1
|
Punnachet T, Chattipakorn SC, Chattipakorn N, Kumfu S. Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy-A Narrative Review. Biomedicines 2024; 12:2822. [PMID: 39767730 PMCID: PMC11673791 DOI: 10.3390/biomedicines12122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, characterized by its aggressive nature and heterogeneity. Despite significant advances in understanding DLBCL pathogenesis, there is still a need to elucidate the intricate mechanisms involved in disease progression and identify novel therapeutic targets. Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as crucial mediators of intercellular communication in various physiological and pathological processes, including cancer. In recent years, evidence has suggested that EVs play a vital role in DLBCL biology by facilitating the exchange of genetic material, especially miRNAs, and proteins and lipids between tumor cells, immune cells, and the tumor microenvironment. We summarize and discuss the biological functions of EVs in DLBCL and their effects on the tumor microenvironment, highlighting their influence on DLBCL pathobiology, immune evasion, angiogenesis, and drug resistance. We also investigated EVs' diagnostic and prognostic potential as circulating biomarkers in DLBCL, emphasizing their utility in the non-invasive monitoring of the disease status and treatment response. Understanding the complex interplay between EVs and DLBCL may open up new avenues for personalized medicine, improve patient stratification, and facilitate the development of innovative therapeutic interventions in this devastating hematological malignancy.
Collapse
Affiliation(s)
- Teerachat Punnachet
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
3
|
Lee AA, Godwin AK, Abdelhakim H. The multifaceted roles of extracellular vesicles for therapeutic intervention with non-Hodgkin lymphoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:329-343. [PMID: 39639879 PMCID: PMC11618822 DOI: 10.20517/evcna.2024.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) contribute to the development of cancer in various ways. Non-Hodgkin lymphoma (NHL) is a cancer of mature lymphocytes and the most common hematological malignancy globally. The most common form of NHL, diffuse large B-cell lymphoma (DLBCL), is primarily treated with chemotherapy, autologous stem cell transplantation (ASCT), and/or chimeric antigen receptor T-cell (CAR-T) therapy. With NHL disease progression and its treatment, extracellular vesicles play remarkable roles in influencing outcomes. This finding can be utilized for therapeutic intervention to improve patient outcomes for NHL. This review focuses on the multifaceted roles of EVs with NHL and its potential for guiding patient care.
Collapse
Affiliation(s)
- Arthur A. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Haitham Abdelhakim
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Xu P, Liu J, Chen H, Shang L, Wang F, Zhu Y, Guo Y, Li F, Yan F, Xie X, Li L, Gu W, Lin Y. Clinical significance of plasma PD-L1 + exosomes in the management of diffuse large B cell lymphoma. Ann Hematol 2023; 102:2435-2444. [PMID: 37162517 DOI: 10.1007/s00277-023-05259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
PD-L1+ exosome have been reported to be a promising prognostic biomarker in various cancers. However, its clinical value in diffuse large B cell lymphoma (DLBCL) has not been defined yet. In this study, a total of 165 plasma samples from 78 patients with DLBCL undergoing standard first-line R-CHOP regimens were collected at three different time points (pretreatment, and after 3 and 6 cycles of R-CHOP) to determine the proportions of PD-L1+ exosomes by flow cytometry. We found that high pretreatment plasma PD-L1+ exosome correlated with indicators of poor clinical outcome that included high Ki-67 expression (P = 0.02), double expressor lymphoma (P = 0.005), immunohistochemical PD-L1+ tumor tissue (P = 0.006), and the baseline maximal standardized uptake values (P = 0.0003). Pretreatment plasma PD-L1+ exosome was an independent factor by multivariate analysis with logistic regression (P = 0.0301). Moreover, the pretreatment PD-L1+ exosome was a strong predictor of final treatment responses of either CR or non-CR by ROC analysis (P < 0.001). PD-L1+ exosome level declined significantly in patients who experienced CR (pretreatment vs. after 3 cycles/after 6 cycles, P < 0.05), but not in the non-CR group. Intriguingly, plasma PD-L1+ exosome after 3 cycles (AUC = 0.857; 95%CI: 0.728-0.939) might represent a more sensitive indicator than radiographic assessment after 3 cycles (AUC = 0.626; 95%CI: 0.477-0.758) for evaluating the therapeutic response of DLBCL patients (P = 0.0136). Our results suggest that plasma PD-L1+ exosomes may represent a new biomarker for the dynamic monitoring of treatment response.
Collapse
Affiliation(s)
- Peng Xu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Liu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Huijuan Chen
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Limei Shang
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanting Guo
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Li
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaobao Xie
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Li
- National Center for Liver Cancer, Shanghai, China.
| | - Weiying Gu
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Yan Lin
- Department of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Laboratory of Hematology, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
6
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
7
|
Kulka M, Brennan K, Mc Gee M. Investigation of canine extracellular vesicles in diffuse large B-cell lymphomas. PLoS One 2022; 17:e0274261. [PMID: 36125986 PMCID: PMC9488776 DOI: 10.1371/journal.pone.0274261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are the most common lymphoproliferative diseases in dogs. DLBCL diagnosis to date has relied on histopathological analysis; however liquid biopsies have gained attention in recent years as a source of diagnostic and prognostic information. Liquid biopsies can be a source of circulating DNA, miRNA, circulating tumour cells or extracellular vesicles (EVs). In this study EVs were isolated from the plasma of healthy dogs, and dogs with lymphoma, and adenocarcinoma by iodixanol density gradient centrifugation. These EVs were positive for the EV markers CD63 and TSG101 and the pan-B cell markers CD79a, CD21, CD45, CD20. NTA analysis revealed that the DLBCL and adenocarcinoma dogs had elevated plasma EVs relative to the healthy dogs. Furthermore, the modal size of lymphoma EVs had decreased relative to healthy dogs while adenocarcinoma EVs were unchanged. This study demonstrates that the plasma EV population is altered in canine lymphoma patients in a manner similar to previous studies on human lymphomas. The similar changes to the EV population in dogs, together with the similar pathological features and treatment protocols in canine and human non-Hodgkin lymphomas would make dogs a good comparative model for studying the role of EVs in DLBCL development and progression.
Collapse
Affiliation(s)
- Marek Kulka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| | - Kieran Brennan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Margaret Mc Gee
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Tang J, Hu P, Zhou S, Zhou T, Li X, Zhang L. Lymphoma cell-derived extracellular vesicles inhibit autophagy and apoptosis to promote lymphoma cell growth via the microRNA-106a/Beclin1 axis. Cell Cycle 2022; 21:1280-1293. [PMID: 35285412 PMCID: PMC9132475 DOI: 10.1080/15384101.2022.2047335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lymphoma is a common malignant tumor globally. Tumor-derived extracellular vesicles (Evs) participate in genetic information exchange between tumor cells. We investigated the role and mechanism of human Burkitt lymphoma cells Raji-derived Evs (Raji-Evs) in lymphoma cells. Effects of Evs on lymphoma cell proliferation, invasion, autophagy, and apoptosis were assessed using Cell Counting Kit-8 method, Transwell assay, laser confocal microscopy, Western blotting, and flow cytometry. microRNA (miR)-106a expression in lymphoma cells was determined using reverse transcription-quantitative polymerase chain reaction and then downregulated in Raji cells and then Evs were isolated (Evs-in-miR-106a) to evaluate its role in lymphoma cell growth. The binding relationship between miR-106a and Beclin1 was verified using RNA pull-down and dual-luciferase assays. Beclin1 was overexpressed in SU-DHL-4 and Farage cells and SU-DHL-4 cell autophagy and apoptosis were detected. The levels of miR-106a and Beclin1 in SU-DHL-4 cells were detected after adding autophagy inhibitors. The tumorigenicity assay in nude mice was performed to validate the effects of Raji-Evs in vivo. Raji-Evs promoted lymphoma cell proliferation and invasion and increased miR-106a. miR-106a knockdown reversed Evs-promoted lymphoma cell proliferation and invasion. miR-106a carried by Raji-Evs targeted Beclin1 expression. Beclin1 overexpression or miR-106a inhibitor reversed the effects of Evs on lymphoma cell autophagy and apoptosis. Autophagy inhibitors elevated miR-106a expression and lowered Beclin1 expression. Raji-Evs-carried miR-106a inhibited Beclin1-dependent autophagy and apoptosis in lymphoma cells, which were further verified in vivo, together with promoted tumor growth. We proved that Raji-Evs inhibited lymphoma cell autophagy and apoptosis and promoted cell growth via the miR-106a/Beclin1 axis.
Collapse
Affiliation(s)
- Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Hu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Witte HM, Merz H, Bernd HW, Bauer A, Bernard V, Feller AC, Gebauer N. Comparative analysis of international prognostic indices in gray-zone lymphoma. Leuk Lymphoma 2021; 63:894-902. [PMID: 34856873 DOI: 10.1080/10428194.2021.2010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gray-zone lymphoma (GZL) reflects an aggressive B-cell neoplasm with features intermediate between diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma (cHL). The International Prognostic Index (IPI) and its derivatives (R-IPI, NCCN-IPI, and the Hasenclever IPS) have been established for DLBCL or cHL while the most suitable scoring system for GZL remains undetermined. In an exploratory multi-centric cohort of GZL (n = 61), we performed a comparative analysis of prognostic indices with regard to model fit and mutual concordance. The calculation of the corrected Akaike's information criterion (cAIC) and Harrel's concordance index (c-index) for each scoring system identified the NCCN-IPI to harbor the most convincing prognostic capabilities regarding both overall survival (OS) and progression-free survival (PFS) compared to its enhanced derivatives. The current results affirm the clinical utility of the NCCN-IPI and suggest its preferential use in clinical practice in GZL-patients.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Heinz-Wolfram Bernd
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Arthur Bauer
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
10
|
Li JW, Shi D, Wan XC, Hu J, Su YF, Zeng YP, Hu ZJ, Yu BH, Zhang QL, Wei P, Zhou XY. Universal extracellular vesicles and PD-L1+ extracellular vesicles detected by single molecule array technology as circulating biomarkers for diffuse large B cell lymphoma. Oncoimmunology 2021; 10:1995166. [PMID: 34745768 PMCID: PMC8565827 DOI: 10.1080/2162402x.2021.1995166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plasma extracellular vesicles (EVs) have been reported to be a promising source of diagnostic and prognostic biomarkers in various cancers. However, further research in this area is needed due to the limitations of circulating extracellular vesicles detection methods. Using the Single Molecule array (SiMoa) technology, we developed two extracellular vesicle detection assays, CD9-CD63 and PD-L1-CD63, to determine circulating universal EVs and PD-L1 positive EVs, respectively. A total of 164 diffuse large B-cell lymphoma (DLBCL) patients were retrospectively included in this study. Compared with healthy volunteers (n = 25), elevated CD9-CD63 and PD-L1-CD63 signals were detected in the plasma of DLBCL patients (n = 164). High CD9-CD63 signals was associated with molecular subtype, extranodal site and treatment response in DLBCL. A high PD-L1-CD63 signal was also associated with certain clinical features, including extranodal site and treatment response. CD9-CD63 and PD-L1-CD63 signals were found to be important prognostic factors for both progression-free and overall survival. Furthermore, PD-L1-positive EVs were found in all patients, though PD-L1 protein expression was positive in only 35.4% (17/48) of tumor biopsies. No correlation was found between circulating PD-L1+ EVs and soluble PD-L1 (sPD-L1) levels. Our results show that plasma universal EV and PD-L1-positive EV levels are significantly elevated in DLBCL and might serve as biomarkers for predicting survival outcomes in DLBCL patients.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Di Shi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Chun Wan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Jue Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Yi-Fan Su
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Yu-Peng Zeng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Zi-Juan Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Qun-Ling Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
CD20 expression, TrkB activation and functional activity of diffuse large B cell lymphoma-derived small extracellular vesicles. Br J Cancer 2021; 125:1687-1698. [PMID: 34743199 DOI: 10.1038/s41416-021-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) including exosomes, carrying the CD20, could be involved in immunotherapy resistance in diffuse large B cell lymphoma (DLBCL). We have reported endogenous brain-derived neurotrophic factor/TrkB (tropomyosin-related kinase B) survival axis in DLBCL. Here, we performed a comparative study of sEV production by germinal centre B cell (GCB) and activated B cell (ABC)-DLBCL cell lines, and analysed TrkB activation on this process. METHODS GCB (SUDHL4 and SUDHL6) and ABC (OCI-LY3, OCI-LY10 and U2932) cell lines were used. sEVs were characterised using nanoparticle tracking analysis technology and western blot. CD20 content was also analysed by enzyme-linked immunoassay, and complement-dependent cytotoxicity of rituximab was investigated. 7,8-Dihydroxyflavone (7,8-DHF) was used as a TrkB agonist. In vivo role of sEVs was evaluated in a xenograft model. RESULTS sEVs production varied significantly between DLBCL cells, independently of subtype. CD20 level was consistent with that of parental cells. Higher CD20 expression was found in sEVs after TrkB activation, with a trend in increasing their concentration. sEVs determined in vitro and in vivo protection from rituximab, which seemed CD20 level-dependent; the protection was enhanced when sEVs were produced by 7,8-DHF-treated cells. CONCLUSIONS DLBCL-derived sEVs have the differential capacity to interfere with immunotherapy, which could be enhanced by growth factors like neurotrophins. Evaluating the sEV CD20 level could be useful for disease monitoring.
Collapse
|
12
|
Proteomic Landscape of Extracellular Vesicles for Diffuse Large B-Cell Lymphoma Subtyping. Int J Mol Sci 2021; 22:ijms222011004. [PMID: 34681663 PMCID: PMC8536203 DOI: 10.3390/ijms222011004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
The role of extracellular vesicles (EVs) proteome in diffuse large B-cell lymphoma (DLBCL) pathology, subclassification, and patient screening is unexplored. We analyzed by state-of-the-art mass spectrometry the whole cell and secreted extracellular vesicles (EVs) proteomes of different molecular subtypes of DLBCL, germinal center B cell (GCB subtype), and activated B cell (ABC subtype). After quality control assessment, we compared whole-cell and secreted EVs proteomes of the two cell-of-origin (COO) categories, GCB and ABC subtypes, resulting in 288/1115 significantly differential expressed proteins from the whole-cell proteome and 228/608 proteins from EVs (adjust p-value < 0.05/p-value < 0.05). In our preclinical model system, we demonstrated that the EV proteome and the whole-cell proteome possess the capacity to separate cell lines into ABC and GCB subtypes. KEGG functional analysis and GO enrichment analysis for cellular component, molecular function, and biological process of differential expressed proteins (DEP) between ABC and GCB EVs showed a significant enrichment of pathways involved in immune response function. Other enriched functional categories for DEPs constitute cellular signaling and intracellular trafficking such as B-cell receptor (BCR), Fc_gamma R-mediated phagocytosis, ErbB signaling, and endocytosis. Our results suggest EVs can be explored as a tool for patient diagnosis, follow-up, and disease monitoring. Finally, this study proposes novel drug targets based on highly expressed proteins, for which antitumor drugs are available suggesting potential combinatorial therapies for aggressive forms of DLBCL. Data are available via ProteomeXchange with identifier PXD028267.
Collapse
|
13
|
Rinaldi F, Marchesi F, Palombi F, Pelosi A, Di Pace AL, Sacconi A, Terrenato I, Annibali O, Tomarchio V, Marino M, Cantonetti M, Vaccarini S, Papa E, Moretta L, Bertoni F, Mengarelli A, Regazzo G, Rizzo MG. MiR-22, a serum predictor of poor outcome and therapy response in diffuse large B-cell lymphoma patients. Br J Haematol 2021; 195:399-404. [PMID: 34318932 DOI: 10.1111/bjh.17734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive, heterogeneous neoplasm where prognostication and therapeutic decision are challenging. The available prognostic tools are not able to identify all patients refractory to treatment. MicroRNAs, small RNAs frequently deregulated in cancer, stably circulate in biofluids, representing interesting candidates for non-invasive biomarkers. Here we validated serum miR-22, an evolutionarily conserved microRNA, as a prognostic/predictive biomarker in DLBCL. Moreover, we found that its expression and release from DLBCL cells are related to therapy response and adversely affect cell proliferation. These results suggest that miR-22 is a promising complementary or even independent non-invasive biomarker for DLBCL management.
Collapse
Affiliation(s)
- Federica Rinaldi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Palombi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Andrea Sacconi
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Bio-Medico, Rome, Italy
| | - Valeria Tomarchio
- Hematology and Stem Cell Transplantation Unit, University Campus Bio-Medico, Rome, Italy
| | - Mirella Marino
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Cantonetti
- Hematology Unit of Lymphoproliferative Disorders, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Sara Vaccarini
- Hematology Unit of Lymphoproliferative Disorders, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Elena Papa
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Mengarelli
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria G Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Caner V, Cetin GO, Hacioglu S, Baris IC, Tepeli E, Turk NS, Bagci G, Yararbas K, Cagliyan G. The miRNA content of circulating exosomes in DLBCL patients and in vitro influence of DLBCL-derived exosomes on miRNA expression of healthy B cells from peripheral blood. Cancer Biomark 2021; 32:519-529. [PMID: 34275894 DOI: 10.3233/cbm-210110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Due to the heterogeneous nature of Diffuse Large B-cell Lymphoma (DLBCL), the mechanisms underlying tumor development and progression have not yet been fully elucidated. OBJECTIVE This study aimed to compare the characteristics of plasma exosomes of DLBCL patients and healthy individuals and to evaluate the exosomal interactions between DLBCL cell lines and normal B-cells. METHODS Exosome isolation was performed using an ultracentrifugation-based protocol from plasma of 20 patients with DLBCL and 20 controls. The expression of miRNAs from exosome samples was analyzed using a miRNA expression microarray. The presence of exosome-mediated communication between the lymphoma cells and normal B-cells was determined by the co-culture model. RESULTS A significant increase in plasma exosome concentrations of DLBCL patients was observed. There was also a significant decrease in the expression of 33 miRNAs in plasma exosomes of DLBCL patients. It was determined that normal B-cells internalize DLBCL-derived exosomes and then miRNA expression differences observed in normal B-cells are specific to lymphoma-subtypes. CONCLUSIONS MiR-3960, miR-6089 and miR-939-5p can be used as the miRNA signature in DLBCL diagnosis. We suppose that the exosomes changed the molecular signature of the target cells depending on the genomic characterization of the lymphoma cells they have originated.
Collapse
Affiliation(s)
- Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Gokhan Ozan Cetin
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Sibel Hacioglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Baris
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Emre Tepeli
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Nilay Sen Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulseren Bagci
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Kanay Yararbas
- Department of Medical Genetics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Gulsum Cagliyan
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
15
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Potential of the tumor‑derived extracellular vesicles carrying the miR‑125b‑5p target TNFAIP3 in reducing the sensitivity of diffuse large B cell lymphoma to rituximab. Int J Oncol 2021; 58:31. [PMID: 33887878 PMCID: PMC8078569 DOI: 10.3892/ijo.2021.5211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common and aggressive form of non-Hodgkin's lymphoma. Extracellular vesicles (EVs) derived from cancer cells are known to modify the tumor microenvironment. The aim of the present study was to investigate the role of miR-125b-3p carried by EVs in DLBCL in vitro and in vivo. TNFAIP3 expression in patient lesions was measured and the upstream miR that regulates TNFAIP3 was predicted using the starBase database. EVs were isolated from DLBCL cells and identified. DLBCL cells were transfected with pcDNA to overexpress TNFAIP3 or inhibit miR-125b-5p expression, incubated with EVs, and treated with rituximab to compare cell growth and TNFAIP3/CD20 expression. DLBCL model mice were administered EVs, conditioned medium, and rituximab to observe changes in tumor size, volume, and weight. TNFAIP3 was downregulated in patients with DLBCL and its levels further decreased in patients with drug-resistant DLBCL. Overexpression of TNFAIP3 in DLBCL cells enhanced the inhibitory effect of rituximab and increased CD20 expression. miR-125b-5p targeted TNFAIP3. Inhibition of miR-125b-5p enhanced the inhibitory effect of rituximab in DLBCL cells. The EV-carried miR-125b-5p reduced the sensitivity of DLBCL cells to rituximab, which was averted by overexpression of TNFAIP3. EVs reduced the sensitivity of DLBCL model mice to rituximab via the miR-125b-5p/TNFAIP3 axis. The study findings indicate that the tumor-derived EVs carrying miR-125b-5p can enter DLBCL cells and target TNFAIP3, thus reducing the sensitivity of DLBCL to rituximab, which may provide a novel therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Li JW, Wei P, Guo Y, Shi D, Yu BH, Su YF, Li XQ, Zhou XY. Clinical significance of circulating exosomal PD-L1 and soluble PD-L1 in extranodal NK/T-cell lymphoma, nasal-type. Am J Cancer Res 2020; 10:4498-4512. [PMID: 33415014 PMCID: PMC7783765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023] Open
Abstract
Exosomal PD-L1 (exoPD-L1) is reported to be associated with immunosuppression in various cancers. However, its clinical value in extranodal NK/T cell lymphoma (ENKTL) has not been defined yet. We retrospectively evaluated the prognostic value of pretreatment circulating soluble PD-L1 (sPD-L1) and exosomal PD-L1 (exoPD-L1) in ENKTL patients treated with VIPD-containing chemotherapy. A total of 107 ENKTL patients, including 101 early stage and 6 advanced stage patients were enrolled in our study. ExoPD-L1 and sPD-L1 in the blood were measured by single molecule array (Simoa) and enzyme-linked immunosorbent assay (ELISA), respectively. Compared with the healthy individuals (n=16), the patients with ENKTL (n=107) exhibited significantly elevated exoPD-L1 and sPD-L1 levels in the blood. High pretreatment plasma exoPD-L1 concentration was associated with higher SUVmax level and recurrence rate. Similarly, high sPD-L1 group was also associated with some adverse clinical parameters, including advanced stage, elevated LDH levels, B symptoms, high IPI score and PINK score. The 5-year progression-free survival (PFS) rate and overall survival (OS) rates were 65.2% and 85.7% for the whole cohort, respectively. Patients with a low pretreatment exoPD-L1 level (simoa signal < 1.2) had 5-year OS and PFS rates of 88.1% and 86.1%, respectively, compared with 56.0%. (P=0.012) and 35.7% (P=0.007) in patients with high exoPD-L1 level (simoa signal > 1.2). The 5-year OS and PFS rates for patients with low sPD-L1 group (< 219 pg/mL) was significantly higher than high sPD-L1 group (≥ 219 pg/mL) (OS, 91.3% vs. 55.5%, P < 0.001; PFS, 68.9% vs. 34.6%, P=0.003). However, no correlation was found between circulating exoPD-L1 and sPD-L1 levels. This is the first study to measure plasma exoPD-L1 level on the Quanterix Simoa platform. Our results proved that circulating exoPD-L1 and sPD-L1 levels were significantly elevated in ENKTL and might be potential biomarkers for predicting the survival outcomes of ENKTL patients.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Ye Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai East Hospital Tongji University School of MedicineShanghai, China
| | - Di Shi
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Yi-Fan Su
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| |
Collapse
|
18
|
Tanasi I, Adamo A, Kamga PT, Bazzoni R, Krampera M. High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Comput Struct Biotechnol J 2020; 18:2670-2677. [PMID: 33101605 PMCID: PMC7554250 DOI: 10.1016/j.csbj.2020.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response to different stimuli, both in physiological and pathological conditions. Their content generally reflects their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and cancer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression. Recent advances in high-throughput technologies have allowed the deep characterization and functional interpretation of EV content. In this review, the current knowledge on the high-throughput technology-based characterization of EV cargo in HM is summarized.
Collapse
Affiliation(s)
- Ilaria Tanasi
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Immunology Section, University of Verona, Italy
| | - Paul Takam Kamga
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Riccardo Bazzoni
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Hematology Section, University of Verona, Italy
| |
Collapse
|
19
|
Maisano D, Mimmi S, Russo R, Fioravanti A, Fiume G, Vecchio E, Nisticò N, Quinto I, Iaccino E. Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring. Pharmaceuticals (Basel) 2020; 13:ph13080180. [PMID: 32759810 PMCID: PMC7464894 DOI: 10.3390/ph13080180] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring.
Collapse
Affiliation(s)
- Domenico Maisano
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, 87100 Cosenza, Italy;
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit, 1050 Brussels, Belgium
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| |
Collapse
|
20
|
Longjohn MN, Hudson JABJ, Smith NC, Rise ML, Moorehead PC, Christian SL. Deciphering the messages carried by extracellular vesicles in hematological malignancies. Blood Rev 2020; 46:100734. [PMID: 32736879 DOI: 10.1016/j.blre.2020.100734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are nanosized membrane-bound particles released from all living cells examined thus far. EVs can transfer information in the form of proteins, nucleic acids, and lipids from donor cells to recipient cells. Here we summarize recent advances in understanding the role(s) EVs play in hematological malignancies (HM) and outline potential prognostic and diagnostic strategies using EVs. EVs have been shown to promote proliferation and angiogenesis, and alter the bone marrow microenvironment to favour the growth and survival of diverse HM. They also promote evasion of anti-cancer immune responses and increase multi-drug resistance. Using knowledge of EV biology, including HM-specific packaging of cargo, EV based diagnostics and therapeutic approaches show substantial clinical promise. However, while EVs may represent a new paradigm to solve many of the challenges in treating and/or diagnosing HM, much work is needed before they can be used clinically to improve patient outcomes.
Collapse
Affiliation(s)
| | - Jo-Anna B J Hudson
- Discipline of Pediatrics, Memorial University of Newfoundland, Canada; University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Paul C Moorehead
- Discipline of Pediatrics, Memorial University of Newfoundland, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, Canada.
| |
Collapse
|
21
|
Lovisa F, Di Battista P, Gaffo E, Damanti CC, Garbin A, Gallingani I, Carraro E, Pillon M, Biffi A, Bortoluzzi S, Mussolin L. RNY4 in Circulating Exosomes of Patients With Pediatric Anaplastic Large Cell Lymphoma: An Active Player? Front Oncol 2020; 10:238. [PMID: 32175280 PMCID: PMC7056873 DOI: 10.3389/fonc.2020.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicles, particularly exosomes, play a role in several biological processes and actively contribute to cancer development and progression, by carrying and delivering proteins, transcripts and small RNAs (sRNAs). There is high interest in studying exosomes of cancer patients both to develop non-invasive liquid biopsy tests for risk stratification and to elucidate their possible involvement in disease mechanisms. We profiled by RNA-seq the sRNA content of circulating exosomes of 20 pediatric patients with Anaplastic Large Cell Lymphoma (ALCL) and five healthy controls. Our analysis disclosed that non-miRNA derived sRNAs constitute the prominent fraction of sRNA loaded in exosomes and identified 180 sRNAs significantly more abundant in exosomes of ALCL patients compared to controls. YRNA fragments, accounting for most of exosomal content and being significantly increased in ALCL patients, were prioritized for further investigation by qRT-PCR. Quantification of RNY4 fragments and full-length sequences disclosed that the latter are massively loaded into exosomes of ALCL patients with more advanced and aggressive disease. These results are discussed in light of recent findings on the role of RNY4 in the modulation of tumor microenvironment.
Collapse
Affiliation(s)
- Federica Lovisa
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Piero Di Battista
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Carlotta C Damanti
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Anna Garbin
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Ilaria Gallingani
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisa Carraro
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Marta Pillon
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Alessandra Biffi
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Gene Therapy Program, Dana Farber/Boston Children's Cancer and Blood Disorders Centers, Boston, MA, United States
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy.,CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| | - Lara Mussolin
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
22
|
Personalized medicine: From diagnostic to adaptive. Biomed J 2019; 45:132-142. [PMID: 35590431 PMCID: PMC9133264 DOI: 10.1016/j.bj.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Personalized therapy has made great strides but suffers from the lack of companion diagnostics. With the dawn of extracellular vesicle (EV) based liquid biopsies fast approaching, this article proposes a novel approach to cancer treatment – adaptive therapy. Already being implemented in the field of radiation oncology, adaptive radiation therapy utilizes cutting-edge imaging techniques as a viable means to monitor a patient's tumor throughout the entire treatment cycle by adapting the dosage and alignment to match the dynamic tumor. Through an EV liquid biopsy, medical oncologists will also soon have the means to continuously monitor a patient's tumor as it changes over time. With this information, physicians will be able to “adapt” pre-planned therapies concurrently with the fluctuating tumor environment, thus creating a more precise personalized medicine. In this article, a theory for adaptive medicine and the current state of the field with an outlook on future challenges are discussed.
Collapse
|
23
|
Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019; 137:27-34. [DOI: 10.1016/j.critrevonc.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
|
24
|
Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX, Qiu XT, Li CC, Wang KK, Shen H, Zhang GG, Bai YP. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Am J Cancer Res 2018; 8:6163-6177. [PMID: 30613290 PMCID: PMC6299684 DOI: 10.7150/thno.28021] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes (Exo) secreted from hypoxia-conditioned bone marrow mesenchymal stem cells (BM-MSCs) were found to be protective for ischemic disease. However, the role of exosomal miRNA in the protective effect of hypoxia-conditioned BM-MSCs-derived Exo (Hypo-Exo) remains largely uncharacterized and the poor specificity of tissue targeting of Exo limits their clinical applications. Therefore, the objective of this study was to examine the effect of miRNA in Hypo-Exo on the repair of ischemic myocardium and its underlying mechanisms. We further developed modified Hypo-Exo with high specificity to the myocardium and evaluate its therapeutic effects. Methods: Murine BM-MSCs were subjected to hypoxia or normoxia culture and Exo were subsequently collected. Hypo-Exo or normoxia-conditioned BM-MSC-derived Exo (Nor-Exo) were administered to mice with permanent condition of myocardial infarction (MI). After 28 days, to evaluate the therapeutic effects of Hypo-Exo, infarction area and cardio output in Hypo-Exo and Nor-Exo treated MI mice were compared through Masson's trichrome staining and echocardiography respectively. We utilized the miRNA array to identify the significantly differentially expressed miRNAs between Nor-Exo and Hypo-Exo. One of the most enriched miRNA in Hypo-Exo was knockdown by applying antimiR in Hypoxia-conditioned BM-MSCs. Then we performed intramyocardial injection of candidate miRNA-knockdown-Hypo-Exo in a murine MI model, changes in the candidate miRNA's targets expression of cardiomyocytes and the cardiac function were characterized. We conjugated Hypo-Exo with an ischemic myocardium-targeted (IMT) peptide by bio-orthogonal chemistry, and tested its targeting specificity and therapeutic efficiency via systemic administration in the MI mice. Results: The miRNA array revealed significant enrichment of miR-125b-5p in Hypo-Exo compared with Nor-Exo. Administration of miR-125b knockdown Hypo-Exo significantly increased the infarction area and suppressed cardiomyocyte survival post-MI. Mechanistically, miR-125b knockdown Hypo-Exo lost the capability to suppress the expression of the proapoptotic genes p53 and BAK1 in cardiomyocytes. Intravenous administration of IMT-conjugated Hypo-Exo (IMT-Exo) showed specific targeting to the ischemic lesions in the injured heart and exerted a marked cardioprotective function post-MI. Conclusion: Our results illustrate a new mechanism by which Hypo-Exo-derived miR125b-5p facilitates ischemic cardiac repair by ameliorating cardiomyocyte apoptosis. Furthermore, our IMT- Exo may serve as a novel drug carrier that enhances the specificity of drug delivery for ischemic disease.
Collapse
|