1
|
Morino-Koga S, Yokomizo T. Deciphering hematopoietic stem cell development: key signaling pathways and mechanisms. Front Cell Dev Biol 2024; 12:1510198. [PMID: 39717844 PMCID: PMC11663937 DOI: 10.3389/fcell.2024.1510198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs. Reports indicate transcription factors and external signals are involved in these processes. In this review, we discuss the timing and role of these transcription factors and summarize the external signals that have demonstrated efficacy in an in vitro culture. A precise understanding of the signals at each step is expected to advance the development of methods for inducing HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Sá da Bandeira D, Nevitt CD, Segato Dezem F, Marção M, Liu Y, Kelley Z, DuBose H, Chabot A, Hall T, Caprio C, Okhomina V, Kang G, Plummer J, McKinney-Freeman S, Clements WK, Ganuza M. NR4A1 and NR4A2 orphan nuclear receptors regulate endothelial-to-hematopoietic transition in mouse hematopoietic stem cell specification. Development 2024; 151:dev201957. [PMID: 39589268 PMCID: PMC11634030 DOI: 10.1242/dev.201957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Hematopoietic stem cells (HSCs) sustain life-long hematopoiesis and emerge during mid-gestation from hemogenic endothelial progenitors via an endothelial-to-hematopoietic transition (EHT). The full scope of molecular mechanisms governing this process remains unclear. The NR4A subfamily of orphan nuclear receptors act as tumor suppressors in myeloid leukemogenesis and have never been implicated in HSC specification. Here, we report that Nr4a1 and Nr4a2 expression is upregulated in hemogenic endothelium during EHT. Progressive genetic ablation of Nr4a gene dosage results in a gradual decrease in numbers of nascent c-Kit+ hematopoietic progenitors in developing embryos, c-Kit+ cell cluster size in the dorsal aorta, and a block in HSC maturation, revealed by an accumulation of pro-HSCs and pre-HSC-type I cells and decreased numbers of pre-HSC-type II cells. Consistent with these observations, cells isolated from embryonic day 11.5 Nr4a1-/-; Nr4a2-/- aorta-gonads-mesonephros are devoid of in vivo long-term hematopoietic repopulating potential. Molecularly, employing spatial transcriptomic analysis we determined that the genetic ablation of Nr4a1 and Nr4a2 prevents Notch signaling from being downregulated in intra-aortic clusters and thus for pro-HSCs to mature into HSCs. Interestingly, this defect is partially rescued by ex vivo culture of dissected aorta-gonads-mesonephros with SCF, IL3 and FLT3L, which may bypass Notch-dependent regulation. Overall, our data reveal a role for the NR4A family of orphan nuclear receptors in EHT.
Collapse
MESH Headings
- Animals
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/cytology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Mice
- Hematopoiesis/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Cell Differentiation/genetics
- Gene Expression Regulation, Developmental
- Aorta/embryology
- Aorta/metabolism
- Gonads/metabolism
- Gonads/embryology
- Mice, Knockout
- Endothelial Cells/metabolism
- Mice, Inbred C57BL
- Mesonephros/embryology
- Mesonephros/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Diana Sá da Bandeira
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chris D. Nevitt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Felipe Segato Dezem
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maycon Marção
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yutian Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zakiya Kelley
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hannah DuBose
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Claire Caprio
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Victoria Okhomina
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jasmine Plummer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Wilson K. Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
3
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Miladinovic O, Canto PY, Pouget C, Piau O, Radic N, Freschu P, Megherbi A, Brujas Prats C, Jacques S, Hirsinger E, Geeverding A, Dufour S, Petit L, Souyri M, North T, Isambert H, Traver D, Jaffredo T, Charbord P, Durand C. A multistep computational approach reveals a neuro-mesenchymal cell population in the embryonic hematopoietic stem cell niche. Development 2024; 151:dev202614. [PMID: 38451068 PMCID: PMC11057820 DOI: 10.1242/dev.202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.
Collapse
Affiliation(s)
- Olivera Miladinovic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre-Yves Canto
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Olivier Piau
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
- Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, Sorbonne Université, Inserm, UMR-S 938,F-75012 Paris, France
| | - Nevenka Radic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Priscilla Freschu
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Alexandre Megherbi
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Carla Brujas Prats
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Sebastien Jacques
- Plateforme de génomique, Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Estelle Hirsinger
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Audrey Geeverding
- Service de microscopie électronique, Fr3631 Institut de Biologie Paris Seine, Sorbonne Université, CNRS, 7-9Quai St-Bernard, 75005 Paris, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, Inserm, IMRB, F94010 Créteil, France
| | - Laurence Petit
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Michele Souyri
- Université de Paris, Inserm UMR 1131, Institut de Recherche Saint Louis, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Trista North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Hervé Isambert
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - David Traver
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre Charbord
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Charles Durand
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
6
|
Wang H, Liu D, Chen H, Jiao Y, Zhao H, Li Z, Hou S, Ni Y, Zhang R, Wang J, Zhou J, Liu B, Lan Y. Nupr1 Negatively Regulates Endothelial to Hematopoietic Transition in the Aorta-Gonad-Mesonephros Region. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203813. [PMID: 36638254 PMCID: PMC9951349 DOI: 10.1002/advs.202203813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In the aorta of mid-gestational mouse embryos, a specialized endothelial subpopulation termed hemogenic endothelial cells (HECs) develops into hematopoietic stem and progenitor cells (HSPCs), through a conserved process of endothelial-to-hematopoietic transition (EHT). EHT is tightly controlled by multiple intrinsic and extrinsic mechanisms. Nevertheless, the molecular regulators restraining this process remain poorly understood. Here, it is uncovered that, one of the previously identified HEC signature genes, Nupr1, negatively regulates the EHT process. Nupr1 deletion in endothelial cells results in increased HSPC generation in the aorta-gonad-mesonephros region. Furthermore, single-cell transcriptomics combined with serial functional assays reveals that loss of Nupr1 promotes the EHT process by promoting the specification of hematopoiesis-primed functional HECs and strengthening their subsequent hematopoietic differentiation potential toward HSPCs. This study further finds that the proinflammatory cytokine, tumor necrosis factor α (TNF-α), is significantly upregulated in Nupr1-deficient HECs, and the use of a specific TNF-α neutralizing antibody partially reduces excessive HSPC generation in the explant cultures from Nupr1-deficient embryos. This study identifies a novel negative regulator of EHT and the findings indicate that Nupr1 is a new potential target for future hematopoietic stem cell regeneration research.
Collapse
Affiliation(s)
- Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| | - Di Liu
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| | - Yuqing Jiao
- Chinese PLA Medical SchoolChinese PLA General HospitalBeijing100853China
| | - Haixin Zhao
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Zongcheng Li
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouGuangdong510632China
| | - Yanli Ni
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Rong Zhang
- School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jinyong Wang
- Institute of Zoology of the Chinese Academy of SciencesBeijing100101China
| | - Jie Zhou
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
- State Key Laboratory of ProteomicsAcademy of Military Medical SciencesAcademy of Military SciencesBeijing100071China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
- State Key Laboratory of ProteomicsAcademy of Military Medical SciencesAcademy of Military SciencesBeijing100071China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|