1
|
Kang Q, Ma D, Zhao P, Chai X, Huang Y, Gao R, Zhang T, Liu P, Deng B, Feng C, Zhang Y, Lu Y, Li Y, Fang Q, Wang J. BRG1 promotes progression of B-cell acute lymphoblastic leukemia by disrupting PPP2R1A transcription. Cell Death Dis 2024; 15:621. [PMID: 39187513 PMCID: PMC11347705 DOI: 10.1038/s41419-024-06996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.
Collapse
Affiliation(s)
- Qian Kang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao Chai
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Huang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhuo Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Deng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Feng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yanju Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Yang L, Zhang Z, Jiang P, Kong D, Yu Z, Shi D, Han Y, Chen E, Zheng W, Sun J, Zhao Y, Luo Y, Shi J, Yao H, Huang H, Qian P. Phase separation-competent FBL promotes early pre-rRNA processing and translation in acute myeloid leukaemia. Nat Cell Biol 2024; 26:946-961. [PMID: 38745030 DOI: 10.1038/s41556-024-01420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- RNA Processing, Post-Transcriptional
- Animals
- Cell Line, Tumor
- Protein Biosynthesis
- Cell Nucleolus/metabolism
- Cell Nucleolus/genetics
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Phase Separation
Collapse
Affiliation(s)
- Lin Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ertuo Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyan Zheng
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Sun
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
3
|
Guo T, Wang Y, Sun X, Hou S, Lan Y, Yuan S, Yang S, Zhao F, Chu Y, Ma Y, Cheng T, Yu J, Liu B, Yuan W, Wang X. Loss of RNA-binding protein CELF2 promotes acute leukemia development via FAT10-mTORC1. Oncogene 2024; 43:1476-1487. [PMID: 38514854 PMCID: PMC11068570 DOI: 10.1038/s41388-024-03006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
RNA-binding proteins (RBPs) are critical regulators for RNA transcription and translation. As a key member of RBPs, ELAV-like family protein 2 (CELF2) has been shown to regulate RNA splicing and embryonic hematopoietic development and was frequently seen dysregulated in acute myeloid leukemia (AML). However, the functional role(s) of CELF2 in hematopoiesis and leukemogenesis has not been fully elucidated. In the current study, we showed that Celf2 deficiency in hematopoietic system led to enhanced HSCs self-renewal and differentiation toward myeloid cells in mice. Loss of Celf2 accelerated myeloid cell transformation and AML development in MLL-AF9-induced AML murine models. Gene expression profiling integrated with RNA immunoprecipitation sequencing (RIP-Seq), together with biochemical experiments revealed that CELF2 deficiency stabilizes FAT10 mRNA, promotes FAT10 translation, thereby increases AKT phosphorylation and mTORC1 signaling pathway activation. Notably, combination therapy with a mTORC1 inhibitor (Rapamycin) and a MA9/DOTL1 inhibitor (EPZ-5676) reduced the leukemia burden in MLL-AF9 mice lacking Celf2 in vivo. Our study elucidated a novel mechanism by which the CELF2/FAT10-AKT/mTORC1 axis regulates the proliferation of normal blood cells and the development of AML, thus providing potential therapeutic targets for myeloid leukemia suppression.
Collapse
Affiliation(s)
- Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Biomedical Center of Qingdao University, Qingdao, 266000, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaolu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xiaomin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Experimental Hematology, Department of Stem Cell and Regenerative Medicine, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
4
|
Fan J, Zhang Z, Chen H, Chen D, Yuan W, Li J, Zeng Y, Zhou S, Zhang S, Zhang G, Xiong J, Zhou L, Xu J, Liu W, Xu Y. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway. Genes Dis 2024; 11:430-448. [PMID: 37588209 PMCID: PMC10425751 DOI: 10.1016/j.gendis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggested that zinc finger protein 831 (ZNF831) was associated with immune activity and stem cell regulation in breast cancer. Whereas, the roles and molecular mechanisms of ZNF831 in oncogenesis remain unclear. ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mutation. Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and colony formation and promoted apoptosis in vitro, while knockdown of ZNF831 resulted in an opposite phenotype. Anti-proliferation effect of ZNF831 was verified in vivo. Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway. ChIP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3. As a result, the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression. Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines. Furthermore, ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines. Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer, suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongjiao Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenbo Yuan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingzhi Li
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shimeng Zhou
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jiashen Xiong
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Lu Zhou
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jing Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| |
Collapse
|
5
|
Lai Q, Hamamoto K, Luo H, Zaroogian Z, Zhou C, Lesperance J, Zha J, Qiu Y, Guryanova OA, Huang S, Xu B. NPM1 mutation reprograms leukemic transcription network via reshaping TAD topology. Leukemia 2023; 37:1732-1736. [PMID: 37365294 PMCID: PMC10400418 DOI: 10.1038/s41375-023-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
C-terminal mutation of Nucleophosmin 1 (NPM1C+) was thought to be a primary driving event in acute myeloid leukemia (AML) that reprograms leukemic-associated transcription programs to transform hematopoietic stem and progenitor cells (HSPCs). However, molecular mechanisms underlying NPM1C+-driven leukemogenesis remain elusive. Here, we report that NPM1C+ activates signature HOX genes and reprograms cell cycle regulators by altering CTCF-driven topologically associated domains (TADs). Hematopoietic-specific NPM1C+ knock-in alters TAD topology leading to disrupted regulation of the cell cycle as well as aberrant chromatin accessibility and homeotic gene expression, which results in myeloid differentiation block. Restoration of NPM1 within the nucleus re-establishes differentiation programs by reorganizing TADs critical for myeloid TFs and cell cycle regulators that switch the oncogenic MIZ1/MYC regulatory axis in favor of interacting with coactivator NPM1/p300, and prevents NPM1C+-driven leukemogenesis. In sum, our data reveal that NPM1C+ reshapes CTCF-defined TAD topology to reprogram signature leukemic transcription programs required for cell cycle progression and leukemic transformation.
Collapse
Affiliation(s)
- Qian Lai
- Department of Hematology, The First affiliated Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, 361003, China
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Karina Hamamoto
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Huacheng Luo
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou Institute of Medicine, Hangzhou, Zhejiang, 310022, China
| | - Zachary Zaroogian
- Department of Pharmacology and therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, Gainesville, FL, 32610, USA
| | - Caixian Zhou
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jie Zha
- Department of Hematology, The First affiliated Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, 361003, China
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Olga A Guryanova
- Department of Pharmacology and therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Bing Xu
- Department of Hematology, The First affiliated Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, 361003, China.
| |
Collapse
|
6
|
Lee LM, Christodoulou EG, Shyamsunder P, Chen BJ, Lee KL, Fung TK, So CWE, Wong GC, Petretto E, Rackham OJL, Tiong Ong S. A novel network pharmacology approach for leukaemia differentiation therapy using Mogrify ®. Oncogene 2022; 41:5160-5175. [PMID: 36271030 DOI: 10.1038/s41388-022-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.
Collapse
MESH Headings
- Humans
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Network Pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Cell Differentiation/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Lin Ming Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Eleni G Christodoulou
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Pavithra Shyamsunder
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Bei Jun Chen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kian Leong Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Tsz Kan Fung
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Chi Wai Eric So
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Gee Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences (LMC), Imperial College London, Faculty of Medicine, London, UK.
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China.
| | - Owen J L Rackham
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - S Tiong Ong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Haematology, Singapore General Hospital, Singapore, Singapore.
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
7
|
Zeng P, Lu W, Tian J, Qiao S, Li J, Glorieux C, Wen S, Zhang H, Li Y, Huang P. Reductive TCA cycle catalyzed by wild-type IDH2 promotes acute myeloid leukemia and is a metabolic vulnerability for potential targeted therapy. J Hematol Oncol 2022; 15:30. [PMID: 35313945 PMCID: PMC8935709 DOI: 10.1186/s13045-022-01245-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
Background Isocitrate dehydrogenase-2 (IDH2) is a mitochondrial enzyme that catalyzes the metabolic conversion between isocitrate and alpha-ketoglutarate (α-KG) in the TCA cycle. IDH2 mutation is an oncogenic event in acute myeloid leukemia (AML) due to the generation of 2-hydroxyglutarate. However, the role of wild-type IDH2 in AML remains unknown, despite patients with it suffer worse clinical outcome than those harboring mutant type.
Methods IDH2 expression in AML cell lines and patient samples was evaluated by RT-qPCR, western blotting and database analyses. The role of wild-type IDH2 in AML cell survival and proliferation was tested using genetic knockdown and pharmacological inhibition in AML cells and animal models. LC–MS, GC–MS, isotope metabolic tracing, and molecular analyses were performed to reveal the underlying mechanisms. Results We found that wild-type IDH2 was overexpressed in AML and played a major role in promoting leukemia cell survival and proliferation in vitro and in vivo. Metabolomic analyses revealed an active IDH2-mediated reductive TCA cycle that promoted the conversion of α-KG to isocitrate/citrate to facilitate glutamine utilization for lipid synthesis in AML cells. Suppression of wild-type IDH2 by shRNA resulted in elevated α-KG and decreased isocitrate/citrate, leading to reduced lipid synthesis, a significant decrease in c-Myc downregulated by α-KG, and an inhibition of AML viability and proliferation. Importantly, pharmacological inhibition of IDH2 showed significant therapeutic effect in mice inoculated with AML cells with wt-IDH2 and induced a downregulation of C-MYC in vivo. Conclusions Wt-IDH2 is an essential molecule for AML cell survival and proliferation by promoting conversion of α-KG to isocitrate for lipid synthesis and by upregulating c-Myc expression and could be a potential therapeutic target in AML. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01245-z.
Collapse
Affiliation(s)
- Peiting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jingyu Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiangjiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Zhang
- Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510080, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Wang J, Wu Y, Uddin MN, Chen R, Hao JP. Identification of Potential Key Genes and Regulatory Markers in Essential Thrombocythemia Through Integrated Bioinformatics Analysis and Clinical Validation. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:767-784. [PMID: 34267539 PMCID: PMC8275175 DOI: 10.2147/pgpm.s309166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Introduction Essential thrombocytosis (ET) is a group of myeloproliferative neoplasms characterized by abnormal proliferation of platelet and megakaryocytes. Research on potential key genes and novel regulatory markers in essential thrombocythemia (ET) is still limited. Methods Downloading array profiles from the Gene Expression Omnibus database, we identified the differentially expressed genes (DEGs) through comprehensive bioinformatic analysis. GO, and REACTOME pathway enrichment analysis was used to predict the potential functions of DEGs. Besides, constructing a protein–protein interaction (PPI) network through the STRING database, we validated the expression level of hub genes in an independent cohort of ET, and the transcription factors (TFs) were detected in the regulatory networks of TFs and DEGs. And the candidate drugs that are targeting hub genes were identified using the DGIdb database. Results We identified 63 overlap DEGs that included 21 common up-regulated and 42 common down-regulated genes from two datasets. Functional enrichment analysis shows that the DEGs are mainly enriched in the immune system and inflammatory processes. Through PPI network analysis, ACTB, PTPRC, ACTR2, FYB, STAT1, ETS1, IL7R, IKZF1, FGL2, and CTSS were selected as hub genes. Interestingly, we found that the dysregulated hub genes are also aberrantly expressed in a bone marrow cohort of ET. Moreover, we found that the expression of CTSS, FGL2, IKZF1, STAT1, FYB, ACTR2, PTPRC, and ACTB genes were significantly under-expressed in ET (P<0.05), which is consistent with our bioinformatics analysis. The ROC curve analysis also shows that these hub genes have good diagnostic value. Besides, we identified 4 TFs (SPI1, IRF4, SRF, and AR) as master transcriptional regulators that were associated with regulating the DEGs in ET. Cyclophosphamide, prednisone, fluorouracil, ruxolitinib, and lenalidomide were predicted as potential candidate drugs for the treatment of ET. Discussion These dysregulated genes and predicted key regulators had a significant relationship with the occurrence of ET with affecting the immune system and inflammation of the processes. Some of the immunomodulatory drugs have potential value by targeting ACTB, PTPRC, IL7R, and IKZF1 genes in the treatment of ET.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| |
Collapse
|
10
|
骆 梦, 曾 皓, 马 欣, 马 学. [Identification of Hub Genes for Ovarian Cancer Stem Cell Properties with Weighted Gene Co-expression Network Analysis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:248-258. [PMID: 33829699 PMCID: PMC10408925 DOI: 10.12182/20210360205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the significance of stemness-related genes in the diagnosis and treatment of ovarian cancer. METHODS Key modules and genes were identified with weighted gene co-expression network analysis (WGCNA). The signal pathways of high expression of key genes were analyzed by gene set enrichment analysis (GSEA) and single cell sequencing data. The chemosensitivity of ovarian cancer to chemotherapy drugs was estimated with pRRophetic. Flow cytometry was used to examine the expression of CD44 +CD117 +in SKOV3 cells and cancer stem cells. The expression of key genes in ovarian cancer stem cells was confirmed by qRT-PCR. The core genes were identified by GeneMANIA analysis. RESULTS According to the WGCNA results, 15 key genes were identified at the transcription level, all being highly expressed in many kinds of tumors. They were involved in the cell cycle, DNA repair, E2 target and G2M checkpoint pathway, and had significant correlation with chemosensitivity. The proportion of CD44 + CD117 + cells in SKOV3 cells and ovarian cancer stem cells were (1.20±0.34)% and (37.17±1.80)% respectively, with statistically significant difference ( P<0.05). qRT-PCR confirmed that seven key genes ( BUB1, CDC20, CCNB2, DLGAP5, KIF4 A, NEK2, NUSAP1) in the WGCNA results were highly expressed in ovarian cancer stem cells, and BUB1 might have played a core role. CONCLUSION Seven hub genes, especially BUB1, were identified by constructing gene co-expression network, which may become potential biomarkers of ovarian cancer gene.
Collapse
Affiliation(s)
- 梦 骆
- 四川大学华西医学院 生物治疗科 (成都 610041)Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 皓 曾
- 四川大学华西医学院 生物治疗科 (成都 610041)Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 欣宇 马
- 四川大学华西医学院 生物治疗科 (成都 610041)Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 学磊 马
- 四川大学华西医学院 生物治疗科 (成都 610041)Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|