1
|
Conde Díez S, de Las Cuevas Allende R, Conde García E. Anemia of inflammation and iron metabolism in chronic diseases. Rev Clin Esp 2024; 224:598-608. [PMID: 39236980 DOI: 10.1016/j.rceng.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
Anemia of Inflammation begins with the activation of the immune system and the subsequent release of cytokines that lead to an elevation of hepcidin, responsible for hypoferremia, and a suppression of erythropoiesis due to lack of iron. The anemia is usually mild/moderate, normocytic/normochromic and is the most prevalent, after iron deficiency anemia, and is the most common in patients with chronic diseases, in the elderly and in hospitalized patients. Anemia can influence the patient's quality of life and have a negative impact on survival. Treatment should be aimed at improving the underlying disease and correcting the anemia. Intravenous iron, erythropoietin and prolyl hydroxylase inhibitors are the current basis of treatment, but future therapy is directed against hepcidin, which is ultimately responsible for anemia.
Collapse
Affiliation(s)
- S Conde Díez
- Medicina de Familia, Servicio Cántabro de Salud, Centro de Salud Camargo Costa, Maliaño, Cantabria, Spain
| | - R de Las Cuevas Allende
- Medicina de Familia, Servicio Cántabro de Salud, Centro de Salud Altamira, Puente de San Miguel, Cantabria, Spain
| | - E Conde García
- Hematólogo jubilado [jefe del Servicio de Hematología del Hospital Marqués de Valdecilla, Santander. Catedrático de Medicina de la Universidad de Cantabria], Santander, Spain.
| |
Collapse
|
2
|
Qi Z, Xia J, Xue X, Liu W, Huang Z, Zhang X, Zou Y, Liu J, Liu J, Li X, Cao L, Li L, Cui Z, Ji B, Zhang Q, Ding S, Liu W. Codon-optimized FAM132b gene therapy prevents dietary obesity by blockading adrenergic response and insulin action. Int J Obes (Lond) 2022; 46:1970-1982. [PMID: 35922561 DOI: 10.1038/s41366-022-01189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND FAM132b (myonectin) has been identified as a muscle-derived myokine with exercise and has hormone activity in circulation to regulate iron homeostasis and lipid metabolism via unknown receptors. Here, we aim to explore the potential of adeno-associated virus to deliver FAM132b in vivo to develop a gene therapy against obesity. METHODS Adeno-associated virus AAV9 were engineered to induce overexpression of FAM132b with two mutations, A136T and P159A. Then, AAV9 was delivered into high-fat diet mice through tail vein, and glucose homeostasis and obesity development of mice were observed. Methods of structural biology were used to predict the action site or receptor of the FAM132b mutant. RESULTS Treatment of high-fat diet-fed mice with AAV9 improved glucose intolerance and insulin resistance, and resulted in reductions in body weight, fat depot, and adipocyte size. Codon-optimized FAM132b (coFAM132b) reduced the glycemic response to epinephrine (EPI) in the whole body and increased the lipolytic response to EPI in adipose tissues. However, FAM132b knockdown by shRNA significantly increased the glycemic response to EPI in vivo and reduced adipocyte response to EPI and adipose tissue browning. Structural analysis predicted that the FAM132b mutant with A136T and P159A may form a weak bond with β2 adrenergic receptor (ADRB2) and may have more affinity for insulin and insulin-receptor complexes. CONCLUSIONS Our study underscores the potential of FAM132b gene therapy with codon optimization to treat obesity by modulating the adrenergic response and insulin action. Both structural biological analysis and in vivo experiments suggest that the adrenergic response and insulin action are most likely blockaded by FAM132b mutants.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jie Xia
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xiangli Xue
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Wenbin Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhuochun Huang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xue Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jianchao Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jiatong Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xingtian Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lu Cao
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lingxia Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhiming Cui
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Benlong Ji
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Qiang Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|