1
|
Avidan Y, Aker A, Naoum I, Stein N, Kassem S. Glycemic control after aortic valve replacement: A retrospective study. IJC HEART & VASCULATURE 2025; 56:101596. [PMID: 39850779 PMCID: PMC11754825 DOI: 10.1016/j.ijcha.2024.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Background Aortic stenosis (AS) is treated through transcatheter aortic valve implantation (TAVI) or surgical aortic valve replacement (SAVR), with diabetes being prevalent among these patients. Inflammation participates in the pathogenesis of AS, and emerging evidence suggests that TAVI may exert anti-inflammatory effects. Given the established link between diabetes and inflammation, we sought to evaluate the impact of aortic valve replacement (AVR) on glycemic control. Methods Data from 10,129 consecutive patients undergoing either TAVI or SAVR between January 2010 and January 2022 were analyzed. Of these, 3,783 with diabetes had available pre- and post-procedural glycated hemoglobin (HbA1c) measurements. Analysis of 1,284 individuals with HbA1c ≥ 7 % was conducted. Propensity-score matching produced two well-matched cohorts of 266 TAVI and SAVR patients, enabling comparison of periprocedural HbA1c. Results In the total cohort (n = 1,284), HbA1c decreased from 8.15 ± 1.12 to 7.88 ± 1.38 (p < 0.001). After matching, the TAVI group showed a significant reduction from 8.31 ± 1.31 to 7.86 ± 1.56 (p < 0.001), while a modest decrease from 8.33 ± 1.33 to 8.15 ± 1.61 (p = 0.046) was observed in SAVR group. The TAVI group showed a trend toward a greater percentage change in HbA1c (p = 0.051). Clinically meaningful improvement in HbA1c (≥ 0.3 %) was similar between TAVI (53.1 %) and SAVR (45.6 %) patients (OR = 1.34, 95 % CI 0.93-1.95). Conclusions Management of AS through either intervention improved post-procedural glycemia in patients with uncontrolled diabetes. The extent of glycemic improvement was more pronounced with TAVI. Further investigations through controlled and prospective studies could provide more conclusive insights into this matter.
Collapse
Affiliation(s)
- Yuval Avidan
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Amir Aker
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Ibrahim Naoum
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Nili Stein
- Department of Community Medicine and Epidemiology, Statistical Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Sameer Kassem
- Department of Medicine, Lady Davis Carmel Medical Center, Haifa, Israel
| |
Collapse
|
2
|
Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation. Circulation 2020; 142:1092-1105. [PMID: 32697107 DOI: 10.1161/circulationaha.120.045536] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aortic valve stenosis is an increasingly prevalent degenerative and inflammatory disease. Transcatheter aortic valve implantation (TAVI) has revolutionized its treatment, thereby avoiding its life-threatening/disabling consequences. Whether aortic valve stenosis is accelerated by inflammation and whether it is itself a cause of inflammation are unclear. We hypothesized that the large shear forces exerted on circulating cells, particularly on the largest circulating cells, monocytes, while passing through stenotic aortic valves result in proinflammatory effects that are resolved with TAVI. METHODS TAVI provides a unique opportunity to compare the activation status of monocytes under high shear stress (before TAVI) and under low shear stress (after TAVI). The activation status of monocytes was determined with a single-chain antibody, MAN-1, which is specific for the activated β2-integrin Mac-1. Monocyte function was further characterized by the adhesion of myocytes to stimulated endothelial cells, phagocytic activity, uptake of oxidized low-density lipoprotein, and cytokine expression. In addition, we designed a microfluidic system to recapitulate the shear rate conditions before and after TAVI. We used this tool in combination with functional assays, Ca2+ imaging, siRNA gene silencing, and pharmacological agonists and antagonists to identify the key mechanoreceptor mediating the shear stress sensitivity of monocytes. Last, we stained for monocytes in explanted stenotic aortic human valves. RESULTS The resolution of high shear stress through TAVI reduces Mac-1 activation, cellular adhesion, phagocytosis, oxidized low-density lipoprotein uptake, and expression of inflammatory markers in monocytes and plasma. Using microfluidics and pharmacological and genetic studies, we could recapitulate high shear stress effects on isolated human monocytes under highly controlled conditions, showing that shear stress-dependent calcium influx and monocyte adhesion are mediated by the mechanosensitive ion channel Piezo-1. We also demonstrate that the expression of this receptor is shear stress dependent and downregulated in patients receiving TAVI. Last, we show monocyte accumulation at the aortic side of leaflets of explanted aortic valves. CONCLUSIONS We demonstrate that high shear stress, as present in patients with aortic valve stenosis, activates multiple monocyte functions, and we identify Piezo-1 as the mainly responsible mechanoreceptor, representing a potentially druggable target. We demonstrate an anti-inflammatory effect and therefore a novel therapeutic benefit of TAVI.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria T K Zaldivia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria Wallert
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Julia Loseff-Silver
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Sefaa Al-Aryahi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Jalal Zamani
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Peter Thurgood
- School of Engineering (P.T., K.K.), RMIT University, Melbourne, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia (A.S.)
| | - Nay M Htun
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Dion Stub
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (D.S.)
| | - Parisa Vahidi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Stephen J Duffy
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Antony Walton
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Thanh Ha Nguyen
- Cardiology Department, Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia (T.H.N.)
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | | | - Karlheinz Peter
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| |
Collapse
|