriptomic data comparing juvenile and adult HSPCs and reconstructing coordinately activated gene regulatory networks, we uncover the Polycomb repressor complex 1 (PRC1) component Cbx2 as an effector of Lin28b/let-7's control of hematopoietic maturation. We find that juvenile Cbx2-/- hematopoietic tissues show impairment of B-lymphopoiesis, a precocious adult-like myeloid bias, and that Cbx2/PRC1 regulates developmental timing of expression of key hematopoietic transcription factors. These findings define a mechanism of regulation of HSPC output via chromatin modification as a function of age with potential impact on age-biased pediatric and adult blood disorders.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mayuri Tanaka-Yano
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleanor Meader
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Melissa A Kinney
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vivian Morris
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Nan Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qian Zhu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Stuart H Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - R Grant Rowe
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Stem Cell Transplantation Program, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Neo WH, Meng Y, Rodriguez-Meira A, Fadlullah MZH, Booth CAG, Azzoni E, Thongjuea S, de Bruijn MFTR, Jacobsen SEW, Mead AJ, Lacaud G. Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors. Nat Commun 2021; 12:7019. [PMID: 34857757 PMCID: PMC8640066 DOI: 10.1038/s41467-021-27140-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.
Collapse
Affiliation(s)
- Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK.
| | - Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK
| | - Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emanuele Azzoni
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
10
|
Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 2021; 139:343-356. [PMID: 34517413 DOI: 10.1182/blood.2020007885] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros region (AGM) where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell-RNA-sequencing of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by Angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation towards HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.
Collapse
|
11
|
Choi YJ, Heck AM, Hayes BJ, Lih D, Rayner SG, Hadland B, Zheng Y. WNT5A from the fetal liver vascular niche supports human fetal liver hematopoiesis. Stem Cell Res Ther 2021; 12:321. [PMID: 34090485 PMCID: PMC8180064 DOI: 10.1186/s13287-021-02380-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The human fetal liver is a critical organ for prenatal hematopoiesis, the study of which offers insights into niche signals that regulate the fates of hematopoietic stem and progenitor cells (HSPCs) during fetal development. Here, we demonstrate that human fetal liver endothelium uniquely supports the maturation and expansion of multilineage HSPCs. Specifically, co-culture of fetal liver-derived immature CD43+CD45- hematopoietic cells with human fetal liver endothelial cells (ECs) led to a profound increase in the numbers of phenotypic CD45+CD34+ HSPCs and multilineage colony-forming progenitors generated in vitro, when compared to co-culture with ECs derived from other organs. We further identified a supportive role for EC-derived WNT5A in this process via gain- and loss-of-function studies within ECs. Our study emphasizes the importance of the organ-specific endothelial niche in supporting hematopoietic development and provides novel insight into signals that may facilitate HSPC expansion in vitro for clinical applications.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Adam M Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian J Hayes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Rayner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Center for Cardiovascular Biology, and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Huang Y, Yu SH, Zhen WX, Cheng T, Wang D, Lin JB, Wu YH, Wang YF, Chen Y, Shu LP, Wang Y, Sun XJ, Zhou Y, Yang F, Hsu CH, Xu PF. Tanshinone I, a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2. Theranostics 2021; 11:6891-6904. [PMID: 34093860 PMCID: PMC8171091 DOI: 10.7150/thno.53170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Tanshinone, a type of diterpenes derived from salvia miltiorrhiza, is a particularly promising herbal medicine compound for the treatment of cancers including acute myeloid leukemia (AML). However, the therapeutic function and the underlying mechanism of Tanshinone in AML are not clear, and the toxic effect of Tanshinone limits its clinical application. Methods: Our work utilizes human leukemia cell lines, zebrafish transgenics and xenograft models to study the cellular and molecular mechanisms of how Tanshinone affects normal and abnormal hematopoiesis. WISH, Sudan Black and O-Dianisidine Staining were used to determine the expression of hematopoietic genes on zebrafish embryos. RNA-seq analysis showed that differential expression genes and enrichment gene signature with Tan I treatment. The surface plasmon resonance (SPR) method was used with a BIAcore T200 (GE Healthcare) to measure the binding affinities of Tan I. In vitro methyltransferase assay was performed to verify Tan I inhibits the histone enzymatic activity of the PRC2 complex. ChIP-qPCR assay was used to determine the H3K27me3 level of EZH2 target genes. Results: We found that Tanshinone I (Tan I), one of the Tanshinones, can inhibit the proliferation of human leukemia cells in vitro and in the xenograft zebrafish model, as well as the normal and malignant definitive hematopoiesis in zebrafish. Mechanistic studies illustrate that Tan I regulates normal and malignant hematopoiesis through direct binding to EZH2, a well-known histone H3K27 methyltransferase, and inhibiting PRC2 enzymatic activity. Furthermore, we identified MMP9 and ABCG2 as two possible downstream genes of Tan I's effects on EZH2. Conclusions: Together, this study confirmed that Tan I is a novel EZH2 inhibitor and suggested MMP9 and ABCG2 as two potential therapeutic targets for myeloid malignant diseases.
Collapse
Affiliation(s)
- Ying Huang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shan-He Yu
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Xuan Zhen
- Department of biophysics and Kidney Disease Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Cheng
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie-Bo Lin
- Women's Hospital, and Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Han Wu
- College of Pharmaceutical Sciences, Zhejiang University
| | - Yi-Fan Wang
- Zhejiang University-University of Edinburgh united Institute
| | - Yi Chen
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li-Ping Shu
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, Guizhou, China, 550004
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University
| | - Xiao-Jian Sun
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Pediatric Hematology/Oncology at Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Fan Yang
- Department of biophysics and Kidney Disease Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chih-Hung Hsu
- Women's Hospital, and Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Lewis K, Yoshimoto M, Takebe T. Fetal liver hematopoiesis: from development to delivery. Stem Cell Res Ther 2021; 12:139. [PMID: 33597015 PMCID: PMC7890853 DOI: 10.1186/s13287-021-02189-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical transplants of hematopoietic stem cells (HSC) can provide a lifesaving therapy for many hematological diseases; however, therapeutic applications are hampered by donor availability. In vivo, HSC exist in a specified microenvironment called the niche. While most studies of the niche focus on those residing in the bone marrow (BM), a better understanding of the fetal liver niche during development is vital to design human pluripotent stem cell (PSC) culture and may provide valuable insights with regard to expanding HSCs ex vivo for transplantation. This review will discuss the importance of the fetal liver niche in HSC expansion, a feat that occurs during development and has great clinical potential. We will also discuss emerging approaches to generate expandable HSC in cell culture that attain more complexity in the form of cells or organoid models in combination with engineering and systems biology approaches. Overall, delivering HSC by charting developmental principles will help in the understanding of the molecular and biological interactions between HSCs and fetal liver cells for their controlled maturation and expansion.
Collapse
Affiliation(s)
- Kyle Lewis
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Momoko Yoshimoto
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA.
| | - Takanori Takebe
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Gastroenterology, Hepatology and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
15
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
16
|
Shao FF, Chen BJ, Wu GQ. The functions of EZH2 in immune cells: Principles for novel immunotherapies. J Leukoc Biol 2020; 110:77-87. [PMID: 33040370 DOI: 10.1002/jlb.1ru0520-311r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is aberrantly expressed or mutated in multiple types of cancer cells and plays an oncogenic role in tumorigenesis and development in most cancers. Results from pilot clinical studies have implied that EZH2 inhibitors have therapeutic potential against some cancers. However, the exact mechanisms by which EZH2 plays oncogenic roles and EZH2 inhibition exerts anticancer effects are incompletely understood. To date, the findings of studies focusing on EZH2 and cancer cells have failed to fully explain the observations in preclinical and clinical studies. Therefore, recent studies about the roles of EZH2 in cancers have shifted from cancer cells to immune cells. The human immune system is a complex network comprising multiple subpopulations of immune cells. Immune cells communicate and interact with cancer cells during cancer development and treatment, dictating the fate of cancer cells. Elucidating the roles of EZH2 in immune cells, especially in cancer patients, promises the identification of novel immunotherapeutic strategies or priming of existing immunotherapies against cancer. Hence, we reviewed the studies focusing on the involvement of EZH2 in various immune cells, aiming to provide ideas for immunotherapies targeting EZH2 in immune cells.
Collapse
Affiliation(s)
- Fang-Fei Shao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo-Jin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guo-Qing Wu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
18
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Nakagawa M, Kitabayashi I. Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci 2018; 109:2342-2348. [PMID: 29845708 PMCID: PMC6113435 DOI: 10.1111/cas.13655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the expression of target genes by modulating histone modifications and are representative epigenetic regulators that maintain the stemness of embryonic and hematopoietic stem cells. Histone methyltransferases enhancer of zeste homolog 1 and 2 (EZH1/2), which are subunits of polycomb repressive complexes (PRC), are recurrently mutated or highly expressed in many hematological malignancies. EZH2 has a dual function in tumorigenesis as an oncogene and tumor suppressor gene, and targeting PRC2, in particular EZH1/2, for anticancer therapy has been extensively developed in the clinical setting. Here, we review the oncogenic function of EZH1/2 and introduce new therapeutic drugs targeting these enzymes.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
- Department of Orthopaedic SurgeryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Issay Kitabayashi
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
20
|
Ezh2 spares KitL from the cutter. Blood 2018; 131:2180-2181. [PMID: 29773542 DOI: 10.1182/blood-2018-04-841890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|