1
|
Gordon SJV, Perner F, MacPherson L, Wenge DV, Bourgeois W, Fennell K, Klaus T, Petrovic J, Horvath J, Cao J, Lapek J, Uryu S, White J, Lam EYN, Mu XJ, Chan YC, Gillespie A, Blyth B, Camerino MA, Bozikis YE, Holze H, Knezevic K, Balic J, Stupple PA, Street IP, Monahan BJ, Sharma S, Wainwright EN, Vassiliadis D, Paul TA, Armstrong SA, Dawson MA. Catalytic inhibition of KAT6/KAT7 enhances the efficacy and overcomes primary and acquired resistance to Menin inhibitors in MLL leukaemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627663. [PMID: 39713447 PMCID: PMC11661155 DOI: 10.1101/2024.12.11.627663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Understanding the molecular pathogenesis of MLL fusion oncoprotein (MLL-FP) leukaemia has spawned epigenetic therapies that have improved clinical outcomes in this often-incurable disease. Using genetic and pharmacological approaches, we define the individual and combined contribution of KAT6A, KAT6B and KAT7, in MLL-FP leukaemia. Whilst inhibition of KAT6A/B is efficacious in some pre-clinical models, simultaneous targeting of KAT7, with the novel inhibitor PF-9363, increases the therapeutic efficacy. KAT7 interacts with Menin and the MLL complex and is co-localised at chromatin to co-regulate the MLL-FP transcriptional program. Inhibition of KAT6/KAT7 provides an orthogonal route to targeting Menin to disable the transcriptional activity of MLL-FP. Consequently, combined inhibition rapidly evicts the MLL-FP from chromatin, potently represses oncogenic transcription and overcomes primary resistance to Menin inhibitors. Moreover, PF-9363 or genetic depletion of KAT7 can also overcome acquired genetic/non-genetic resistance to Menin inhibition. These data provide the molecular rationale for rapid clinical translation of combination therapy in MLL-FP leukaemia.
Collapse
|
2
|
Asfa SS, Arshinchi Bonab R, Önder O, Uça Apaydın M, Döşeme H, Küçük C, Georgakilas AG, Stadler BM, Logotheti S, Kale S, Pavlopoulou A. Computer-Aided Identification and Design of Ligands for Multi-Targeting Inhibition of a Molecular Acute Myeloid Leukemia Network. Cancers (Basel) 2024; 16:3607. [PMID: 39518047 PMCID: PMC11544916 DOI: 10.3390/cancers16213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is characterized by therapeutic failure and long-term risk for disease relapses. As several therapeutic targets participate in networks, they can rewire to eventually evade single-target drugs. Hence, multi-targeting approaches are considered on the expectation that interference with many different components could synergistically hinder activation of alternative pathways and demolish the network one-off, leading to complete disease remission. METHODS Herein, we established a network-based, computer-aided approach for the rational design of drug combinations and de novo agents that interact with many AML network components simultaneously. RESULTS A reconstructed AML network guided the selection of suitable protein hubs and corresponding multi-targeting strategies. For proteins responsive to existing drugs, a greedy algorithm identified the minimum amount of compounds targeting the maximum number of hubs. We predicted permissible combinations of amiodarone, artenimol, fostamatinib, ponatinib, procaine, and vismodegib that interfere with 3-8 hubs, and we elucidated the pharmacological mode of action of procaine on DNMT3A. For proteins that do not respond to any approved drugs, namely cyclins A1, D2, and E1, we used structure-based de novo drug design to generate a novel triple-targeting compound of the chemical formula C15H15NO5, with favorable pharmacological and drug-like properties. CONCLUSIONS Overall, by integrating network and structural pharmacology with molecular modeling, we determined two complementary strategies with the potential to annihilate the AML network, one in the form of repurposable drug combinations and the other as a de novo synthesized triple-targeting agent. These target-drug interactions could be prioritized for preclinical and clinical testing toward precision medicine for AML.
Collapse
Affiliation(s)
- Seyedeh Sadaf Asfa
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Onur Önder
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Merve Uça Apaydın
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Hatice Döşeme
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Can Küçük
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, 35330 Balçova, İzmir, Türkiye;
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece;
| | - Bernhard M. Stadler
- Technische Hochschule Nürnberg, Faculty of Applied Chemistry, 90489 Nuremberg, Germany;
| | - Stella Logotheti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Department of Biophysics, Faculty of Medicine, Izmir Katip Çelebi University, 35330 Çiğli, İzmir, Türkiye
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| |
Collapse
|
3
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
4
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
5
|
Chen Y, Li BX, Niu TT, Yang SJ, Wu LC, Shi LH, Zou DB, Wu NN, Sheng LX, Yan X, Ouyang GF, Mu QT. Circ_0012152 Accelerates Acute Myeloid Leukemia Progression through the miR-652-3p/SOX4 Axis. Curr Med Sci 2024; 44:611-622. [PMID: 38842772 DOI: 10.1007/s11596-024-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.
Collapse
Affiliation(s)
- Ying Chen
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Bi-Xia Li
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Ting-Ting Niu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Shu-Jun Yang
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Li-Chao Wu
- School of Medicine, Hangzhou City University, Zhejiang University, Hangzhou, 310000, China
| | - Le-Huai Shi
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Duo-Bing Zou
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Ning-Ning Wu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Li-Xia Sheng
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Xiao Yan
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
| | - Gui-Fang Ouyang
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
| | - Qi-Tian Mu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315300, China.
| |
Collapse
|
6
|
Felipe Fumero E, Walter C, Frenz JM, Seifert F, Alla V, Hennig T, Angenendt L, Hartmann W, Wolf S, Serve H, Oellerich T, Lenz G, Müller-Tidow C, Schliemann C, Huber O, Dugas M, Mann M, Jayavelu AK, Mikesch JH, Arteaga MF. Epigenetic control over the cell-intrinsic immune response antagonizes self-renewal in acute myeloid leukemia. Blood 2024; 143:2284-2299. [PMID: 38457355 PMCID: PMC11181352 DOI: 10.1182/blood.2023021640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Animals
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Mice
- Interferon Type I/metabolism
- Cell Self Renewal
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
| | - Carolin Walter
- Institute of Medical Informatics, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Franca Seifert
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Vijay Alla
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Wolf
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | | | | - Otmar Huber
- Department of Biochemistry II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
7
|
Zhou J, Chng WJ. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing. Front Oncol 2024; 14:1365330. [PMID: 38711849 PMCID: PMC11070491 DOI: 10.3389/fonc.2024.1365330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex and heterogeneous group of aggressive hematopoietic stem cell disease. The presence of diverse and functionally distinct populations of leukemia cells within the same patient's bone marrow or blood poses a significant challenge in diagnosing and treating AML. A substantial proportion of AML patients demonstrate resistance to induction chemotherapy and a grim prognosis upon relapse. The rapid advance in next generation sequencing technologies, such as single-cell RNA-sequencing (scRNA-seq), has revolutionized our understanding of AML pathogenesis by enabling high-resolution interrogation of the cellular heterogeneity in the AML ecosystem, and their transcriptional signatures at a single-cell level. New studies have successfully characterized the inextricably intertwined interactions among AML cells, immune cells and bone marrow microenvironment and their contributions to the AML development, therapeutic resistance and relapse. These findings have deepened and broadened our understanding the complexity and heterogeneity of AML, which are difficult to detect with bulk RNA-seq. This review encapsulates the burgeoning body of knowledge generated through scRNA-seq, providing the novel insights and discoveries it has unveiled in AML biology. Furthermore, we discuss the potential implications of scRNA-seq in therapeutic opportunities, focusing on immunotherapy. Finally, we highlight the current limitations and future direction of scRNA-seq in the field.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
8
|
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J, Yang Z. Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA (NEW YORK, N.Y.) 2024; 30:435-447. [PMID: 38296629 PMCID: PMC10946434 DOI: 10.1261/rna.079865.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.
Collapse
Affiliation(s)
- Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Oh S, Kim E. Efficacy of epigenetic agents for older patients with acute myeloid leukemia and myelodysplastic syndrome in randomized controlled trials: a systematic review and network meta-analysis. Clin Exp Med 2023; 23:2705-2714. [PMID: 36964818 DOI: 10.1007/s10238-023-01041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that mostly affect the elderly and have poor prognoses. Mutations in epigenetic regulatory genes cause AML/MDS through changes in DNA methylation and histone modifications. Some epigenetic agents are used in patients with AML and MDS. However, most studies have focused on azacitidine (AZA) or decitabine (DEC), and few studies have been conducted on combination therapies or other epigenetic therapies. This network meta-analysis (NMA) aimed to compare the efficacy of epigenetic agents overall in patients with AML and MDS. A systematic review and NMA of all available II-III phase randomized controlled trials (RCTs) comparing epigenetic agents were performed. The Embase and PubMed databases were searched for relevant studies. The Bayesian model was used in the NMA, and the surface under the cumulative ranking curve (SUCRA) was used to rank comparisons. The primary endpoint was overall survival (OS), and the secondary endpoints were complete response (CR) and partial response (PR). OS was extended by AZA + venetoclax (SUCRA 0.94) in patients with AML and MDS. DEC (SUCRA 0.78) relatively improved CR and PR. In this study, AZA-related treatment was relatively effective in improving the OS of patients with AML and MDS, and DEC-related treatment showed a relatively high effect on CR and PR. The protocol for this systematic review was registered with the International Prospective Register of Systematic Reviews (CRD42022303601).
Collapse
Affiliation(s)
- SuA Oh
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - EunYoung Kim
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
10
|
Apavaloaei A, Perreault C. Immunotargeting of a recurrent AML-specific neoantigen. NATURE CANCER 2023; 4:1403-1405. [PMID: 37783806 DOI: 10.1038/s43018-023-00634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
|
11
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
12
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
13
|
Numata M, Haginoya N, Shiroishi M, Hirata T, Sato-Otsubo A, Yoshikawa K, Takata Y, Nagase R, Kashimoto Y, Suzuki M, Schulte N, Polier G, Kurimoto A, Tomoe Y, Toyota A, Yoneyama T, Imai E, Watanabe K, Hamada T, Kanada R, Watanabe J, Kagoshima Y, Tokumaru E, Murata K, Baba T, Shinozaki T, Ohtsuka M, Goto K, Karibe T, Deguchi T, Gocho Y, Yoshida M, Tomizawa D, Kato M, Tsutsumi S, Kitagawa M, Abe Y. A novel Menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1. Cancer Cell Int 2023; 23:36. [PMID: 36841758 PMCID: PMC9960487 DOI: 10.1186/s12935-023-02877-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Mixed lineage leukemia 1-rearranged (MLL1-r) acute leukemia patients respond poorly to currently available treatments and there is a need to develop more effective therapies directly disrupting the Menin‒MLL1 complex. Small-molecule-mediated inhibition of the protein‒protein interaction between Menin and MLL1 fusion proteins is a potential therapeutic strategy for patients with MLL1-r or mutated-nucleophosmin 1 (NPM1c) acute leukemia. In this study, we preclinically evaluated the new compound DS-1594a and its salts. METHODS We evaluated the preclinical efficacy of DS-1594a as well as DS-1594a·HCl (the HCl salt of DS-1594a) and DS-1594a·succinate (the succinic acid salt of DS-1594a, DS-1594b) in vitro and in vivo using acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) models. RESULTS Our results showed that MLL1-r or NPM1c human leukemic cell lines were selectively and highly sensitive to DS-1594a·HCl, with 50% growth inhibition values < 30 nM. Compared with cytrabine, the standard chemotherapy drug as AML therapy, both DS-1594a·HCl and DS-1594a·succinate mediated the eradication of potential leukemia-initiating cells by enhancing differentiation and reducing serial colony-forming potential in MLL1-r AML cells in vitro. The results were confirmed by flow cytometry, RNA sequencing, RT‒qPCR and chromatin immunoprecipitation sequencing analyses. DS-1594a·HCl and DS-1594a·succinate exhibited significant antitumor efficacy and survival benefit in MOLM-13 cell and patient-derived xenograft models of MLL1-r or NPM1c acute leukemia in vivo. CONCLUSION We have generated a novel, potent, orally available small-molecule inhibitor of the Menin-MLL1 interaction, DS-1594a. Our results suggest that DS-1594a has medicinal properties distinct from those of cytarabine and that DS-1594a has the potential to be a new anticancer therapy and support oral dosing regimen for clinical studies (NCT04752163).
Collapse
Affiliation(s)
- Masashi Numata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Noriyasu Haginoya
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Machiko Shiroishi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Hirata
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Aiko Sato-Otsubo
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kenji Yoshikawa
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshimi Takata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Reina Nagase
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshinori Kashimoto
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Makoto Suzuki
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Nina Schulte
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Gernot Polier
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Akiko Kurimoto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yumiko Tomoe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Akiko Toyota
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoko Yoneyama
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Emi Imai
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Kenji Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoaki Hamada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Ryutaro Kanada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Jun Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshiko Kagoshima
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Eri Tokumaru
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Kenji Murata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takayuki Baba
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Taeko Shinozaki
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Masami Ohtsuka
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Koichi Goto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Karibe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takao Deguchi
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Gocho
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan ,grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Tsutsumi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Mayumi Kitagawa
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005, Japan.
| | - Yuki Abe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| |
Collapse
|
14
|
5-Azacytidine-Mediated Modulation of the Immune Microenvironment in Murine Acute Myeloid Leukemia. Cancers (Basel) 2022; 15:cancers15010118. [PMID: 36612115 PMCID: PMC9817798 DOI: 10.3390/cancers15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer cells accumulate epigenetic modifications that allow escape from intrinsic and extrinsic surveillance mechanisms. In the case of acute myeloid leukemias (AML) and myelodysplastic syndromes, agents that disrupt chromatin structure, namely hypomethylating agents (HMAs), have shown tremendous promise as an alternate, milder treatment option for older, clinically non-fit patients. HMAs reprogram the epigenetic landscape in tumor cells through the reversal of DNA hypermethylation. Therapeutic effects resulting from these epigenetic changes are incredibly effective, sometimes resulting in complete remissions, but are frequently lost due to primary or acquired resistance. In this study, we describe syngeneic murine leukemias that are responsive to the HMA 5-azacytidine (5-Aza), as determined by augmented expression of a transduced luciferase reporter. We also found that 5-Aza treatment re-established immune-related transcript expression, suppressed leukemic burden and extended survival in leukemia-challenged mice. The effects of 5-Aza treatment were short-lived, and analysis of the immune microenvironment reveals possible mechanisms of resistance, such as simultaneous increase in immune checkpoint protein expression. This represents a model system that is highly responsive to HMAs and recapitulates major therapeutic outcomes observed in human leukemia (relapse) and may serve as a pre-clinical tool for studying acquired resistance and novel treatment combinations.
Collapse
|
15
|
Amatori S, Persico G, Cantatore F, Rusin M, Formica M, Giorgi L, Macedi E, Casciaro F, Errico Provenzano A, Gambardella S, Noberini R, Bonaldi T, Fusi V, Giorgio M, Fanelli M. Small molecule-induced epigenomic reprogramming of APL blasts leading to antiviral-like response and c-MYC downregulation. Cancer Gene Ther 2022; 30:671-682. [PMID: 36536122 DOI: 10.1038/s41417-022-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
AbstractAcute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML) in which the PML/RARα fusion protein exerts oncogenic activities by recruiting repressive complexes to the promoter of specific target genes. Other epigenetic perturbations, as alterations of histone H3 lysine 9 trimethylation (H3K9me3), have been frequently found in AMLs and are associated with leukemogenesis and leukemia progression. Here, we characterized the epigenomic effects of maltonis, a novel maltol-derived molecule, in APL cells. We demonstrate that maltonis treatments induce a profound remodulation of the histone code, reducing global H3K9me3 signal and modulating other histone post-translational modifications. Transcriptomic and epigenomic analyses revealed that maltonis exposure induces changes of genes expression associated with a genomic redistribution of histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 acetylation (H3K27ac). Upregulation of interferon alpha and gamma response and downregulation of c-MYC target genes, in function of c-MYC reduced expression (monitored in all the hematopoietic neoplasms tested), represent the most significant modulated pathways. These data demonstrate the ability of maltonis to epigenetically reprogram the gene expression profile of APL cells, inducing an intriguing antiviral-like response, concomitantly with the downregulation of c-MYC-related pathways, thus making it an attractive candidate for antileukemic therapy.
Collapse
|
16
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
17
|
Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2123227119. [PMID: 35759659 PMCID: PMC9271208 DOI: 10.1073/pnas.2123227119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Collapse
Affiliation(s)
- Aksinija A. Kogan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael J. Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Anna J. Dellomo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lora Stojanovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lena J. McLaughlin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - T. Michael Creed
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Christian L. Eberly
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tami J. Kingsbury
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D. Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Stephen B. Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Feyruz V. Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
18
|
Salmon JM, Todorovski I, Stanley KL, Bruedigam C, Kearney CJ, Martelotto LG, Rossello F, Semple T, Arnau GM, Zethoven M, Bots M, Bjelosevic S, Cluse LA, Fraser PJ, Litalien V, Vidacs E, McArthur K, Matthews AY, Gressier E, de Weerd NA, Lichte J, Kelly MJ, Hogg SJ, Hertzog PJ, Kats LM, Vervoort SJ, De Carvalho DD, Scheu S, Bedoui S, Kile BT, Lane SW, Perkins AC, Wei AH, Dominguez PM, Johnstone RW. Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML. Cancer Discov 2022; 12:1560-1579. [PMID: 35311997 PMCID: PMC9355625 DOI: 10.1158/2159-8290.cd-20-1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Jessica M. Salmon
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Izabela Todorovski
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kym L. Stanley
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Claudia Bruedigam
- Cancer Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Conor J. Kearney
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Lab, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Fernando Rossello
- Single Cell Innovation Lab, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy Semple
- Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Gisela Mir Arnau
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Bots
- Laboratory of Clinical Chemistry, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Stefan Bjelosevic
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Leonie A. Cluse
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter J. Fraser
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Veronique Litalien
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Eva Vidacs
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Antony Y. Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicole A. de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Jens Lichte
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Madison J. Kelly
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon J. Hogg
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Lev M. Kats
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephin J. Vervoort
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin T. Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Steven W. Lane
- Cancer Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew C. Perkins
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Pilar M. Dominguez
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Corresponding Authors: Ricky W. Johnstone, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-855-97133; E-mail: ; and Pilar M. Dominguez, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-481-880-373; E-mail:
| | - Ricky W. Johnstone
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Corresponding Authors: Ricky W. Johnstone, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-855-97133; E-mail: ; and Pilar M. Dominguez, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-481-880-373; E-mail:
| |
Collapse
|
19
|
Granowicz EM, Jonas BA. Targeting TP53-Mutated Acute Myeloid Leukemia: Research and Clinical Developments. Onco Targets Ther 2022; 15:423-436. [PMID: 35479302 PMCID: PMC9037178 DOI: 10.2147/ott.s265637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
TP53 is a key tumor suppressor gene that plays an important role in regulating apoptosis, senescence, and DNA damage repair in response to cellular stress. Although somewhat rare, TP53-mutated AML has been identified as an important molecular subgroup with a prognosis that is arguably the worst of any. Survival beyond one year is rare after induction chemotherapy with or without consolidative allogeneic stem cell transplant. Although response rates have been improved with hypomethylating agents, outcomes remain particularly poor due to short response duration. Improvements in our understanding of AML genetics and biology have led to a surge in novel treatment options, though the clinical applicability of these agents in TP53-mutated disease remains largely unknown. This review will focus on the epidemiology, molecular characteristics, and clinical significance of TP53 mutations in AML as well as emerging treatment options that are currently being studied.
Collapse
Affiliation(s)
- Eric M Granowicz
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
20
|
Narayan N, Huntly BJP. Targeting AML at the intersection of epigenetics and signaling. Sci Signal 2022; 15:eabo0059. [PMID: 35439022 DOI: 10.1126/scisignal.abo0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations in multiple cancers may synergize to alter the cellular epigenetic and transcriptional state and corrupt key signaling pathways. In this issue of Science Signaling, Pedicona et al. illustrate how the two processes intersect to regulate cellular differentiation in acute myeloid leukemia (AML) and show how inhibition of epigenetic regulators promotes sensitivity to kinase inhibitors.
Collapse
Affiliation(s)
- Nisha Narayan
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
21
|
Redavid I, Conserva MR, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Single-Cell Sequencing: Ariadne’s Thread in the Maze of Acute Myeloid Leukemia. Diagnostics (Basel) 2022; 12:diagnostics12040996. [PMID: 35454044 PMCID: PMC9024495 DOI: 10.3390/diagnostics12040996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a haematological neoplasm resulting from the accumulation of genetic and epigenetic alterations. Patients’ prognoses vary with AML genetic heterogeneity, which hampers successful treatments. Single-cell approaches have provided new insights of the clonal architecture of AML, revealing the mutational history from diagnosis, during treatment and to relapse. In this review, we imagine single-cell technologies as the Ariadne’s thread that will guide us out of the AML maze, provide a precise identikit of the leukemic cell at single-cell resolution and explore genomic, transcriptomic, epigenetic and proteomic levels.
Collapse
Affiliation(s)
- Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
- Correspondence:
| |
Collapse
|
22
|
scTEM-seq: Single-cell analysis of transposable element methylation to link global epigenetic heterogeneity with transcriptional programs. Sci Rep 2022; 12:5776. [PMID: 35388081 PMCID: PMC8986802 DOI: 10.1038/s41598-022-09765-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Global changes in DNA methylation are observed in development and disease, and single-cell analyses are highlighting the heterogeneous regulation of these processes. However, technical challenges associated with single-cell analysis of DNA methylation limit these studies. We present single-cell transposable element methylation sequencing (scTEM-seq) for cost-effective estimation of average DNA methylation levels. By targeting high-copy SINE Alu elements, we achieve amplicon bisulphite sequencing with thousands of loci covered in each scTEM-seq library. Parallel transcriptome analysis is also performed to link global DNA methylation estimates with gene expression. We apply scTEM-seq to KG1a acute myeloid leukaemia (AML) cells, and primary AML cells. Our method reveals global DNA methylation heterogeneity induced by decitabine treatment of KG1a cells associated with altered expression of immune process genes. We also compare global DNA methylation estimates to expression of transposable elements and find a predominance of negative correlations. Finally, we observe co-ordinated upregulation of many transposable elements in a sub-set of decitabine treated cells. By linking global DNA methylation heterogeneity with transcription, scTEM-seq will refine our understanding of epigenetic regulation in cancer and beyond.
Collapse
|
23
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
24
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
25
|
Madaci L, Colle J, Venton G, Farnault L, Loriod B, Costello R. The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 2021; 9:50. [PMID: 34176517 PMCID: PMC8237443 DOI: 10.1186/s40364-021-00300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
After decades during which the treatment of acute myeloblastic leukemia was limited to variations around a skeleton of cytarabine/anthracycline, targeted therapies appeared. These therapies, first based on monoclonal antibodies, also rely on specific inhibitors of various molecular abnormalities. A significant but modest prognosis improvement has been observed thanks to these new treatments that are limited by a high rate of relapse, due to the intrinsic chemo and immune-resistance of leukemia stem cell, together with the acquisition of these resistances by clonal evolution. Relapses are also influenced by the equilibrium between the pro or anti-tumor signals from the bone marrow stromal microenvironment and immune effectors. What should be the place of the targeted therapeutic options in light of the tumor heterogeneity inherent to leukemia and the clonal drift of which this type of tumor is capable? Novel approaches by single cell analysis and next generation sequencing precisely define clonal heterogeneity and evolution, leading to a personalized and time variable adapted treatment. Indeed, the evolution of leukemia, either spontaneous or under therapy selection pressure, is a very complex phenomenon. The model of linear evolution is to be forgotten because single cell analysis of samples at diagnosis and at relapse show that tumor escape to therapy occurs from ancestral as well as terminal clones. The determination by the single cell technique of the trajectories of the different tumor sub-populations allows the identification of clones that accumulate factors of resistance to chemo/immunotherapy ("pan-resistant clones"), making possible to choose the combinatorial agents most likely to eradicate these cells. In addition, the single cell technique identifies the nature of each cell and can analyze, on the same sample, both the tumor cells and their environment. It is thus possible to evaluate the populations of immune effectors (T-lymphocytes, natural killer cells) for the leukemia stress-induced alteration of their functions. Finally, the single cells techniques are an invaluable tool for evaluation of the measurable residual disease since not only able to quantify but also to determine the most appropriate treatment according to the sensitivity profile to immuno-chemotherapy of remaining leukemic cells.
Collapse
Affiliation(s)
- Lamia Madaci
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Julien Colle
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Geoffroy Venton
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Laure Farnault
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Béatrice Loriod
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,TGML-TAGC/INSERM UMR1090 Parc Scientifique de Luminy case 928, 163, avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Régis Costello
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France. .,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France.
| |
Collapse
|
26
|
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An W, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet 2021; 53:672-682. [PMID: 33833453 PMCID: PMC8270111 DOI: 10.1038/s41588-021-00829-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
28
|
The histone methyltransferase inhibitor A-366 enhances hemoglobin expression in erythroleukemia cells upon co-exposure with chemical inducers in culture. ACTA ACUST UNITED AC 2021; 28:2. [PMID: 33407944 PMCID: PMC7788816 DOI: 10.1186/s40709-020-00132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Background Erythroleukemia is caused by the uncontrolled multiplication of immature erythroid progenitor cells which fail to differentiate into erythrocytes. By directly targeting this class of malignant cells, the induction of terminal erythroid differentiation represents a vital therapeutic strategy for this disease. Erythroid differentiation involves the execution of a well-orchestrated gene expression program in which epigenetic enzymes play critical roles. In order to identify novel epigenetic mediators of differentiation, this study explores the effects of multiple, highly specific, epigenetic enzyme inhibitors, in murine and human erythroleukemia cell lines. Results We used a group of compounds designed to uniquely target the following epigenetic enzymes: G9a/GLP, EZH1/2, SMYD2, PRMT3, WDR5, SETD7, SUV420H1 and DOT1L. The majority of the probes had a negative impact on both cell proliferation and differentiation. On the contrary, one of the compounds, A-366, demonstrated the opposite effect by promoting erythroid differentiation of both cell models. A-366 is a selective inhibitor of the G9a methyltransferase and the chromatin reader Spindlin1. Investigation of the molecular mechanism of action revealed that A-366 forced cells to exit from the cell cycle, a fact that favored erythroid differentiation. Further analysis led to the identification of a group of genes that mediate the A-366 effects and include CDK2, CDK4 and CDK6. Conclusions A-366, a selective inhibitor of G9a and Spindlin1, demonstrates a compelling role in the erythroid maturation process by promoting differentiation, a fact that is highly beneficial for patients suffering from erythroleukemia. In conclusion, this data calls for further investigation towards the delivery of epigenetic drugs and especially A-366 in hematopoietic disorders.
Collapse
|
29
|
Das AB, Smith-Díaz CC, Vissers MCM. Emerging epigenetic therapeutics for myeloid leukemia: modulating demethylase activity with ascorbate. Haematologica 2021; 106:14-25. [PMID: 33099992 PMCID: PMC7776339 DOI: 10.3324/haematol.2020.259283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
The past decade has seen a proliferation of drugs that target epigenetic pathways. Many of these drugs were developed to treat acute myeloid leukemia, a condition in which dysregulation of the epigenetic landscape is well established. While these drugs have shown promise, critical issues persist. Specifically, patients with the same mutations respond quite differently to treatment. This is true even with highly specific drugs that are designed to target the underlying oncogenic driver mutations. Furthermore, patients who do respond may eventually develop resistance. There is now evidence that epigenetic heterogeneity contributes, in part, to these issues. Cancer cells also have a remarkable capacity to ‘rewire’ themselves at the epigenetic level in response to drug treatment, and thereby maintain expression of key oncogenes. This epigenetic plasticity is a promising new target for drug development. It is therefore important to consider combination therapy in cases in which both driver mutations and epigenetic plasticity are targeted. Using ascorbate as an example of an emerging epigenetic therapeutic, we review the evidence for its potential use in both of these modes. We provide an overview of 2-oxoglutarate dependent dioxygenases with DNA, histone and RNA demethylase activity, focusing on those which require ascorbate as a cofactor. We also evaluate their role in the development and maintenance of acute myeloid leukemia. Using this information, we highlight situations in which the use of ascorbate to restore 2-oxoglutarate dependent dioxygenase activity could prove beneficial, in contrast to contexts in which targeted inhibition of specific enzymes might be preferred. Finally, we discuss how these insights could be incorporated into the rational design of future clinical trials.
Collapse
Affiliation(s)
- Andrew B Das
- Department of Pathology and Biomedical Science, University of Otago, Christchurch.
| | - Carlos C Smith-Díaz
- Department of Pathology and Biomedical Science, University of Otago, Christchurch
| | - Margreet C M Vissers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch
| |
Collapse
|
30
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
31
|
Abstract
Although we are just beginning to understand the mechanisms that regulate the epigenome, aberrant epigenetic programming has already emerged as a hallmark of hematologic malignancies including acute myeloid leukemia (AML) and B-cell lymphomas. Although these diseases arise from the hematopoietic system, the epigenetic mechanisms that drive these malignancies are quite different. Yet, in all of these tumors, somatic mutations in transcription factors and epigenetic modifiers are the most commonly mutated set of genes and result in multilayered disruption of the epigenome. Myeloid and lymphoid neoplasms generally manifest epigenetic allele diversity, which contributes to tumor cell population fitness regardless of the underlying genetics. Epigenetic therapies are emerging as one of the most promising new approaches for these patients. However, effective targeting of the epigenome must consider the need to restore the various layers of epigenetic marks, appropriate biological end points, and specificity of therapeutic agents to truly realize the potential of this modality.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
32
|
Saxena K, Konopleva M. An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opin Investig Drugs 2020; 29:973-988. [PMID: 32746655 DOI: 10.1080/13543784.2020.1804856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy of clonal myeloid precursor cells. Curative therapy has classically involved the use of intensive induction chemotherapy followed by consolidation with additional chemotherapy or allogeneic hematopoietic stem cell transplant. For many patients, such an approach is prohibitive because of high treatment-related toxicities. Advancements in the molecular understanding of AML have led to the introduction of new targeted therapies that are changing the treatment landscape for AML. AREAS COVERED We review emerging small molecule inhibitors that have shown preclinical efficacy for the treatment of AML. The compounds discussed affect apoptosis, p53-mediated interactions, transcriptional regulation, and cellular metabolism. We performed a literature search of PubMed and primarily included relevant sources published from 2000 to the present, though earlier sources are also referenced. EXPERT OPINION Most clinical trials for AML currently employ novel targeted therapies that demonstrate promising activity in preclinical models. We anticipate that new small molecule inhibitors will continue to enter the clinical realm and alter the treatment paradigm for AML. In a field where clinical advancement was comparatively slow for many years, it appears that we are now starting to see the rapid growth borne out of the deepening molecular understanding of AML.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
33
|
Bond DR, Uddipto K, Enjeti AK, Lee HJ. Single-cell epigenomics in cancer: charting a course to clinical impact. Epigenomics 2020; 12:1139-1151. [PMID: 32790506 DOI: 10.2217/epi-2020-0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of global epigenetic dysregulation. Mutations in epigenetic regulators are common events in multiple cancer types and epigenetic therapies are emerging as a treatment option in several malignancies. A major challenge for the clinical management of cancer is the heterogeneous nature of this disease. Cancers are composed of numerous cell types and evolve over time. This heterogeneity confounds decisions regarding treatment and promotes disease relapse. The emergence of single-cell epigenomic technologies has introduced the exciting possibility of linking genetic and transcriptional heterogeneity in the context of cancer biology. The next challenge is to leverage these tools for improved patient outcomes. Here we consider how single-cell epigenomic technologies may address the current challenges faced by cancer clinicians.
Collapse
Affiliation(s)
- Danielle R Bond
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Kumar Uddipto
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Newcastle, Waratah 2298, New South Wales, Australia.,School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia.,NSW Health Pathology - Hunter, New Lambton Heights 2305, New South Wales, Australia
| | - Heather J Lee
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| |
Collapse
|
34
|
Updates on DNA methylation modifiers in acute myeloid leukemia. Ann Hematol 2020; 99:693-701. [DOI: 10.1007/s00277-020-03938-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
|
35
|
Gurnari C, Voso MT, Maciejewski JP, Visconte V. From Bench to Bedside and Beyond: Therapeutic Scenario in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12020357. [PMID: 32033196 PMCID: PMC7072629 DOI: 10.3390/cancers12020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders characterized by abnormal proliferation of undifferentiated myeloid progenitors, impaired hematopoiesis, and variable response to therapy. To date, only about 30% of adult patients with AML become long-term survivors and relapse and/or disease refractoriness are the major cause of treatment failure. Thus, this is an urgent unmet clinical need and new drugs are envisaged in order to ameliorate disease survival outcomes. Here, we review the latest therapeutic approaches (investigational and approved agents) for AML treatment. A specific focus will be given to molecularly targeted therapies for AML as a representation of possible agents for precision medicine. We will discuss experimental and preclinical data for FLT3, IDH1, BCL-2, Hedgehog pathway inhibitors, and epitherapy.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Correspondence:
| |
Collapse
|