1
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Malamos P, Papanikolaou C, Gavriatopoulou M, Dimopoulos MA, Terpos E, Souliotis VL. The Interplay between the DNA Damage Response (DDR) Network and the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Multiple Myeloma. Int J Mol Sci 2024; 25:6991. [PMID: 39000097 PMCID: PMC11241508 DOI: 10.3390/ijms25136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| |
Collapse
|
3
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
4
|
Kumar S, Talluri S, Zhao J, Liao C, Potluri LB, Buon L, Mu S, Shi J, Chakraborty C, Tai YT, Samur MK, Munshi NC, Shammas MA. ABL1 kinase plays an important role in spontaneous and chemotherapy-induced genomic instability in multiple myeloma. Blood 2024; 143:996-1005. [PMID: 37992230 DOI: 10.1182/blood.2023021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.
Collapse
Affiliation(s)
- Subodh Kumar
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Srikanth Talluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jiangning Zhao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Chengcheng Liao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Lakshmi B Potluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Leutz Buon
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shidai Mu
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jialan Shi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Chandraditya Chakraborty
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet K Samur
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Masood A Shammas
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
5
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
6
|
Preclinical validation and phase I trial of 4-hydroxysalicylanilide, targeting ribonucleotide reductase mediated dNTP synthesis in multiple myeloma. J Biomed Sci 2022; 29:32. [PMID: 35546402 PMCID: PMC9097096 DOI: 10.1186/s12929-022-00813-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. Methods We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. Results HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. Conclusions Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. Trial registration: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018. Supplementary information The online version contains supplementary material available at 10.1186/s12929-022-00813-2.
Collapse
|
7
|
Berney M, T Manoj M, Fay EM, McGouran JF. 5'-Phosphorylation Increases the Efficacy of Nucleoside Inhibitors of the DNA Repair Enzyme SNM1A. ChemMedChem 2021; 17:e202100603. [PMID: 34905656 DOI: 10.1002/cmdc.202100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5'-3' exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5'-position, as well as zinc-binding groups at the 3'-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5'-phosphate dramatically increased the potency of the inhibitors.
Collapse
Affiliation(s)
- Mark Berney
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Manav T Manoj
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Ellen Mary Fay
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | | |
Collapse
|
8
|
Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy. Int J Mol Sci 2021; 22:ijms221910406. [PMID: 34638744 PMCID: PMC8508842 DOI: 10.3390/ijms221910406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, and accounts for 10% of all hematologic malignancies and 1% of all cancers. MM is characterized by genomic instability which results from DNA damage with certain genomic rearrangements being prognostic factors for the disease and patients’ clinical response. Following genotoxic stress, the evolutionary conserved DNA damage response (DDR) is activated and, in turn, coordinates DNA repair with cell-cycle events. However, the process of carcinogenesis cannot be attributed only to the genetic alterations, but also involves epigenetic processes. Regulation of expression and activity of key players in DNA repair and checkpoint proteins are essential and mediated partly by posttranslational modifications (PTM), such as acetylation. Crosstalk between different PTMs is important for regulation of DNA repair pathways. Acetylation, which is mediated by acetyltransferases (HAT) and histone deacetylases (HDAC), not only affects gene expression through its modulation of histone tails but also has recently been implicated in regulating non-histone proteins. Currently, several HDAC inhibitors (HDACi) have been developed both in pre-clinical and clinical studies, with some of them exhibiting significant anti-MM activities. Due to reversibility of epigenetic changes during the evolutionary process of myeloma genesis, the potency of epigenetic therapies seems to be of great importance. The aim of the present paper is the summary of all data on the role of HDACi in DDR, the interference with each DNA repair mechanism and the therapeutic implications of HDACi in MM.
Collapse
|
9
|
Berney M, Doherty W, Jauslin WT, T Manoj M, Dürr EM, McGouran JF. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg Med Chem 2021; 46:116369. [PMID: 34482229 PMCID: PMC8607331 DOI: 10.1016/j.bmc.2021.116369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
SNM1A is a zinc-dependent nuclease involved in the removal of interstrand crosslink lesions from DNA. Inhibition of interstrand crosslink repair enzymes such as SNM1A is a promising strategy for improving the efficacy of crosslinking chemotherapy drugs. Initial studies have demonstrated the feasibility of developing SNM1A inhibitors, but the full potential of this enzyme as a drug target has yet to be explored. Herein, the synthesis of a family of squaramide- and thiosquaramide-bearing nucleoside derivatives and their evaluation as SNM1A inhibitors is reported. A gel electrophoresis assay was used to identify nucleoside derivatives bearing an N-hydroxysquaramide or squaric acid moiety at the 3′-position, and a thymidine derivative bearing a 5′-thiosquaramide, as candidate SNM1A inhibitors. Quantitative IC50 determination showed that a thymidine derivative bearing a 5′-thiosquaramide was the most potent inhibitor, followed by a thymidine derivative bearing a 3′-squaric acid. UV–Vis titrations were carried out to evaluate the binding of the (thio)squaramides to zinc ions, allowing the order of inhibitory potency to be rationalised. The membrane permeability of the active inhibitors was investigated, with several compounds showing promise for future in vivo applications.
Collapse
Affiliation(s)
- Mark Berney
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - William Doherty
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Werner Theodor Jauslin
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Manav T Manoj
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Eva-Maria Dürr
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Joanna Francelle McGouran
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
10
|
Morabito F, Tripepi G, Martino EA, Vigna E, Mendicino F, Morabito L, Todoerti K, Al-Janazreh H, D'Arrigo G, Canale FA, Cutrona G, Neri A, Martino M, Gentile M. Spotlight on Melphalan Flufenamide: An Up-and-Coming Therapy for the Treatment of Myeloma. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2969-2978. [PMID: 34262262 PMCID: PMC8275138 DOI: 10.2147/dddt.s295215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
Despite recent therapeutic advances, multiple myeloma (MM) patients experience relapses as they become resistant to various classes and combinations of treatment. Melphalan (L-PAM) is an ageless drug. However, its use in the autologous stem cell transplantation (ASCT) setting and the innovative quadruplet regimen as well as daratumumab, bortezomib, and prednisone make this old drug current yet. Melflufen is a peptide-conjugated alkylator belonging to a novel class of compounds, representing an overcoming of L-PAM in terms of mechanism of action and effectiveness. The improved melflufen cytotoxicity is related to aminopeptidase activity, notably present in normal and neoplastic cells and remarkably heavily overexpressed in MM cells. Upon entering a cell, melflufen is cleaved by aminopeptidases, ultimately releasing the L-PAM payload and eliciting further the inflow and cleavage of the conjugated peptide. This virtuous loop persists until all extracellular melflufen has been utilized. The aminopeptidase-driven accumulation results in a 50-fold increase in L-PAM cell enrichment as compared with free alkylator. This condition produces selective cytotoxicity, increased on-target cell potency, and decreased off-target cell toxicity, ultimately overcoming resistance pathways triggered by previous treatments, including alkylators. Due to its distinct mechanism of action, melflufen plus dexamethasone as a doublet, and in combination with other novel drugs, has the potential to be beneficial for a broad range of patients with relapsed/refractory (RR) MM in third- or even in second-line therapy. The safety profile of melflufen has been consistent across studies, and no new safety concerns have been identified when melflufen was administered in doublet and triplet combinations. Based on growing clinical evidence, melflufen could be not only a good addition in the fight against RRMM but also a drug with a very favorable tolerability profile.
Collapse
Affiliation(s)
- Fortunato Morabito
- Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy.,Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Giovanni Tripepi
- HCNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio, Calabria, Italy
| | | | | | | | - Lucio Morabito
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Hamdi Al-Janazreh
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Graziella D'Arrigo
- HCNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio, Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant Program, Clinical Section, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | | | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Martino
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
11
|
Mao S, Chaerkady R, Yu W, D'Angelo G, Garcia A, Chen H, Barrett AM, Phipps S, Fleming R, Hess S, Koopmann JO, Dimasi N, Wilson S, Pugh K, Cook K, Masterson LA, Gao C, Wu H, Herbst R, Howard PW, Tice DA, Cobbold M, Harper J. Resistance to Pyrrolobenzodiazepine Dimers Is Associated with SLFN11 Downregulation and Can Be Reversed through Inhibition of ATR. Mol Cancer Ther 2021; 20:541-552. [PMID: 33653945 DOI: 10.1158/1535-7163.mct-20-0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Collapse
Affiliation(s)
- Shenlan Mao
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| | | | - Wen Yu
- Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Hong Chen
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sandrina Phipps
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ryan Fleming
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Sonja Hess
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Nazzareno Dimasi
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Susan Wilson
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Kimberly Cook
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Changshou Gao
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Herren Wu
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ronald Herbst
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - David A Tice
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Mark Cobbold
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Jay Harper
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
12
|
Saitoh T, Oda T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers (Basel) 2021; 13:504. [PMID: 33525741 PMCID: PMC7865954 DOI: 10.3390/cancers13030504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.
Collapse
Affiliation(s)
- Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan;
| |
Collapse
|
13
|
Xing L, Lin L, Yu T, Li Y, Cho SF, Liu J, Wen K, Hsieh PA, Kinneer K, Munshi N, Anderson KC, Tai YT. A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia 2020; 34:2150-2162. [PMID: 32060401 PMCID: PMC7392808 DOI: 10.1038/s41375-020-0745-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
To target mechanisms critical for multiple myeloma (MM) plasma cell adaptations to genomic instabilities and further sustain MM cell killing, we here specifically trigger DNA damage response (DDR) in MM cells by a novel BCMA antibody-drug conjugate (ADC) delivering the DNA cross-linking PBD dimer tesirine, MEDI2228. MEDI2228, more effectively than its anti-tubulin MMAF-ADC homolog, induces cytotoxicity against MM cells regardless of drug resistance, BCMA levels, p53 status, and the protection conferred by bone marrow stromal cells and IL-6. Distinctly, prior to apoptosis, MEDI2228 activates DDRs in MM cells via phosphorylation of ATM/ATR kinases, CHK1/2, CDK1/2, and H2AX, associated with expression of DDR-related genes. Significantly, MEDI2228 synergizes with DDR inhibitors (DDRi s) targeting ATM/ATR/WEE1 checkpoints to induce MM cell lethality. Moreover, suboptimal doses of MEDI2228 and bortezomib (btz) synergistically trigger apoptosis of even drug-resistant MM cells partly via modulation of RAD51 and accumulation of impaired DNA. Such combination further induces superior in vivo efficacy than monotherapy via increased nuclear γH2AX-expressing foci, irreversible DNA damages, and tumor cell death, leading to significantly prolonged host survival. These results indicate leveraging MEDI2228 with DDRi s or btz as novel combination strategies, further supporting ongoing clinical development of MEDI2228 in patients with relapsed and refractory MM.
Collapse
Key Words
- multiple myeloma, mm
- b cell maturation antigen, bcma
- antibody drug conjugate, adc
- pyrrolobenzodiazepine, pbd
- monomethyl auristatin f, mmaf
- bortezomib, btz
- lenalidomide, len
- pomalidomide, pom
- bone marrow stromal cells, bmscs
- interleukin-6, il-6
- dna damage response, ddr
- double strand break, dsb
- ddr inhibitor, ddri
- dna repair
- ataxia-telangiesctasia mutated, atm
- atr, ataxia telangiectasia and rad3-related protein
- wee1
- drug resistance
- synthetic cytotoxicity
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, PR China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, PR China
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Corbett S, Huang S, Zammarchi F, Howard PW, van Berkel PH, Hartley JA. The Role of Specific ATP-Binding Cassette Transporters in the Acquired Resistance to Pyrrolobenzodiazepine Dimer-Containing Antibody-Drug Conjugates. Mol Cancer Ther 2020; 19:1856-1865. [PMID: 32669316 DOI: 10.1158/1535-7163.mct-20-0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Antibody-drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance. The aim was to generate and characterize PBD acquired resistant cell lines in both hematologic and solid tumor settings. Human Karpas-299 (ALCL) and NCI-N87 (gastric cancer) cells were incubated with increasing IC50 doses of ADC (targeting CD25 and HER2, respectively) or SG3199 in a pulsed manner until stable acquired resistance was established. The level of resistance achieved was approximately 3,000-fold for ADCT-301 and 3-fold for SG3199 in Karpas-299, and 8-fold for ADCT-502 and 4-fold for SG3199 in NCI-N87. Cross-resistance between ADC and SG3199, and with an alternative PBD-containing ADC or PBD dimer was observed. The acquired resistant lines produced fewer DNA interstrand cross-links, indicating an upstream mechanism of resistance. Loss of antibody binding or internalization was not observed. A human drug transporter PCR Array revealed several genes upregulated in all the resistant cell lines, including ABCG2 and ABCC2, but not ABCB1(MDR1). These findings were confirmed by RT-PCR and Western blot, and inhibitors and siRNA knockdown of ABCG2 and ABCC2 recovered drug sensitivity. These data show that acquired resistance to PBD-ADCs and SG3199 can involve specific ATP-binding cassette drug transporters. This has clinical implications as potential biomarkers of resistance and for the rational design of drug combinations.
Collapse
Affiliation(s)
- Simon Corbett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Shiran Huang
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, London, United Kingdom
| | - Philip W Howard
- AstraZeneca/Spirogen, QMB Innovation Centre, London, United Kingdom
| | | | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom. .,ADC Therapeutics (UK) Limited, QMB Innovation Centre, London, United Kingdom
| |
Collapse
|
15
|
Patel PR, Senyuk V, Sweiss K, Calip GS, Pan D, Rodriguez N, Oh A, Mahmud N, Rondelli D. PARP Inhibition Synergizes with Melphalan but Does not Reverse Resistance Completely. Biol Blood Marrow Transplant 2020; 26:1273-1279. [PMID: 32194286 DOI: 10.1016/j.bbmt.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
High-dose melphalan (MEL) and autologous stem cell transplantation (ASCT) is the standard of care in the treatment of multiple myeloma (MM). Resistance to MEL has been linked to increased DNA repair. Here we sought to identify whether inhibition of poly(ADP-ribose) polymerase (PARP) synergizes with MEL and can overcome resistance. We tested the synergistic cytotoxicity of 3 inhibitors of PARP (PARPi)-veliparib (VEL), olaparib (OLA), and niraparib (NIRA)-combined with MEL in RPMI8226 and U266 MM cell lines, as well as in their MEL resistance counterparts, RPMI8226-LR5 (LR5) and U266-LR6 (LR6). The addition of VEL, OLA, and NIRA to MEL reduced the half maximal inhibitory concentration (IC50) in RPMI8226 cells from 27.8 µM to 23.1 µM, 22.5 µM, and 18.0 µM, respectively. Similarly, the IC50 of MEL in U266 cells was decreased from 6.2 µM to 3.2 µM, 3.3 µM, and 3.0 µM, respectively. In LR5 and LR6 cells, PARPi did not reverse MEL resistance. We confirmed this in a NOD/SCID/gamma null xenograft mouse model with either MEL-sensitive (RPMI8226) or MEL-resistant (LR5) MM. Treatment with a MEL-VEL combination prolonged survival compared with MEL alone in RPMI8226 mice (107 days versus 67.5 days; P = .0009), but not in LR5 mice (41 versus 39 days; P = .09). We next tested whether 2 double-stranded DNA repair mechanisms, homologous recombination (HR) and nonhomologous end-joining (NHEJ), cause MEL resistance in LR5 and LR6 cells. In an HR assay, LR6 cells had a 4.5-fold greater HR capability than parent U226 cells (P = .05); however, LR5 cells had an equivalent HR ability as parent RPMI8226 cells. We hypothesized that NHEJ may be a mediator of MEL resistance in LR5 cells. Given that DNA-PK is integral to NHEJ and may be a therapeutic target, we treated LR5 cells with the DNA-PK inhibitor NU7026 in combination with MEL. Although NU7026 alone at 2.5 µM had no cytotoxicity, in combination it completely reversed resistance to MEL (MEL IC50, 46.4 µM versus 14.4 µM). We examined the clinical implications of our findings in a dataset of 414 patients treated with tandem ASCT. High PARP1 expressers had lower survival compared with patients with low expression (median 42.7 months versus median not reached; P = .003). We hypothesized that combined expression of the HR gene BRCA1, the NHEJ gene PRKDC (DNA-PK), and PARP1 may predict survival and found that overexpression of 0 (n = 101), 1 or 2 (n = 287), or all 3 (n = 26) genes had a negative impact on median survival (undefined versus 57.8 months versus 14.8 months; P < .0001). Here we demonstrate that PARPi synergized with MEL, but that resistance (which may be due to HR and NHEJ pathways) is not completely reversed by PARPi. In addition, we observed that a 3-gene analysis may be tested to identify patients resistant or sensitive to high-dose MEL.
Collapse
Affiliation(s)
- Pritesh R Patel
- Division of Hematology/ Oncology, University of Illinois at Chicago, Chicago, Illinois.
| | - Vitalyi Senyuk
- Division of Hematology/ Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Karen Sweiss
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, Illinois
| | - Greg S Calip
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, Illinois
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois
| | - Natalie Rodriguez
- University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Annie Oh
- Division of Hematology/ Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Nadim Mahmud
- Division of Hematology/ Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Damiano Rondelli
- Division of Hematology/ Oncology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Solana-Altabella A, Valero S, Balaguer J, Escobar-Cava P, Barranco H, López E, Ribes-Artero H, Poveda JL. Intravitreal melphalan therapy for vitreous seeds in retinoblastoma: Implementation and outcomes of a new chemotherapy protocol. J Oncol Pharm Pract 2020; 26:1829-1835. [PMID: 32063104 DOI: 10.1177/1078155220904410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoblastoma is the most common paediatric ocular tumour, which appears in the retina. Without treatment, retinoblastoma grows and destroys the internal ocular globe architecture, even leading to metastasis. When treated, overall survival is close to 97%, the alkylating drug melphalan being the most extensively used chemotherapeutic agent in localised treatment. The aim of this study is to describe the implementation of a new intravitreal chemotherapy retinoblastoma treatment protocol for children implanting vitreous seeds through intravitreal melphalan injections and to evaluate the patients' health outcomes treated with it. Between December 2014 and July 2018, seven patients were treated with this protocol. They received a mean of 3.3 cycles of intravitreal melphalan with standard doses of 30 mcg per cycle. In the seven eyes treated in our hospital, the response was as expected; three eyes with vitreous seedings (43%) were successfully treated. The main adverse effects presented by all patients were scars at cryogenisation points. In two patients, the appearance of 'salt and pepper' retinopathy was reported. Oncology pharmacists, as part of the treatment team, can provide information about recommended doses, expected adverse effects, stability of preparations, most appropriate method of processing, packaging, and methods of drug administration, to ensure efficacy and especially safety in the administration of these drugs.
Collapse
Affiliation(s)
| | | | - Julia Balaguer
- H.U.P. La Fe, Paediatric Oncology Department, Valencia, Spain
| | | | - Honorio Barranco
- H.U.P. La Fe, Paediatric Ophthalmology Department, Valencia, Spain
| | | | | | | |
Collapse
|
17
|
|
18
|
Gourzones C, Bret C, Moreaux J. Treatment May Be Harmful: Mechanisms/Prediction/Prevention of Drug-Induced DNA Damage and Repair in Multiple Myeloma. Front Genet 2019; 10:861. [PMID: 31620167 PMCID: PMC6759943 DOI: 10.3389/fgene.2019.00861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by accumulation of malignant plasma cells within the bone marrow (BM). MM is considered mostly without definitive treatment because of the inability of standard of care therapies to overcome drug-resistant relapse. Genotoxic agents are used in the treatment of MM and exploit the fact that DNA double-strand breaks are highly cytotoxic for cancer cells. However, their mutagenic effects are well-established and described. According to these effects, chemotherapy could cause harmful DNA damage associated with new driver genomic abnormalities providing selective advantage, drug resistance, and higher relapse risk. Several mechanisms associated with MM cell (MMC) resistance to genotoxic agents have been described, underlining MM heterogeneity. The understanding of these mechanisms provides several therapeutic strategies to overcome drug resistance and limit mutagenic effects of treatment in MM. According to this heterogeneity, adopting precision medicine into clinical practice, with the development of biomarkers, has the potential to improve MM disease management and treatment.
Collapse
Affiliation(s)
| | - Caroline Bret
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Evans K, Duan J, Pritchard T, Jones CD, McDermott L, Gu Z, Toscan CE, El-Zein N, Mayoh C, Erickson SW, Guo Y, Meng F, Jung D, Rathi KS, Roberts KG, Mullighan CG, Shia CS, Pearce T, Teicher BA, Smith MA, Lock RB. OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clin Cancer Res 2019; 25:4493-4503. [PMID: 31015346 DOI: 10.1158/1078-0432.ccr-19-0551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE OBI-3424 is a highly selective prodrug that is converted by aldo-keto reductase family 1 member C3 (AKR1C3) to a potent DNA-alkylating agent. OBI-3424 has entered clinical testing for hepatocellular carcinoma and castrate-resistant prostate cancer, and it represents a potentially novel treatment for acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX). RESULTS AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs. CONCLUSIONS OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.
Collapse
Affiliation(s)
- Kathryn Evans
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - JianXin Duan
- Ascentawits Pharmaceuticals, Ltd, Nanshan Shenzhen, China
| | - Tara Pritchard
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Connor D Jones
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Lisa McDermott
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Zhaohui Gu
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cara E Toscan
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Narimanne El-Zein
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | | | - Yuelong Guo
- RTI International, Research Triangle Park, North Carolina
| | - Fanying Meng
- Ascentawits Pharmaceuticals, Ltd, Nanshan Shenzhen, China
| | - Donald Jung
- Ascentawits Pharmaceuticals, Ltd, Nanshan Shenzhen, China
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathryn G Roberts
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
20
|
Gourzones C, Bellanger C, Lamure S, Gadacha OK, De Paco EG, Vincent L, Cartron G, Klein B, Moreaux J. Antioxidant Defenses Confer Resistance to High Dose Melphalan in Multiple Myeloma Cells. Cancers (Basel) 2019; 11:cancers11040439. [PMID: 30925767 PMCID: PMC6521290 DOI: 10.3390/cancers11040439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematological cancer after lymphoma. It is characterized by the accumulation of clonal malignant plasma cells within the bone marrow. The development of drug resistance remains a major problem for effective treatment of MM. Understand the mechanisms underlying drug resistance in MM is a focal point to improve MM treatment. Methods: In the current study, we analyzed further the role of redox imbalance induction in melphalan-induced toxicity both in human myeloma cell lines (HMCLs) and primary myeloma cells from patients. Results: We developed an in-vitro model of short-term resistance to high-dose melphalan and identified that pretreatment with physiological concentration of GSH protects HMCLs from melphalan-induced cell cycle arrest and cytotoxicity. We validated these results using primary MM cells from patients co-cultured with their bone marrow microenvironment. GSH did not affect the ability of melphalan to induce DNA damages in MM cells. Interestingly, melphalan induced reactive oxygen species, a significant decrease in GSH concentration, protein and lipd oxydation together with NRF2 (NF-E2-related factor 2) pathway activation. Conclusions: Our data demonstrate that antioxidant defenses confers resistance to high dose melphalan in MM cells, supporting that redox status in MM cells could be determinant for patients’ response to melphalan.
Collapse
Affiliation(s)
- Claire Gourzones
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
| | - Céline Bellanger
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
| | - Sylvain Lamure
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
| | | | | | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Univ Montpellier, UMR CNRS 5235, 34000 Montpellier, France.
| | - Bernard Klein
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, University of Montpellier, 34000 Montpellier, France.
- Univ Montpellier, UFR de Médecine, 34000 Montpellier, France.
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France.
| |
Collapse
|
21
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
22
|
Karmakar S, Maji M, Mukherjee A. Modulation of the reactivity of nitrogen mustards by metal complexation: approaches to modify their therapeutic properties. Dalton Trans 2019; 48:1144-1160. [DOI: 10.1039/c8dt04503h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal complexation of nitrogen mustards shows promise with an ability to control the mustards’ reactivity, perform selective hypoxia activation, overcome resistance, and control GSH deactivation.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Moumita Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
23
|
Guo X, He D, Zhang E, Chen J, Chen Q, Li Y, Yang L, Yang Y, Zhao Y, Wang G, He J, Cai Z. HMGB1 knockdown increases MM cell vulnerability by regulating autophagy and DNA damage repair. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:205. [PMID: 30157958 PMCID: PMC6114506 DOI: 10.1186/s13046-018-0883-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Background With the development of novel therapeutic agents, the survival of multiple myeloma (MM) patients has much improved. However, the disease is incurable due to drug resistance. Previous studies have found that high-mobility group box 1 (HMGB1) is involved in inflammation, angiogenesis, DNA damage repair, and cancer invasion, progression, metastasis and drug resistance and that high HMGB1 expression is associated with poor MM prognosis, yet the role and mechanism of HMGB1 in MM remains unclear. Methods Through gene expression and Oncomine database analyses, we found that HMGB1 is associated with a poor prognosis in MM patients. RNA interference together with gene array analysis, cell proliferation and apoptosis assays, autophagy detection assays, western blotting, and in vivo xenograft models were employed to evaluate the effect of HMGB1 and the mechanism involved in MM drug resistance. Results MM cell lines and primary MM samples were found to express high levels of HMGB1, which was negatively associated with the 3-year survival of MM patients. HMGB1 knockdown in MM cells enhanced the inhibitory effect of chemotherapy with dexamethasone (Dex) via apoptosis induction. Furthermore, downregulation of HMGB1 activated the mTOR pathway, inhibited autophagy and increased DNA damage induced by Dex by modulating expression of related genes. In vivo, xenograft models showed that after Dex treatment, the tumor burden of HMGB1-knockdown mice was decreased compared with that of control mice. Conclusions Our research shows that HMGB1 participates in autophagy and DNA damage repair and that downregulation of HMGB1 enhances the sensitivity of MM cells to Dex, suggesting that HMGB1 may serve as a target for MM treatment.
Collapse
Affiliation(s)
- Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Gang Wang
- Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
24
|
Hartley JA, Flynn MJ, Bingham JP, Corbett S, Reinert H, Tiberghien A, Masterson LA, Antonow D, Adams L, Chowdhury S, Williams DG, Mao S, Harper J, Havenith CEG, Zammarchi F, Chivers S, van Berkel PH, Howard PW. Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine. Sci Rep 2018; 8:10479. [PMID: 29992976 PMCID: PMC6041317 DOI: 10.1038/s41598-018-28533-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 01/12/2023] Open
Abstract
Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.
Collapse
Affiliation(s)
- John A Hartley
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK. .,Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK.
| | - Michael J Flynn
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - John P Bingham
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Simon Corbett
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK.,Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Halla Reinert
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arnaud Tiberghien
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Luke A Masterson
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Dyeison Antonow
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Lauren Adams
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Sajidah Chowdhury
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - David G Williams
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Shenlan Mao
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jay Harper
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Carin E G Havenith
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Simon Chivers
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Patrick H van Berkel
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Philip W Howard
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| |
Collapse
|
25
|
BO-1055, a novel DNA cross-linking agent with remarkable low myelotoxicity shows potent activity in sarcoma models. Oncotarget 2018; 7:43062-43075. [PMID: 27248664 PMCID: PMC5190008 DOI: 10.18632/oncotarget.9657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/14/2016] [Indexed: 02/04/2023] Open
Abstract
DNA damaging agents cause rapid shrinkage of tumors and form the basis of chemotherapy for sarcomas despite significant toxicities. Drugs having superior efficacy and wider therapeutic windows are needed to improve patient outcomes. We used cell proliferation and apoptosis assays in sarcoma cell lines and benign cells; γ-H2AX expression, comet assay, immunoblot analyses and drug combination studies in vitro and in patient derived xenograft (PDX) models. BO-1055 caused apoptosis and cell death in a concentration and time dependent manner in sarcoma cell lines. BO-1055 had potent activity (submicromolar IC50) against Ewing sarcoma and rhabdomyosarcoma, intermediate activity in DSRCT (IC50 = 2-3μM) and very weak activity in osteosarcoma (IC50 >10μM) cell lines. BO-1055 exhibited a wide therapeutic window compared to other DNA damaging drugs. BO-1055 induced more DNA double strand breaks and γH2AX expression in cancer cells compared to benign cells. BO-1055 showed inhibition of tumor growth in A673 xenografts and caused tumor regression in cyclophosphamide resistant patient-derived Ewing sarcoma xenografts and A204 xenografts. Combination of BO-1055 and irinotecan demonstrated synergism in Ewing sarcoma PDX models. Potent activity on sarcoma cells and its relative lack of toxicity presents a strong rationale for further development of BO-1055 as a therapeutic agent.
Collapse
|
26
|
Abstract
Multiple myeloma (MM) is an incurable hematopoietic cancer that is characterized by malignant plasma cell infiltration of the bone marrow and/or extramedullary sites. Multi-modality approaches including "novel agents," traditional chemotherapy, and/or stem cell transplantation are used in MM therapy. Drug resistance, however, ultimately develops and the disease remains incurable for the vast majority of patients. In this chapter, we review both tumor cell-autonomous and non-autonomous (microenvironment-dependent) mechanisms of drug resistance. MM provides an attractive paradigm highlighting a number of current concepts and challenges in oncology. Firstly, identification of MM cancer stem cells and their unique drug resistance attributes may provide rational avenues towards MM eradication and cure. Secondly, the oligoclonal evolution of MM and alternation of "clonal tides" upon therapy challenge our current understanding of treatment responses. Thirdly, the success of MM "novel agents" provides exemplary evidence for the impact of therapies that target the immune and non-immune microenvironment. Fourthly, the rapid pace of drug approvals for MM creates an impetus for development of precision medicine strategies and biomarkers that promote efficacy and mitigate toxicity and cost. While routine cure of the disease remains the ultimate and yet unattainable prize, MM advances in the last 10-15 years have provided an astounding paradigm for the treatment of blood cancers in the modern era and have radically transformed patient outcomes.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, Madison, WI, 53705, USA.
| | - Fotis Asimakopoulos
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, Madison, WI, 53705, USA
| |
Collapse
|
27
|
Escalante J, McQuade RM, Stojanovska V, Nurgali K. Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas 2017; 105:23-29. [DOI: 10.1016/j.maturitas.2017.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
28
|
Esma F, Salvini M, Troia R, Boccadoro M, Larocca A, Pautasso C. Melphalan hydrochloride for the treatment of multiple myeloma. Expert Opin Pharmacother 2017; 18:1127-1136. [DOI: 10.1080/14656566.2017.1349102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabrizio Esma
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rossella Troia
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Alessandra Larocca
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Pautasso
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
29
|
Nucleotide excision repair is a potential therapeutic target in multiple myeloma. Leukemia 2017; 32:111-119. [PMID: 28588253 PMCID: PMC5720937 DOI: 10.1038/leu.2017.182] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM.
Collapse
|
30
|
Xia J, Xu H, Zhang X, Allamargot C, Coleman KL, Nessler R, Frech I, Tricot G, Zhan F. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid. EBioMedicine 2017; 18:41-49. [PMID: 28229908 PMCID: PMC5405162 DOI: 10.1016/j.ebiom.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
High-dose chemotherapies to treat multiple myeloma (MM) can be life-threatening due to toxicities to normal cells and there is a need to target only tumor cells and/or lower standard drug dosage without losing efficacy. We show that pharmacologically-dosed ascorbic acid (PAA), in the presence of iron, leads to the formation of highly reactive oxygen species (ROS) resulting in cell death. PAA selectively kills CD138+ MM tumor cells derived from MM and smoldering MM (SMM) but not from monoclonal gammopathy undetermined significance (MGUS) patients. PAA alone or in combination with melphalan inhibits tumor formation in MM xenograft mice. This study shows PAA efficacy on primary cancer cells and cell lines in vitro and in vivo. Pharmacologically-dosed ascorbic acid kills Multiple Myeloma cells. Pharmacologically-dosed ascorbic leads to apoptosis-inducing factor 1 cleavage. Pharmacologically-dosed ascorbic lowers melphalan dosage.
Multiple myeloma (MM) remains a difficult to cure disease in the majority of cases. Several preclinical and clinical studies have shown that ascorbic acid in pharmacologic doses (PAA) selectively kills cancer cells, while sparing normal cells. This article reveals the biological mechanism by which PAA exerts its anti-cancer effects and should lead to the development of an innovative therapy in MM.
Collapse
Affiliation(s)
- Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Xiaoyan Zhang
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; East China University of Science and Technology, Shanghai, China
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Kristen L Coleman
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Randy Nessler
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States.
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
31
|
Bhattarai P, Vance D, Hatefi A, Khaw BA. An in vitro demonstration of overcoming drug resistance in SKOV3 TR and MCF7 ADR with targeted delivery of polymer pro-drug conjugates. J Drug Target 2017; 25:436-450. [PMID: 27937085 DOI: 10.1080/1061186x.2016.1271421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody - anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy - used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells - shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.
Collapse
Affiliation(s)
- Prashant Bhattarai
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| | - Dylan Vance
- b Department of Biology , College of Sciences, Northeastern University , Boston , MA , USA
| | - Arash Hatefi
- c Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers University , Piscataway , NJ , USA
| | - Ban An Khaw
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
32
|
Yuan S, Friedman DL, Daniels AB. Alternative Chemotherapeutic Agents for the Treatment of Retinoblastoma Using the Intra-Arterial and Intravitreal Routes: A Path Forward Toward Drug Discovery. Int Ophthalmol Clin 2017; 57:129-141. [PMID: 27898619 DOI: 10.1097/iio.0000000000000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
33
|
Ray A, Das DS, Song Y, Nordström E, Gullbo J, Richardson PG, Chauhan D, Anderson KC. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br J Haematol 2016; 174:397-409. [PMID: 27098276 PMCID: PMC4961600 DOI: 10.1111/bjh.14065] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Abstract
Our prior study utilized both in vitro and in vivo multiple myeloma (MM) xenograft models to show that a novel alkylator melphalan-flufenamide (Melflufen) is a more potent anti-MM agent than melphalan and overcomes conventional drug resistance. Here we examined whether this potent anti-MM activity of melflufen versus melphalan is due to their differential effect on DNA damage and repair signalling pathways via γ-H2AX/ATR/CHK1/Ku80. Melflufen-induced apoptosis was associated with dose- and time-dependent rapid phosphorylation of γ-H2AX. Melflufen induces γ-H2AX, ATR, and CHK1 as early as after 2 h exposure in both melphalan-sensitive and -resistant cells. However, melphalan induces γ-H2AX in melphalan-sensitive cells at 6 h and 24 h; no γ-H2AX induction was observed in melphalan-resistant cells even after 24 h exposure. Similar kinetics was observed for ATR and CHK1 in meflufen- versus melphalan-treated cells. DNA repair is linked to melphalan-resistance; and importantly, we found that melphalan, but not melflufen, upregulates Ku80 that repairs DNA double-strand breaks. Washout experiments showed that a brief (2 h) exposure of MM cells to melflufen is sufficient to initiate an irreversible DNA damage and cytotoxicity. Our data therefore suggest that melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in MM cells.
Collapse
Affiliation(s)
- Arghya Ray
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Deepika Sharma Das
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yan Song
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eva Nordström
- Oncopeptides AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 751 85 Uppsala, Sweden
| | - Paul G. Richardson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C. Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
DNA repair of myeloma plasma cells correlates with clinical outcome: the effect of the nonhomologous end-joining inhibitor SCR7. Blood 2016; 128:1214-25. [PMID: 27443291 DOI: 10.1182/blood-2016-01-691618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022] Open
Abstract
DNA repair activity of malignant cells seems to influence therapeutic outcome and patients' survival. Herein, we investigated the mechanistic basis for the link between DNA repair efficiency and response to antimyeloma therapy. Nucleotide excision repair (NER), interstrand cross-links repair (ICL/R), double-strand breaks repair (DSB/R), and chromatin structure were evaluated in multiple myeloma (MM) cell lines (melphalan-sensitive RPMI8226; melphalan-resistant LR5) and bone marrow plasma cells (BMPCs) from MM patients who responded (n = 17) or did not respond (n = 9) to subsequent melphalan therapy. The effect of DSB/R inhibition was also evaluated. Responders' BMPCs showed slower rates of NER and DSB/R (P <0022), similar rates of ICL/R, and more condensed chromatin structure compared with nonresponders. Moreover, apoptosis rates of BMPCs were inversely correlated with individual DNA repair efficiency and were higher in responders' cells compared with those of nonresponders (P = .0011). Similarly, RPMI8226 cells showed slower rates of NER and DSB/R, comparable rates of ICL/R, more condensed chromatin structure, and higher sensitivity than LR5 cells. Interestingly, cotreatment of BMPCs or cell lines with DSB/R inhibitors significantly reduced the rates of DSB/R and increased melphalan sensitivity of the cells, with the nonhomologous end-joining inhibitor SCR7 showing the strongest effect. Together, responders' BMPCs are characterized by lower efficiencies of NER and DSB/R mechanisms, resulting in higher accumulation of the extremely cytotoxic ICLs and DSBs lesions, which in turn triggers the induction of the apoptotic pathway. Moreover, the enhancement of melphalan cytotoxicity by DSB/R inhibition offers a promising strategy toward improvement of existing antimyeloma regimens.
Collapse
|
35
|
Liu YC, Chang PY, Chao CCK. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene. Nucleic Acids Res 2015; 43:10760-81. [PMID: 26384430 PMCID: PMC4678856 DOI: 10.1093/nar/gkv934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| | - Pu-Yuan Chang
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China
| | - Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
36
|
Alagpulinsa DA, Yaccoby S, Ayyadevara S, Shmookler Reis RJ. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment. Cancer Biol Ther 2015; 16:976-86. [PMID: 25996477 DOI: 10.1080/15384047.2015.1040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy.
Collapse
|
37
|
Zub KA, de Sousa MML, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, Jensen ON, Slupphaug G. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 2015; 10:e0119857. [PMID: 25769101 PMCID: PMC4358942 DOI: 10.1371/journal.pone.0119857] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/16/2015] [Indexed: 01/16/2023] Open
Abstract
Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.
Collapse
Affiliation(s)
- Kamila Anna Zub
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Aida Demirovic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Clifford Young
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ida Ericsson
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Anders Sundan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| |
Collapse
|
38
|
Gkotzamanidou M, Sfikakis PP, Kyrtopoulos SA, Bamia C, Dimopoulos MA, Souliotis VL. Chromatin structure, transcriptional activity and DNA repair efficiency affect the outcome of chemotherapy in multiple myeloma. Br J Cancer 2014; 111:1293-304. [PMID: 25051404 PMCID: PMC4183844 DOI: 10.1038/bjc.2014.410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 01/20/2023] Open
Abstract
Background: Melphalan is one of the most active chemotherapeutic agents in the treatment of multiple myeloma (MM). However, the mechanism underlying differential patient responses to melphalan therapy is unknown. Methods: Chromatin structure, transcriptional activity and DNA damage response signals were examined following ex vivo treatment with melphalan of both malignant bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) of MM patients, responders (n=57) or non-responders (n=28) to melphalan therapy. PBMCs from healthy controls (n=25) were also included in the study. Results: In both BMPCs and PBMCs, the local chromatin looseness, transcriptional activity and repair efficiency of the transcribed strand (TS) were significantly higher in non-responders than in responders and lowest in healthy controls (all P<0.05). Moreover, we found that melphalan-induced apoptosis inversely correlated with the repair efficiency of the TS, with the duration of the inhibition of mRNA synthesis, phosphorylation of p53 at serine 15 and apoptosis rates being higher in responders than in non-responders (all P<0.001). Conclusions: Our findings provide a mechanistic basis for the link between DNA repair efficiency and response to melphalan therapy. Interestingly, the observation of these phenomena in PBMCs provides a novel approach for the prediction of response to anti-myeloma therapy.
Collapse
Affiliation(s)
- M Gkotzamanidou
- 1] Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA [2] Department of Clinical Therapeutics, University of Athens School of Medicine, 11528 Athens, Greece
| | - P P Sfikakis
- First Department of Propedeutic Medicine, University of Athens School of Medicine, 11527 Athens, Greece
| | - S A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - C Bamia
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens School of Medicine, 11527 Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, University of Athens School of Medicine, 11528 Athens, Greece
| | - V L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
39
|
CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 2014; 123:3770-9. [PMID: 24782505 DOI: 10.1182/blood-2013-10-530964] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic resistance remains a significant hurdle in the treatment of multiple myeloma (MM) and is significantly mediated by interactions between MM cells and stromal cells of the bone marrow microenvironment. Despite the importance of these interactions, the specific molecules and downstream signaling components involved remain incompletely understood. We have previously shown that the prototypic T-cell costimulatory receptor CD28, which is also expressed on MM cells, is a key mediator of MM survival and apoptotic resistance. Crosslinking CD28 by agonistic antibodies or myeloid dendritic cells (DC; these express the CD28 ligands CD80/CD86) prevents apoptosis caused by chemotherapy or serum withdrawal. We now report that CD28 pro-survival signaling is dependent upon downstream activation of phosphatidyl-inositol 3-kinase/Akt, inactivation of the transcription factor FoxO3a, and decreased expression of the pro-apoptotic molecule Bim. Conversely, blocking the CD28-CD80/CD86 interaction between MM cells and DC in vitro abrogates the DC's ability to protect MM cells against chemotherapy-induced death. Consistent with these observations, in vivo blockade of CD28-CD80/CD86 in the Vk*MYC murine myeloma model sensitizes MM cells to chemotherapy and significantly reduces tumor burden. Taken together, our findings suggest that CD28 is an important mediator of MM survival during stress and can be targeted to overcome chemotherapy resistance.
Collapse
|
40
|
Higgins JA, Zainol M, Brown K, Jones GDD. Anthocyans as tertiary chemopreventive agents in bladder cancer: anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis 2014; 29:227-35. [PMID: 24743948 DOI: 10.1093/mutage/geu009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer is associated with high rates of recurrence making tertiary chemoprevention an attractive intervention strategy. Anthocyanins have been shown to possess chemopreventive properties and are detectable in urine after oral ingestion, with higher concentrations achievable via intravesical administration alongside current chemotherapeutic regimens. Yet their apparent ability to protect against certain DNA damage may in turn interfere with cancer treatments. Our aim was therefore to determine the potential of anthocyanins as chemopreventive agents in bladder cancer, their mode of action and effects, both alone and in combination with mitomycin C (MMC). In this study we showed that mirtoselect, a standardised mixture of anthocyanins, possesses significant anti-proliferative activity, causing growth inhibition and apoptosis in bladder cancer cell lines. The anti-oxidative potential of mirtoselect was examined and revealed significantly fewer H2O2-induced DNA strand breaks, as well as oxidised DNA bases in pre-treated cells. In contrast, endogenous levels of oxidised DNA bases were unaltered. Investigations into the possible protective mechanisms associated with these anti-oxidant properties revealed that mirtoselect chelates metal ions. In mirtoselect/MMC combination studies, no adverse effects on measures of DNA damage were observed compared to treatment with MMC alone and there was evidence of enhanced cell death. Consistent with this, significantly more DNA crosslinks were formed in cells treated with the combination. These results show that mirtoselect exerts effects consistent with chemopreventive properties in bladder cancer cell lines and most importantly does so without adversely affecting the effects of drugs used in current treatment regimens. We also provide evidence that mirtoselect's anti-oxidative mechanism of action is via metal ion chelation. Overall these results suggest that mirtoselect could be an effective chemopreventive agent in bladder cancer and provides the necessary pre-clinical data for future in vivo animal studies and clinical trials.
Collapse
Affiliation(s)
- Jennifer A Higgins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Murizal Zainol
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
41
|
Kikuchi J, Koyama D, Mukai HY, Furukawa Y. Suitable drug combination with bortezomib for multiple myeloma under stroma-free conditions and in contact with fibronectin or bone marrow stromal cells. Int J Hematol 2014; 99:726-36. [DOI: 10.1007/s12185-014-1573-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
|
42
|
Surget S, Lemieux-Blanchard E, Maïga S, Descamps G, Le Gouill S, Moreau P, Amiot M, Pellat-Deceunynck C. Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other. Leuk Lymphoma 2014; 55:2165-73. [DOI: 10.3109/10428194.2013.871277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Xie J, Zhang L, Li M, Du J, Zhou L, Yang S, Zeng L, Li Z, Wang G, Wang D. Functional analysis of the involvement of apurinic/apyrimidinic endonuclease 1 in the resistance to melphalan in multiple myeloma. BMC Cancer 2014; 14:11. [PMID: 24400589 PMCID: PMC3900260 DOI: 10.1186/1471-2407-14-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Melphalan resistance has been considered one of the major obstacles to improve outcomes in multiple myeloma (MM) therapy; unfortunately, the mechanistic details of this resistance remain unclear. Melphalan is a highly effective alkylating agent which causes many types of DNA lesions, including DNA base alkylation damage that is repaired by base excision repair (BER). We postulated that human apurinic/apyrimidinic endonuclease 1 (APE1), an essential BER enzyme, plays a vital role in acquired melphalan resistance. However, because APE1 is a multifunctional protein with redox activity and acetylation modification in addition to its major repair activity, the particular APE1 function that may play a more important role in melphalan resistance is unknown. Methods Two MM cell lines, RPMI-8226 and U266 were used to measure the difference in APE1 levels in melphalan-resistant and sensitive derivatives. APE1 functional mutants for DNA repair, redox and acetylation were employed to investigate the roles of individual APE1 activities in acquired melphalan resistance. Results Our results indicate that APE1 is overexpressed in both MM melphalan-resistant cells. Knocking down APE1 sensitizes the melphalan resistant MM cells to melphalan treatment. The exogenous expression of DNA repair mutant H309N and acetylation mutant K6R/K7R of APE1 failed to restore the melphalan resistance of the APE1 knockdown RPMI-8226 cells. The AP endonuclease activity and multidrug resistance protein 1 (MDR1) regulatory activity may play roles in the melphalan resistance of MM cells. Conclusions The present study has identified that the DNA repair functions and the acetylation modification of APE1 are involved in melphalan resistance of MM cells and has also shed light on future therapeutic strategies targeting specific APE1 functions by small molecule inhibitors.
Collapse
Affiliation(s)
- Jiayin Xie
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P,R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Krasnov VP, Korolyova MA, Vodovozova EL. Nano-sized melphalan and sarcolysine drug delivery systems: synthesis and prospects of application. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n08abeh004358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Gourzones-Dmitriev C, Kassambara A, Sahota S, Rème T, Moreaux J, Bourquard P, Hose D, Pasero P, Constantinou A, Klein B. DNA repair pathways in human multiple myeloma: role in oncogenesis and potential targets for treatment. Cell Cycle 2013; 12:2760-73. [PMID: 23966156 DOI: 10.4161/cc.25951] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Every day, cells are faced with thousands of DNA lesions, which have to be repaired to preserve cell survival and function. DNA repair is more or less accurate and could result in genomic instability and cancer. We review here the current knowledge of the links between molecular features, treatment, and DNA repair in multiple myeloma (MM), a disease characterized by the accumulation of malignant plasma cells producing a monoclonal immunoglobulin. Genetic instability and abnormalities are two hallmarks of MM cells and aberrant DNA repair pathways are involved in disease onset, primary translocations in MM cells, and MM progression. Two major drugs currently used to treat MM, the alkylating agent Melphalan and the proteasome inhibitor Bortezomib act directly on DNA repair pathways, which are involved in response to treatment and resistance. A better knowledge of DNA repair pathways in MM could help to target them, thus improving disease treatment.
Collapse
Affiliation(s)
- Claire Gourzones-Dmitriev
- CHU Montpellier; Institute of Research in Biotherapy; Montpellier, France; INSERM; U1040; Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chauhan D, Ray A, Viktorsson K, Spira J, Paba-Prada C, Munshi N, Richardson P, Lewensohn R, Anderson KC. In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin Cancer Res 2013; 19:3019-31. [PMID: 23584492 PMCID: PMC4098702 DOI: 10.1158/1078-0432.ccr-12-3752] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The alkylating agent melphalan prolongs survival in patients with multiple myeloma; however, it is associated with toxicities and development of drug-resistance. Here, we evaluated the efficacy of melphalan-flufenamide (mel-flufen), a novel dipeptide prodrug of melphalan in multiple myeloma. EXPERIMENTAL DESIGN Multiple myeloma cell lines, primary patient cells, and the human multiple myeloma xenograft animal model were used to study the antitumor activity of mel-flufen. RESULTS Low doses of mel-flufen trigger more rapid and higher intracellular concentrations of melphalan in multiple myeloma cells than are achievable by free melphalan. Cytotoxicity analysis showed significantly lower IC50 of mel-flufen than melphalan in multiple myeloma cells. Importantly, mel-flufen induces apoptosis even in melphalan- and bortezomib-resistant multiple myeloma cells. Mechanistic studies show that siRNA knockdown of aminopeptidase N, a key enzyme mediating intracellular conversion of mel-flufen to melphalan, attenuates anti-multiple myeloma activity of mel-flufen. Furthermore, mel-flufen-induced apoptosis was associated with: (i) activation of caspases and PARP cleavage; (ii) reactive oxygen species generation; (iii) mitochondrial dysfunction and release of cytochrome c; and (iv) induction of DNA damage. Moreover, mel-flufen inhibits multiple myeloma cell migration and tumor-associated angiogenesis. Human multiple myeloma xenograft studies showed a more potent inhibition of tumor growth in mice treated with mel-flufen than mice receiving equimolar doses of melphalan. Finally, combining mel-flufen with lenalidomide, bortezomib, or dexamethasone triggers synergistic anti-multiple myeloma activity. CONCLUSION Our preclinical study supports clinical evaluation of mel-flufen to enhance therapeutic potential of melphalan, overcome drug-resistance, and improve multiple myeloma patient outcome.
Collapse
Affiliation(s)
- Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Arghya Ray
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jack Spira
- Oncopeptides AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Claudia Paba-Prada
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Nikhil Munshi
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Paul Richardson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth C. Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
47
|
Cives M, Ciavarella S, Rizzo FM, De Matteo M, Dammacco F, Silvestris F. Bendamustine overcomes resistance to melphalan in myeloma cell lines by inducing cell death through mitotic catastrophe. Cell Signal 2013; 25:1108-17. [PMID: 23380051 DOI: 10.1016/j.cellsig.2013.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/01/2022]
Abstract
Melphalan has been a mainstay of multiple myeloma (MM) therapy for many years. However, following treatment with this alkylator, malignant plasma cells usually escape both apoptosis and cell cycle control, and acquire drug-resistance resulting in tumor progression. Bendamustine is being used in MM patients refractory to conventional DNA-damaging agents, although the mechanisms driving this lack of cross-resistance are still undefined. Here, we investigated the molecular pathway of bendamustine-induced cell death in melphalan-sensitive and melphalan-resistant MM cell lines. Bendamustine affected cell survival resulting in secondary necrosis, and prompted cell death primarily through caspase-2 activation. Also, bendamustine blocked the cell cycle in the G2/M phase and induced micronucleation, erratic chromosome spreading and mitotic spindle perturbations in melphalan-resistant MM cells. In these cells, both Aurora kinase A (AURKA) and Polo-like kinase-1 (PLK-1), key components of the spindle-assembly checkpoint, were down-regulated following incubation with bendamustine, whereas levels of Cyclin B1 increased as a consequence of the prolonged mitotic arrest induced by the drug. These findings indicate that, at least in vitro, bendamustine drives cell death by promoting mitotic catastrophe in melphalan-resistant MM cells. Hence, activation of this alternative pathway of cell death may be a novel approach to the treatment of apoptosis-resistant myelomas.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Davidson D, Wang Y, Aloyz R, Panasci L. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest New Drugs 2013; 31:461-8. [PMID: 23054213 PMCID: PMC3857790 DOI: 10.1007/s10637-012-9886-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022]
Abstract
Poly [ADP-ribose] polymerase-1 (PARP-1) localizes rapidly to sites of DNA damage and has been associated with various repair mechanisms including base excision repair (BER) and homologous recombination/non-homologous end joining (HRR/NHEJ). PARP-1 acts by adding poly-ADP ribose side chains to target proteins (PARylation) altering molecular interactions and functions. Recently small molecule inhibitors of PARP-1 have been shown to have significant clinical potential and third generation PARP inhibitors are currently being investigated in clinical trials. These drugs alone or in combination with radio/chemotherapy have resulted in meaningful patient responses and an increase in survival in metastatic breast cancer cases bearing BRCA-deficient or triple negative tumors and BRCA-deficient ovarian cancer patients. ABT-888, a potent PARP-1 inhibitor, sensitizes many cancer cells in-vitro and in-vivo to temozolomide. As such, we hypothesized that colon cancers would be sensitized to the DNA damaging chemotherapeutic agents, oxaliplatin and irinotecan, by ABT-888. Using colon cancer cell lines significant synergy was observed between ABT-888 and irinotecan at concentrations of ABT-888 as low as 0.125 μM. The level of synergy observed correlated with the degree of PARP1 inhibition as measured biochemically in cell lysates. ABT-888 at concentrations of 0.5-4 μM resulted in synergy with oxaliplatin. Furthermore, 24 h post treatment combinations of ABT-888/irinotecan generally resulted in increased G2/M cell cycle arrest and increased levels of DNA damage, followed by increased levels of apoptosis 48 h post treatment. In conclusion this study suggests that ABT-888 may be a clinically effective adjuvant to current colon cancer therapies that include the use of irinotecan and/or oxaliplatin.
Collapse
Affiliation(s)
- David Davidson
- Montreal Centre for Experimental Therapeutics in Cancer-Segal Cancer Center-Lady Davis Institute-Jewish General Hospital, McGill University, 3755, Côte Sainte Catherine Road, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
49
|
Sousa MML, Zub KA, Aas PA, Hanssen-Bauer A, Demirovic A, Sarno A, Tian E, Liabakk NB, Slupphaug G. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells. PLoS One 2013; 8:e55493. [PMID: 23405159 PMCID: PMC3566207 DOI: 10.1371/journal.pone.0055493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/23/2012] [Indexed: 12/02/2022] Open
Abstract
Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs). Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel candidate biomarkers for Melphalan sensitivity that will be included in targeted quantitation studies in larger patient cohorts to validate their value in prognosis as well as targets for replacement- or adjuvant therapies.
Collapse
Affiliation(s)
- Mirta M. L. Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kamila Anna Zub
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The KG Jebsen Center for Myeloma Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aida Demirovic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erming Tian
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nina B. Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The KG Jebsen Center for Myeloma Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
50
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|