1
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
2
|
Bottino C, Della Chiesa M, Sorrentino S, Morini M, Vitale C, Dondero A, Tondo A, Conte M, Garaventa A, Castriconi R. Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers (Basel) 2022; 14:cancers14194548. [PMID: 36230485 PMCID: PMC9559312 DOI: 10.3390/cancers14194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary High-risk neuroblastomas (HR-NB) are malignant tumors of childhood that are treated with a very aggressive and life-threatening approach; this includes autologous hemopoietic stem cell transplantation (HSCT) and the infusion of a mAb targeting the GD2 tumor-associated antigen. Although the current treatment provided benefits, the 5-year overall survival remains below 50% due to relapses and refractoriness to therapy. Thus, there is an urgent need to ameliorate the standard therapeutic protocol, particularly improving the immune-mediated anti-tumor responses. Our review aims at summarizing and critically discussing novel immunotherapeutic strategies in HR-NB, including NK cell-based therapies and HLA-haploidentical HSCT from patients’ family. Abstract High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αβT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363855
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology/Oncology and HSCT, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Massimo Conte
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
3
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
4
|
Baker GJ, Chockley P, Zamler D, Castro MG, Lowenstein PR. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells. Oncoimmunology 2016; 5:e1163461. [PMID: 27471637 DOI: 10.1080/2162402x.2016.1163461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
Abstract
Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.
Collapse
Affiliation(s)
- Gregory J Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Chockley
- Graduate Program in Immunology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Daniel Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Dondero A, Pastorino F, Della Chiesa M, Corrias MV, Morandi F, Pistoia V, Olive D, Bellora F, Locatelli F, Castellano A, Moretta L, Moretta A, Bottino C, Castriconi R. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 2015; 5:e1064578. [PMID: 26942080 DOI: 10.1080/2162402x.2015.1064578] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/24/2023] Open
Abstract
The prognosis of high-risk neuroblastoma (NB) remains poor, although immunotherapies with anti-GD2 antibodies have been reported to provide some benefit. Immunotherapies can be associated with an IFNγ storm that induces in tumor cells the "adaptive immune resistance" characterized by the de-novo expression of Programmed Death Ligands (PD-Ls). Tumor cells can also constitutively express PD-Ls in response to oncogenic signaling. Here, we analyze the constitutive and the inducible surface expression of PD-Ls in NB cells. We show that virtually all HLA class Ipos NB cell lines constitutively express PD-L1, whereas PD-L2 is rarely detected. IFNγ upregulates or induces PD-L1 both in NB cell lines in vitro and in NB engrafted nude/nude mice. Importantly, after IFNγ stimulation PD-L1 can be acquired by NB cell lines, as well as by metastatic neuroblasts isolated from bone marrow aspirates of high-risk NB patients, characterized by different MYCN amplification status. Interestingly, in one patient NB cells were poorly responsive to IFNγ stimulation, pointing out that responsiveness to IFNγ might represent a further element of heterogeneity in metastatic neuroblasts. Finally, we document the presence of lymphocytes expressing the PD-1 receptor in NB-infiltrated bone marrow of patients. PD-1pos cells are mainly represented by αβ T cells, but also include small populations of γδ T cells and NK cells. Moreover, PD-1pos T cells have a higher expression of activation markers. Overall, our data show that a PD-L1-mediated immune resistance mechanism occurs in metastatic neuroblasts and provide a biological rationale for blocking the PD-1/PD-Ls axis in future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Italy
| | - Fabio Pastorino
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | | | | | - Fabio Morandi
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Vito Pistoia
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Daniel Olive
- CRCM, Team Immunity and Cancer, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS , UM 105, U1068, UMR7258 , Marseille, France
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Italy
| | - Franco Locatelli
- Università di Pavia and Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma, Italy
| | - Aurora Castellano
- Università di Pavia and Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma, Italy
| | - Lorenzo Moretta
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Viale Benedetto XV, Genova, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Istituto Giannina Gaslini, Laboratorio di Oncologia, Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Viale Benedetto XV, Genova, Italy
| |
Collapse
|
6
|
Bottino C, Dondero A, Bellora F, Moretta L, Locatelli F, Pistoia V, Moretta A, Castriconi R. Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol 2014; 5:56. [PMID: 24575100 PMCID: PMC3921882 DOI: 10.3389/fimmu.2014.00056] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid tumor of childhood and arises from developing sympathetic nervous system. Most primary tumors localize in the abdomen, the adrenal gland, or lumbar sympathetic ganglia. Amplification in tumor cells of MYCN, the major oncogenic driver, patients' age over 18 months, and the presence at diagnosis of a metastatic disease (stage IV, M) identify NB at high risk of treatment failure. Conventional therapies did not significantly improve the overall survival of these patients. Moreover, the limited landscape of somatic mutations detected in NB is hampering the development of novel pharmacological approaches. Major efforts aim to identify novel NB-associated surface molecules that activate immune responses and/or direct drugs to tumor cells and tumor-associated vessels. PVR (Poliovirus Receptor) and B7-H3 are promising targets, since they are expressed by most high-risk NB, are upregulated in tumor vasculature and are essential for tumor survival/invasiveness. PVR is a ligand of DNAM-1 activating receptor that triggers the cytolytic activity of natural killer (NK) cells against NB. In animal models, targeting of PVR with an attenuated oncolytic poliovirus induced tumor regression and elimination. Also B7-H3 was successfully targeted in preclinical studies and is now being tested in phase I/II clinical trials. B7-H3 down-regulates NK cytotoxicity, providing NB with a mechanism of escape from immune response. The immunosuppressive potential of NB can be enhanced by the release of soluble factors that impair NK cell function and/or recruitment. Among these, TGF-β1 modulates the cytotoxicity receptors and the chemokine receptor repertoire of NK cells. Here, we summarize the current knowledge on the main cell surface molecules and soluble mediators that modulate the function of NK cells in NB, considering the pros and cons that must be taken into account in the design of novel NK cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Istituto Giannina Gaslini , Genova , Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | | | - Franco Locatelli
- Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma , Italy ; Università di Pavia , Pavia , Italy
| | | | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| |
Collapse
|
7
|
Jennings VA, Ilett EJ, Scott KJ, West EJ, Vile R, Pandha H, Harrington K, Young A, Hall GD, Coffey M, Selby P, Errington-Mais F, Melcher AA. Lymphokine-activated killer and dendritic cell carriage enhances oncolytic reovirus therapy for ovarian cancer by overcoming antibody neutralization in ascites. Int J Cancer 2013; 134:1091-101. [PMID: 23982804 PMCID: PMC4321045 DOI: 10.1002/ijc.28450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/26/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Reovirus is an oncolytic virus (OV), which acts by both direct tumor cell killing and priming of antitumor immunity. A major obstacle for effective oncolytic virotherapy is effective delivery of OV to tumor cells. Ovarian cancer is often confined to the peritoneal cavity and therefore i.p. delivery of reovirus may provide the ideal locoregional delivery, avoiding systemic dissemination. However, ovarian cancer is associated with an accumulation of ascitic fluid, which may interfere with oncolytic viral therapy. Here, we investigated the effect of ascites on reovirus-induced oncolysis against primary ovarian cancer cells and ovarian cancer cell lines. In the absence of ascites, reovirus was cytotoxic against ovarian cancer cells; however, cytotoxicity was abrogated in the presence of ascitic fluid. Neutralizing antibodies (NAb) were identified as the cause of this inhibition. Loading OV onto cell carriers may facilitate virus delivery in the presence of NAb and immune cells which have their own antitumor effector activity are particularly appealing. Immature dendritic cells (iDC), Lymphokine-activated killer (LAK) cells and LAKDC cocultures were tested as potential carriers for reovirus for tumor cell killing and immune cell priming. Reovirus-loaded LAKDC, and to a lesser degree iDC, were able to: (i) protect from NAb and hand-off reovirus for tumor cell killing; (ii) induce a proinflammatory cytokine milieu (IFNɣ, IL-12, IFNα and TNFα) and (iii) generate an innate and specific antitumor adaptive immune response. Hence, LAKDC pulsed with reovirus represent a novel, clinically practical treatment for ovarian cancer to maximise both direct and innate/adaptive immune-mediated tumor cell killing.
Collapse
Affiliation(s)
- V A Jennings
- Targeted & Biological Therapies Group, Leeds Institute of Molecular Medicine, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kroesen M, Nierkens S, Ansems M, Wassink M, Orentas RJ, Boon L, den Brok MH, Hoogerbrugge PM, Adema GJ. A transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for preclinical immunological studies in neuroblastoma. Int J Cancer 2013; 134:1335-45. [PMID: 24038106 DOI: 10.1002/ijc.28463] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zheng YW, Li RM, Zhang XW, Ren XB. Current Adoptive Immunotherapy in Non-Small Cell Lung Cancer and Potential Influence of Therapy Outcome. Cancer Invest 2013; 31:197-205. [DOI: 10.3109/07357907.2013.775294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Kroesen M, Lindau D, Hoogerbrugge P, Adema GJ. Immunocombination therapy for high-risk neuroblastoma. Immunotherapy 2012; 4:163-74. [PMID: 22394368 DOI: 10.2217/imt.11.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma (NBL) is an aggressive malignancy of the sympathetic nervous system. Advanced-stage NBLs prove fatal in approximately 50% of patients within 5 years. Therefore, new treatment modalities are urgently needed. Immunotherapy is a treatment modality that can be combined with established forms of treatment. Administration of monoclonal antibodies or dendritic cell-based therapies alone can lead to favorable clinical outcomes in individual cancer patients; for example patients with melanoma, lymphoma and NBL. However, clinical benefit is still limited to a minority of patients, and further improvements are clearly needed. In this article, we review the most commonly used approaches to treat patients with NBL and highlight the prerequisites and opportunities of cell-based immunotherapy, involving both innate and adaptive immune-effector cells. Furthermore, we discuss the potential of the combined application of immunotherapy and novel tumor-targeted therapies for the treatment of both cancer in general and NBL in particular.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences/278 TIL, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Paillard C, Halle P, Tchirkov A, Confland C, Veyrat-Masson R, Quainon F, Perreira B, Rochette E, Pfeiffer M, Lang P, Deméocq F, Kanold J. NK cytotoxicity and alloreactivity against neuroblastoma cell lines in vitro: Comparison of Europium fluorometry assay and quantification by RT-PCR. J Immunol Methods 2012; 380:56-64. [DOI: 10.1016/j.jim.2012.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
12
|
Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas 2012; 41:195-205. [PMID: 21792083 DOI: 10.1097/mpa.0b013e31822398c6] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In the current study, we have evaluated the clinical and immunological responses in patients with advanced pancreatic carcinoma who received dendritic cell (DC)-based immunotherapy in combination with gemcitabine and/or S-1. METHODS Dendritic cell-based immunotherapy (DC vaccine alone or DC vaccine plus lymphokine-activated killer [LAK] cell therapy) in combination with gemcitabine and/or S-1 has been carried out in 49 patients with inoperable pancreatic carcinoma refractory to standard treatment. RESULTS Of 49 patients, 2 patients had complete remission, 5 had partial remission, and 10 had stable disease. Prolongation of survival in this cohort was highly likely (median survival, 360 days). Survival of patients receiving DC vaccine and chemotherapy plus LAK cell therapy was longer than those receiving DC vaccine in combination with chemotherapy but no LAK cells. Increased numbers of cancer antigen-specific cytotoxic T cells and decreased regulatory T cells were observed in several patients on immunotherapy, but increased overall survival time tended to be associated only with the latter. None of the patients experienced grade 3 or worse adverse events during the treatment period. CONCLUSIONS Dendritic cell vaccine-based immunotherapy combined with chemotherapy was shown to be safe and possibly effective in patients with advanced pancreatic cancer refractory to standard treatment.
Collapse
|
13
|
Immune activation by combination human lymphokine-activated killer and dendritic cell therapy. Br J Cancer 2011; 105:787-95. [PMID: 21847125 PMCID: PMC3171008 DOI: 10.1038/bjc.2011.290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Optimal cellular immunotherapy for cancer should ideally harness both the innate and adaptive arms of the immune response. Lymphokine-activated killer cells (LAKs) can trigger early innate killing of tumour targets, whereas long-term adaptive-specific tumour control requires priming of CD8+ cytotoxic lymphocytes (CTLs) following acquisition of tumour-associated antigens (TAAs) by antigen-presenting cells such as dendritic cells (DCs). As DCs stimulate both innate and adaptive effectors, combination cell therapy using LAKs and DCs has the potential to maximise anti-tumour immune priming. METHODS Reciprocal activation between human clinical grade LAKs and DCs on co-culture, and its immune consequences, was monitored by cell phenotype, cytokine release and priming of both innate and adaptive cytotoxicity against melanoma targets. RESULTS Co-culture of DCs and LAKs led to phenotypic activation of natural killer (NK) cells within the LAK population, which was associated with increased production of inflammatory cytokines and enhanced innate cytotoxicity against tumour cell targets. The LAKs reciprocally matured DCs, and the combination of LAKs and DCs, on addition of melanoma cells, supported priming of specific anti-tumour CTLs better than DCs alone. CONCLUSION Clinical-grade LAKs/DCs represents a practical, effective combination cell immunotherapy for stimulation of both innate and adaptive anti-tumour immunity in cancer patients.
Collapse
|
14
|
Pession A, Masetti R, Di Leo C, Franzoni M, Prete A. HLA-mismatched hematopoietic stem cell tranplantation for pediatric solid tumors. Pediatr Rep 2011; 3 Suppl 2:e12. [PMID: 22053274 PMCID: PMC3206527 DOI: 10.4081/pr.2011.s2.e12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/04/2011] [Indexed: 11/25/2022] Open
Abstract
Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing's sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT) allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an event-free survival approaching more than 50% at 5 years. New concepts of allogeneic HSCT and in particular HLA-mismatched HSCT for high risk solid tumors do not rely on escalation of chemotherapy intensity and tumor load reduction but rather on a graft-versus-tumor effect. We here report an experimental study design of HLA-mismatched HSCT for the treatment of pediatric solid tumors and the inherent preliminary results.
Collapse
Affiliation(s)
- Andrea Pession
- Pediatric Oncology and Hematology Lalla Seràgnoli Unit, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
15
|
Ash S, Stein J, Askenasy N, Yaniv I. Immunomodulation with dendritic cells and donor lymphocyte infusion converge to induce graft vs neuroblastoma reactions without GVHD after allogeneic bone marrow transplantation. Br J Cancer 2010; 103:1597-605. [PMID: 20978501 PMCID: PMC2990575 DOI: 10.1038/sj.bjc.6605924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mounting evidence points to the efficacy of donor lymphocyte infusion (DLI) and immunisation with tumour-pulsed dendritic cells (DC) in generating graft vs leukaemia reactions after allogeneic bone marrow transplantation (BMT). We assessed the efficacy of DLI and DC in generating potent graft vs neuroblastoma tumour (GVT) reactions following allogeneic BMT. METHODS Mice bearing congenic (H2K(a)) Neuro-2a tumours were grafted with allogeneic (H2K(b)) T-cell-depleted bone marrow cells. Tumour-pulsed donor DC (DC(Neuro2a)) were inoculated (on day +7) in conjunction with donor (H2K(b)) and haploidentical (H2K(a/b)) lymphocytes. RESULTS Murine Neuro-2a cells elicit immune reactions as efficient as B lymphoma in major histocompatibility complex antigen-disparate mice. Lymphopenia induced by conditioning facilitates GVT, and transition to adaptive immunity is enhanced by simultaneous infusion of and DC(Neuro2a) and lymphocytes devoid of graft vs host (GVH) activity (H2K(a/b)). In variance, the efficacy of DC-mediated immunomodulation was diminished by severe graft vs host disease (GVHD), showing mechanistic dissociation and antagonising potential to GVT. CONCLUSIONS The GVHD is not a prerequisite to induce GVT reactivity after allogeneic BMT, but is rather detrimental to induction of anti-tumour immunity by DC-mediated immunomodulation. Simultaneous inoculation of tumour-pulsed donor DC and DLI synergise in stimulation of potent GVT reactions to the extent of eradication of established NB tumours.
Collapse
Affiliation(s)
- S Ash
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - J Stein
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Pediatric Bone Marrow Transplant Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - N Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - I Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| |
Collapse
|
16
|
Chikileva IO, Shubina IZ, Baronzio G, Kiselevsky MV. Is it necessary to deplete the lymphokine activated killers’ populations of CD4+CD25+ lymphocytes? Regulatory Foxp3-positive T cells within lymphokine activated killers. Biomed Pharmacother 2010; 64:379-85. [DOI: 10.1016/j.biopha.2010.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/25/2010] [Indexed: 12/23/2022] Open
|
17
|
Abstract
PURPOSE OF REVIEW Following allogeneic hematopoietic cell transplantation, donor-derived natural killer (NK) cells target recipient hematopoietic cells, resulting in an antileukemia effect and a lower incidence of graft rejection. NK cells do not mediate and may diminish graft versus host disease. Here we review the determinants of NK cell alloreactivity and their implications for adoptive NK cell therapy. RECENT FINDINGS NK cell alloreactivity has been defined by the absence of recipient MHC class I ligands for donor inhibitory killer immunoglobulin-like receptor (KIR) receptors, as predicted by a number of algorithms. Recently, the role of activating NK receptors and their cognate ligands has received more attention. The beneficial clinical effect of NK-cell alloreactivity has not been uniformly demonstrated, likely reflecting differences in conditioning regimens, graft components and posttransplant immune suppression. Investigations of NK cell phenotype and function after transplantation have helped demonstrate which NK cell subsets mediate the graft versus leukemia effect. These advances have proceeded in parallel with increasing facility in GMP-grade bulk purification and administration of NK cell preparations. SUMMARY NK cells are a heterogeneous population of lymphocytes with diverse patterns of target-cell recognition and effector function. Further clinical and functional correlations will help maximize their potential for clinical benefit.
Collapse
|
18
|
Abstract
Neuroblastoma, the most common extracranial pediatric solid tumor remains a clinical enigma with outcomes ranging from cure in >90% of patients with locoregional tumors with little to no cytotoxic therapy, to <30% for those >18months of age at diagnosis with metastatic disease despite aggressive multimodality therapy. Age, stage and amplification of the MYCN oncogene are the most validated prognostic markers. Recent research has shed light on the biology of neuroblastoma allowing more accurate stratification of patients which has permitted reducing or withholding cytotoxic therapy without affecting outcome for low-risk patients. However, for children with high-risk disease, the development of newer therapeutic strategies is necessary. Current surgery and radiotherapy techniques in conjunction with induction chemotherapy have greatly reduced the risk of local relapse. However, refractory or recurrent osteomedullary disease occurs in most patients with high-risk neuroblastoma. Toxicity limits for high-dose chemotherapy appear to have been reached without further clinical benefit. Neuroblastoma is the first pediatric cancer for which monoclonal-antibody-based immunotherapy has been shown to be effective, particularly for metastatic osteomedullary disease. Radioimmunotherapy appears to be a critical component of a recent, successful regimen for treating patients who relapse in the central nervous system, a possible sanctuary site. Efforts are under way to refine and enhance antibody-based immunotherapy and to determine its optimal use. The identification of newer tumor targets and the harnessing of cell-mediated immunotherapy may generate novel therapeutic approaches. It is likely that a combination of therapeutic modalities will be required to improve survival and cure rates.
Collapse
|
19
|
Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, Moretta L, Moretta A, Corte G, Bottino C. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. THE JOURNAL OF IMMUNOLOGY 2009; 182:3530-9. [PMID: 19265131 DOI: 10.4049/jimmunol.0802845] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, cancer cells were isolated from tumor specimens of nine glioblastoma patients. Glioblastoma cells, cultured under suitable culture conditions, displayed markers typical of neural stem cells, were capable of partial multilineage differentiation in vitro, and gave origin to infiltrating tumors when orthotopically injected in NOD/SCID mice. These cells, although resistant to freshly isolated NK cells, were highly susceptible to lysis mediated by both allogeneic and autologous IL-2 (or IL-15)-activated NK cells. Indeed, all stem cell-cultured glioblastoma cells analyzed did not express protective amounts of HLA class I molecules, while expressing various ligands of activating NK receptors that triggered optimal NK cell cytotoxicity. Importantly, glioblastoma stem cells expressed high levels of PVR and Nectin-2, the ligands of DNAM-1-activating NK receptor.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ménard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C, Nonn C, Chaput N, Taïeb J, Delahaye NF, Flament C, Emile JF, Le Cesne A, Zitvogel L. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res 2009; 69:3563-9. [PMID: 19351841 DOI: 10.1158/0008-5472.can-08-3807] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcomes of gastrointestinal stromal tumor (GIST)-bearing patients treated with imatinib mesylate (IM) are variable. Other than the site of mutation within the c-kit gene, prognostic features of GIST remain undefined. IM can exhibit off-target effects such as triggering natural killer (NK) cell activity. We addressed whether NK cell functions could predict long term survival with IM. NK cell functions were followed up in 77 GIST patients enrolled onto two phase III trials. "Immunologic responders" were defined as patients whose NK cell IFN-gamma values after 2 months of IM were higher than or equal to the baseline value at entry into the trial. The prognostic effect of IFN-gamma on progression-free survival was assessed by a Wald test in a Cox regression analysis using the landmark method and stratified by trial and on the c-kit mutational status. Fifty-six patients were evaluable for the NK cell IFN-gamma responses at baseline and 2 months. Their median follow-up for progression-free survival was 3.7 years. Thirty-four of 56 patients were immunologic responders to IM. In the Cox regression analysis, immunologic responders possessed a hazard ratio of progression or death equal to 0.29 (95% confidence interval, 0.12-0.70; P = 0.006) compared with nonresponders. Kaplan-Meier 2-year survival estimates were 85% for immunologic responders and 50% for nonresponders. Moreover, the immunologic response added prognostic value to the c-kit mutation. The NK cell IFN-gamma production after 2 months of treatment could be considered an independent predictor of long term survival in advanced GISTs treated with IM.
Collapse
Affiliation(s)
- Cédric Ménard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unit U805 Tumor immunology and immunotherapy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Melanoma and lymphoma rejection associated with eosinophil infiltration upon intratumoral injection of dendritic and NK/LAK cells. J Immunother 2008; 31:458-65. [PMID: 18463539 DOI: 10.1097/cji.0b013e318174a512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are promising tools for tumor immunotherapy. Their efficacy in the tumor environment increases when tumor cells die as a consequence of chemo/radiotherapy or when local stimuli promoting DC maturation and function are available. Dying tumor cells could represent a source of tumor antigens, which DCs cross-present to tumor-specific T cells. The outcome of cross presentation is in turn determined by the maturation state of DCs. Natural killer (NK)/lymphokine-activated killer (LAK) cells injected into growing tumors could both provide a source of dying cells for cross-presentation and deliver stimuli for DC maturation. Here, we report that NK/LAK cells recognized and killed in vivo major histocompatibility complex class I(low) highly tumorigenic, nonimmunogenic B16F1 melanoma cells when injected into exponentially growing neoplastic lesions. The simultaneous injection of immature DCs was required to heal animals. Similar results were obtained injecting NK/LAK cells and DC into growing Raucher leukaemia virus induced cell line lymphomas. Cured mice failed to reject other implantable tumors, and developed a specific cytotoxic response against the original neoplasm; moreover, they developed a long-lasting memory, and were protected against further challenges with living tumor cells only when both cell populations were introduced. The response associated to the preferential recruitment within tumors of eosinophils. The simultaneous injection in solid tumors of DCs and NK/LAK cells represents an attractive approach for antineoplastic immunotherapeutic strategies.
Collapse
|
22
|
Kanold J, Paillard C, Tchirkov A, Merlin E, Marabelle A, Lutz P, Rousseau R, Baldomero H, Deméocq F. Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant 2008; 42 Suppl 2:S25-30. [DOI: 10.1038/bmt.2008.279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Castriconi R, Dondero A, Cilli M, Ognio E, Pezzolo A, De Giovanni B, Gambini C, Pistoia V, Moretta L, Moretta A, Corrias MV. Human NK cell infusions prolong survival of metastatic human neuroblastoma-bearing NOD/scid mice. Cancer Immunol Immunother 2007; 56:1733-42. [PMID: 17426969 PMCID: PMC11030705 DOI: 10.1007/s00262-007-0317-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 03/11/2007] [Indexed: 10/23/2022]
Abstract
AIM Several lines of evidence suggest that NK cell immunotherapy may represent a successful approach in neuroblastoma (NB) patients refractory to conventional therapy. However, homing properties, safety and therapeutic efficacy of NK cell infusions need to be evaluated in a suitable preclinical murine NB model. MATERIALS AND METHODS Here, the therapeutic efficacy of NK cell infusions in the presence or absence of NK-activating cytokines have been evaluated in a NB metastatic model set up in NOD/scid mice, that display reduced functional activity of endogenous NK cells. RESULTS In NOD/scid mice the injected NB cells rapidly reached all the typical sites of metastatization, including bone marrow. Infusion of polyclonal IL2-activated NK cells was followed by dissemination of these cells into various tissues including those colonized by metastatic NB cells. The early repeated injection of IL2-activated NK cells in NB-bearing NOD/scid mice significantly increased the mean survival time, which was associated with a reduced bone marrow infiltration. The therapeutic effect was further enhanced by low doses of human recombinant IL2 or IL15. CONCLUSION Our results indicate that NK-based adoptive immunotherapy can represent a valuable adjuvant in the treatment of properly selected NB patients presenting with metastatic disease, if performed in a minimal residual disease setting.
Collapse
Affiliation(s)
| | | | - Michele Cilli
- Animal Facility, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Emanuela Ognio
- Animal Facility, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Annalisa Pezzolo
- Laboratory of Oncology, Gaslini Institute, L.go Gaslini, 5, 16148 Genoa, Italy
| | | | | | - Vito Pistoia
- Laboratory of Oncology, Gaslini Institute, L.go Gaslini, 5, 16148 Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Experimental and Clinical Immunology, Gaslini Institute, Genoa, Italy
- Centro di Eccellenza per le Ricerche Biomediche, University of Genoa, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centro di Eccellenza per le Ricerche Biomediche, University of Genoa, Genoa, Italy
| | | |
Collapse
|
24
|
Verneris MR, Wagner JE. Recent Developments in Cell-based Immune Therapy for Neuroblastoma. J Neuroimmune Pharmacol 2007; 2:134-9. [DOI: 10.1007/s11481-007-9065-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/13/2007] [Indexed: 11/24/2022]
|
25
|
Morandi F, Chiesa S, Bocca P, Millo E, Salis A, Solari M, Pistoia V, Prigione I. Tumor mRNA-transfected dendritic cells stimulate the generation of CTL that recognize neuroblastoma-associated antigens and kill tumor cells: immunotherapeutic implications. Neoplasia 2006; 8:833-42. [PMID: 17032500 PMCID: PMC1715922 DOI: 10.1593/neo.06415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several observations suggest a potential role of T-cell-mediated immunity in the control of neuroblastoma (NB). However, the generation of NB-specific cytotoxic T lymphocytes (CTL) on T-cell priming with tumor mRNA-transfected dendritic cells (DC) has never been investigated before. In the present study, the feasibility of this strategy has been analyzed, both in healthy donors and in NB patients. Monocyte-derived DC were raised from three human leukocyte antigen (HLA) A2+ NB patients and seven HLA-A1+ or HLA-A2+ healthy donors transfected with mRNA from four NB cell lines and cocultured with autologous CD8+ lymphocytes. Expanded CTL expressed an effector/memory phenotype and a T cytotoxic 1-like profile of cytokine secretion. CTL specificity was demonstrated by interferon-gamma release on incubation with HLA-matched NB cell lines. The latter cell lines, but not autologous T-cell blasts, were lysed by CTL in an HLA-restricted manner. Cytotoxicity was found to involve the release of granzyme B. When tested for reactivity against NB-associated antigens, CTL from normal individuals recognized anaplastic lymphoma-associated kinase (ALK) and preferentially expressed antigen of melanoma (PRAME) peptides only, whereas patients' CTL reacted also to survivin, telomerase, and tyrosine hydroxylase peptides. This study demonstrates that DC transfected with NB mRNA induce the generation of patients' CTL specific for different NB-associated antigens, supporting the feasibility of NB T-cell immunotherapy.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Immunotherapy of human neuroblastoma using umbilical cord blood-derived effector cells. J Neuroimmune Pharmacol 2006; 2:202-12. [PMID: 18040845 DOI: 10.1007/s11481-006-9038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Tumors of the nervous system, including neuroblastoma and glioblastoma, are difficult to treat with current therapies. Despite the advances in cancer therapeutics, the outcomes in these patients remain poor and, therefore, new modalities are required. Recent literature demonstrates that cytotoxic effector cells can effectively kill tumors of the nervous system. In addition, we have previously shown that umbilical cord blood (UCB) contains precursors of antitumor cytotoxic effector cells. Therefore, to evaluate the antitumor potential of UCB-derived effector cells, studies were designed to compare the in vitro and in vivo antitumor effects of UCB- and peripheral blood (PB)-derived antigen-nonspecific and antigen-specific effector cells against tumors of the nervous system. Mononuclear cells (MNCs) from UCB were used to generate both interleukin-2 (IL-2)-activated killer (LAK) cells and tumor-specific cytotoxic T lymphocytes (CTLs). UCB-derived LAK cells showed a significant in vitro cytotoxicity against IMR-32, SK-NMC, and U-87 human neuroblastoma and glioblastoma, respectively. In addition, the CTLs generated using dendritic cells primed with IMR-32 tumor cell lysate showed a selective cytotoxicity in vitro against IMR-32 cells, but not against U-87 or MDA-231 cells. Furthermore, treatment of SCID mice bearing IMR-32 neuroblastoma with tumor-specific CTLs resulted in a significant (p < 0.01) inhibition of tumor growth and increased overall survival. Thus, these results demonstrate the potential of UCB-derived effector cells against human neuroblastoma and warrant further preclinical studies.
Collapse
|
27
|
Walzer T, Dalod M, Vivier E, Zitvogel L. Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin Biol Ther 2006; 5 Suppl 1:S49-59. [PMID: 16187940 DOI: 10.1517/14712598.5.1.s49] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dendritic cells (DCs) and natural killer (NK) cells play a critical role in early defences against cancer and infections. They specialise in complementary functions, including IL-12 or IFN-alpha/beta secretion and antigen presentation for the former, and IFN-gamma secretion and killing of infected or tumour cells for the latter. Both DCs and NK cells are also sensors of the immune system that have developed different, but partially overlapping, systems to identify pathology associated danger signals. Evidence of NK-DC interaction has accumulated recently. This interaction may lead to NK cell activation, DC activation, or apoptosis depending on the activation status of both cell types. Thus, the outcome of NK-DC crosstalk is likely to influence both innate and adaptive immune responses. This review addresses the molecular mechanisms under-lying the different NK-DC interactions, and their in vivo significance in anti-tumour or antimicrobial immunity. Finally, we discuss the potential clinical implications of this new field.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cell Communication/immunology
- Clinical Trials as Topic
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Drug Evaluation, Preclinical
- Gastrointestinal Stromal Tumors/drug therapy
- Gastrointestinal Stromal Tumors/enzymology
- Gastrointestinal Stromal Tumors/immunology
- Herpesviridae Infections/immunology
- Humans
- Imatinib Mesylate
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Membrane Proteins
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-kit/drug effects
- Proto-Oncogene Proteins c-kit/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, Immunologic/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Thierry Walzer
- 1INSERM-CNRS-Univ, Centre d'Immunologie de Marseille-Luminy, Méditerranée, Campus de Luminy, case 90, 13288 Marseille cedex 09, France
| | | | | | | |
Collapse
|
28
|
Osada T, Clay T, Hobeika A, Lyerly HK, Morse MA. NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol Immunother 2006; 55:1122-31. [PMID: 16273350 PMCID: PMC11030959 DOI: 10.1007/s00262-005-0089-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 09/28/2005] [Indexed: 12/16/2022]
Abstract
Recent reports revealed that dendritic cell (DC)-natural killer (NK) cell interaction plays an important role in tumor immunity, but few DC vaccine studies have attempted to evaluate the non-specific, yet potentially clinically relevant, NK response to immunization. In this study, we first analyzed in vitro activation of NK cells by DCs similar to those used in clinical trials. Subsequently, NK cell responses were analyzed in a phase I clinical trial of a vaccine consisting of autologous DCs loaded with a fowlpox vector encoding CEA. The data were compared with the clinical outcome of the patients. DC enhances NK activity in vitro, partly by sustaining NK cell survival and by enhancing the expression of NK-activating receptors, including NKp46 and NKG2D. Among nine patients in our clinical trial, NK cytolytic activity increased in four (range 2.5-5 times greater lytic activity) including three who had increased NK cell frequency, was stable in two and decreased in three. NKp46 and NKG2D expression showed a good correlation with the patients' NK activity. When patients were grouped by clinical activity (stable disease/no evidence of disease (stable/NE, n=5) vs progressive disease (N=4) at 3 months), the majority in the stable/NE group had increases in NK activity (P=0.016). Anti-CEA T cell response was enhanced in all the nine patients analyzed, but was not significantly different between the two groups (P=0.14). Thus, NK responses following DC vaccination may correlate more closely with clinical outcome than do T cell responses. Monitoring of NK response during vaccine studies should be routinely performed.
Collapse
Affiliation(s)
- Takuya Osada
- Duke University Medical Center, Box 3233, Durham, NC 27710 USA
| | - Timothy Clay
- Duke University Medical Center, Box 3233, Durham, NC 27710 USA
| | - Amy Hobeika
- Duke University Medical Center, Box 3233, Durham, NC 27710 USA
| | - H. Kim Lyerly
- Duke University Medical Center, Box 3233, Durham, NC 27710 USA
| | | |
Collapse
|
29
|
Wittnebel S, Bourhis JH, Caignard A. Chronic myeloid leukemia and allogeneic natural killer cells: a surprising dialogue. Expert Rev Clin Immunol 2006; 2:627-37. [PMID: 20477618 DOI: 10.1586/1744666x.2.4.627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal multilineage myeloproliferative disease of stem cell origin characterized by the presence of the Bcr/Abl oncoprotein, a constitutively active tyrosine kinase. The actual treatment of CML patients in chronic phase is the specific abl kinase inhibitor imatinib mesylate that induces 90% of cytogenetic responses in early-phase patients. However, resistance in long-term treated patients occurs and the allogeneic stem cell transplantation remains the only curative treatment in resistant patients. Despite recent reports outlining the role of allogeneic natural killer (NK) cells as potent antileukemic effectors, the mechanisms controlling the leukemic target recognition and lysis by activated NK cells have not been well identified. The authors' experimental data obtained on appropriate cellular models identify diverse mechanisms that could explain the increased NK-cell susceptibility of Bcr/Abl targets to NK-mediated lysis. They further delineate unexpected effects of the inhibition of the tyrosine kinase activity on the cross-talk between NK and CML leukemic cells. The consequences of such discoveries are discussed in the context of combined treatments with antikinases as well as adoptive cellular therapy approaches in myeloid leukemia patients.
Collapse
|
30
|
Golden-Mason L, Rosen HR. Natural killer cells: primary target for hepatitis C virus immune evasion strategies? Liver Transpl 2006; 12:363-72. [PMID: 16498647 DOI: 10.1002/lt.20708] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver cirrhosis and hepatocellular carcinoma secondary to chronic hepatitis C virus (HCV) infection requiring transplantation represents a significant public health problem. The most remarkable feature of hepatitis C virus is the ability to establish chronic infection in the vast majority of cases. Efforts to define clinical correlates of HCV persistence have focused primarily on CD4 and CD8 T cell responses. Until recently, the role of innate immunity in determining the outcome of HCV infection had received relatively little attention. Natural killer (NK) cells are an important antiviral effector population eliminating virus through direct killing and cytokine production. Recent studies highlighting the cross-talk between NK cells, dendritic cells (DCs) and T cells have prompted reevaluation of the important role NK cells play in regulating and maintaining specific immune responses. Like many other viruses, HCV has evolved strategies to evade detection and elimination by NK cells. T cell defects observed in HCV infection may be a consequence of inhibition of NK:DC interactions. We propose a theoretical model for HCV persistence that places the NK cell at the center of HCV immune evasion strategies. While this model is only theoretical, it provides a plausible interpretation of many published observations and a useful working model to test the role of NK cells in HCV persistence. In conclusion, the role of innate immune cells and their regulation of antigen-specific responses by the initial innate response to the virus, in particular NK cells, may prove to be an informative and clinically relevant avenue of investigation.
Collapse
|
31
|
Cho JY, Yoon YW, Yoon HS, Kim JD, Choi DY. The study on cytotoxicity of cytokines produced by the activated human NKT cells on neuroblastoma. KOREAN JOURNAL OF PEDIATRICS 2006. [DOI: 10.3345/kjp.2006.49.4.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jin Young Cho
- Department of Pediatrics, School of Medicine, Wonkwang University, Iksan, Korea
| | - Young Wook Yoon
- Department of Pediatrics, School of Medicine, Wonkwang University, Iksan, Korea
| | - Hyang Suk Yoon
- Department of Pediatrics, School of Medicine, Wonkwang University, Iksan, Korea
| | - Jong Duk Kim
- Department of Pediatrics, School of Medicine, Wonkwang University, Iksan, Korea
| | - Du Young Choi
- Department of Pediatrics, School of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
32
|
Capobianco A, Rovere-Querini P, Rugarli C, Manfredi AA. Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer 2006; 119:2861-9. [PMID: 16998790 DOI: 10.1002/ijc.22279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) and natural killer (NK) cells are key players at the interface between innate resistance and acquired immunity. NK cells can induce DC maturation, a differentiation process whereby DCs respond to a environmental stimulus and acquire the ability of eliciting adaptive immunity. Conversely, maturing DCs promote NK functions in vivo and in vitro. This interplay has important consequences on the immune response to pathogens and possibly to neoplastic cells. Here, we show that B16 melanoma cells actively modulate the interaction between DCs derived from bone marrow precursors and NK/LAK cells propagated from the spleen of C57BL/6 mice. DCs increased in a dose-dependent manner the ability of NK/LAK cells to kill melanoma cells and to produce cytokines. This activatory cross-talk entailed the production of IL-18 by DCs and of IFN-gamma by NK/LAK cells. Melanoma cells were not a passive target of NK activity; they regulated the outcome of the interaction between DCs and NK/LAK cells, inhibiting the in vitro production of cytokines as effectively as the genetic deletion of IL-18 or IFN-gamma. Interference with the NK/DC interaction possibly represents a mechanism used by growing tumors to evade the immune response.
Collapse
MESH Headings
- Animals
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-18/genetics
- Interleukin-18/metabolism
- Killer Cells, Lymphokine-Activated/cytology
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/metabolism
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Male
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Annalisa Capobianco
- Department of Oncology, Cancer Immunotherapy and Gene Therapy Program, Clinical Immunology Unit, H San Raffaele Scientific Institute & Vita-Salute San Raffaele University, Milano, Italy
| | | | | | | |
Collapse
|
33
|
Vichchatorn P, Wongkajornsilp A, Petvises S, Tangpradabkul S, Pakakasama S, Hongeng S. Dendritic Cells Pulsed with Total Tumor RNA for Activation NK-like T Cells Against Glioblastoma Multiforme. J Neurooncol 2005; 75:111-8. [PMID: 16234988 DOI: 10.1007/s11060-005-2317-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) are potent antigen presenting cells and play critical role in T cell-mediated immunity. DCs have been shown to induce strong anti-tumor responses both in vitro and in vivo. Their efficacies in tumor therapy are being investigated in clinical trials. Previous evidence has shown that these DCs enhance the cytotoxicity of NK cells. We generated NK-like T cells (CD3(+)CD56(+)), a novel type of effector cells differentiated from normal lymphocyte, which is now being used for adoptive immunotherapy in clinical trials. This study aimed to elucidate the effects of NK-like T cells after co-culturing with DCs against tumor cells. The result revealed that tumor-derived RNA-pulsed DCs can enhance the immune responses of NK-like T cells against glioblastoma multiforme cell line but these effector cells did not appear to have the cytotoxic effect against normal cells (human umbilical vein endothelial cells (HUVEC) and fibroblasts) in vitro. This study may be beneficial for the development of new immunologic effector cells for using in adoptive immunotherapy for glioblastoma multiforme in the future.
Collapse
Affiliation(s)
- Prachya Vichchatorn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
34
|
Faraoni I, Cottarelli A, Giuliani A, Bonmassar L, Rossi L, Bonmassar E. A novel telomerase-based approach to detect natural cell-mediated cytotoxic activity against tumor cells in vitro. J Immunol Methods 2005; 305:162-72. [PMID: 16165149 DOI: 10.1016/j.jim.2005.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/01/2005] [Accepted: 07/07/2005] [Indexed: 11/16/2022]
Abstract
This study was designed to develop a novel technical approach based on tumor-associated telomerase activity to detect cytotoxic activity of effector cells of the natural immune system against neoplastic cells. Human K562, DAUDI or Raji leukemia cells were co-cultured with NK or LAK effector cells at 37 degrees C for 4 h. Target cell killing was evaluated by 51Cr-release assay (CRA) or reduction of telomerase activity (R-TRAPCTX) of the target after exposure to effector cells. NK and LAK effector cells tested against K562 target cells at effector/target ratio of 50:1 showed cytotoxicity of 65% and 78%, respectively, with CRA and 51% and 74%, respectively, with R-TRAPCTX. Incorrect results were obtained with CRA when target cells were admixed with normal fibroblasts, whereas R-TRAPCTX was not influenced by the presence of normal cells. Control experiments performed with telomerase-negative cells showed that telomerase activity of effector cells was not altered during the cytolytic reaction. Moreover, supernatants obtained from effector-target cell co-cultures did not influence telomerase activity of targets. This novel R-TRAPCTX method to assay anti-tumor natural and possibly antigen-dependent cell-mediated cytotoxicity appears to provide sensible advantages over classical CRA or gamma-interferon release by effector cells in presence of target cells (ELISPOT), since (a) it furnishes reliable data on effector cell killing against neoplastic cells, even when malignant cells are admixed with normal cells, as frequently occurs in tumor biopsies, not manageable with CRA; (b) it provides an actual measure of target cell killing, not furnished by ELISPOT technique.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Jarnjak-Jankovic S, Pettersen RD, Saebøe-Larssen S, Wesenberg F, Olafsen MRK, Gaudernack G. Preclinical evaluation of autologous dendritic cells transfected with mRNA or loaded with apoptotic cells for immunotherapy of high-risk neuroblastoma. Cancer Gene Ther 2005; 12:699-707. [PMID: 15846368 DOI: 10.1038/sj.cgt.7700820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Children with high-risk neuroblastoma (NB) have a poor clinical outcome. The purpose of the present study was to evaluate different strategies for immunotherapy of high-risk NB based on vaccination with antigen-loaded dendritic cells (DCs). DCs are professional antigen-presenting cells with the ability to induce antitumor T-cell responses. We have compared DCs either loaded with apoptotic tumor cells or transfected with mRNA from the NB cell line HTB11 SK-N-SH, for their capacity to induce T-cell responses in vitro. Monocyte-derived DCs from healthy donors were loaded with tumor-derived antigens in the form of apoptotic cells or mRNA, matured and used to prime autologous T cells in vitro. After 1 week, T-cell responses against antigen-loaded DCs were measured by ELISPOT assay. DCs loaded with apoptotic NB cells or transfected with NB-cell mRNA were both able to efficiently activate autologous T cells. Both T cells of the CD8+ and CD4+ subset were activated. T cells activated by NB mRNA transfected DCs extensively crossreacted with DCs loaded with apoptotic NB cells and vice versa. The results indicate that loading of DCs with apoptotic NB cells or transfection with tumor mRNA represent promising strategies for development of individualized cancer vaccines/cancer gene therapy in treatment of NB.
Collapse
|
36
|
Terme M, Borg C, Guilhot F, Masurier C, Flament C, Wagner EF, Caillat-Zucman S, Bernheim A, Turhan AG, Caignard A, Zitvogel L. BCR/ABL Promotes Dendritic Cell–Mediated Natural Killer Cell Activation. Cancer Res 2005; 65:6409-17. [PMID: 16024645 DOI: 10.1158/0008-5472.can-04-2675] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
BCR/ABL fusion gene, encoding a paradigmatic tyrosine kinase involved in chronic myelogenous leukemia (CML), can modulate the expression of genes involved in natural killer (NK) cell target recognition. Recent reports outline the role of allogeneic antileukemic NK effectors in the graft-versus-leukemia effect but the regulation of NK cell activation in the setting of graft-versus-leukemia effect remains unknown. Here we show that dendritic cells derived from monocytes of CML patients are selectively endowed with NK cell stimulatory capacity in vitro. We further show, using a gene transfer approach in mouse bone marrow progenitors, that ABL/ABL is necessary to promote dendritic cell–mediated NK cell activation. The dendritic cell/NK cell cross-talk in ABL/ABL-induced CML seems unique because JunB or IFN consensus sequence binding protein loss of functions, associated with other myeloproliferative disorders, do not promote dendritic cell–mediated NK cell activation. NK cell activation by leukemic dendritic cells involves NKG2D activating receptors and is blocked by imatinib mesylate. Indeed, ABL/ABL translocation enhances the expression levels of the NKG2D ligands on dendritic cells, which is counteracted by imatinib mesylate. Altogether, the clonal ABL/ABL dendritic cells display the unique and selective ability to activate NK cells and may participate in the NK cell control of CML. This study also highlights the deleterious role of imatinib mesylate at the dendritic cell level for NK cell activation.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/immunology
- Dendritic Cells/immunology
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Transfer Techniques
- Humans
- Killer Cells, Natural/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Translocation, Genetic
Collapse
Affiliation(s)
- Magali Terme
- ERM0208 Institut National de la Sante et de la Recherche Medicale, Department of Clinical Biology, Institut Gustave Roussy, Villejuf Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, Hsieh SL. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 2005; 28:129-35. [PMID: 15725956 DOI: 10.1097/01.cji.0000154248.74383.5e] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A phase 1 study was conducted to assess the safety and immunologic response induced by direct injection of autologous immature dendritic cells (DCs) into tumor under radiotherapy in advanced hepatoma patients. Patients with advanced/metastatic stage hepatoma not suitable for surgery or transarterial embolization were enrolled. Groups of patients received two vaccinations. Each vaccination consisted of intratumoral injections of autologous immature DCs in four dose cohorts of 5 x 10(6), 1.5 x 10(7), 3 x 10(7), and 5 x 10(7) cells 2 days after a single fraction of conformal radiotherapy of 8 Gy. The second vaccination was performed 3 weeks later. Of the 14 patients entered, 12 completed two cycles of vaccination. The treatment was well tolerated at any of the dose levels. Six patients had mild transient fever (grade 1-2) with chill reactions, three patients developed grade 1 fatigue, and one patient developed mild myalgia and arthralgia after DC injections. There was no evidence of clinically manifested autoimmune disease. There were two partial responses and four minor responses. A decrease in the alpha-fetoprotein (AFP) level of more than 50% was found in three patients. Ten patients had completed immunologic response evaluation 2 weeks after the second cycle of vaccination. The AFP-specific immune response was evident in eight patients examined by cytokine release assay and in seven patients by ELISPOT assay. Six patients showed an increased NK cell cytotoxic activity after vaccination. These data suggest that the combination of intratumoral injection of DCs and conformal radiotherapy is safe and can induce tumor-specific and innate immunity.
Collapse
Affiliation(s)
- Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
38
|
DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1. Mol Immunol 2005; 42:433-44. [PMID: 15607795 DOI: 10.1016/j.molimm.2004.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Substantial attention has been paid to the role of the toll-like receptor (TLR) ligands of late and their role in regulating the innate immune response. They serve as exogenous danger signals important in informing and driving the distal adaptive immune response to pathogens. Less clear has been the role of the nominal endogenous danger signals released and recognized in stressed cells following genotoxic or metabolic stress as occurs in progressively growing tumors. HMGB1 (high-mobility group B1) is a nuclear protein well characterized for its ability to modify DNA access to transcriptional proteins that is released from necrotic cells as well as secreted through the endosomal route from hematopoietic cells, serving as a late mediator of sepsis. It interacts with high-affinity RAGE (receptor for advanced glycation end products) and TLR2 receptors. Here we show that HMGB1 enhances interferon gamma release from macrophage (but not dendritic cell)-stimulated NK cells. This is effective only when coupled with other pro-inflammatory cytokines particularly with IL-2 in combination with IL-1 or IL-12. We have used this information to suggest that HMGB1, which also promotes epithelial migration and proliferation, drives repair in the absence or inhibition of other factors but enhances inflammation in their presence. The implications for tumorigenesis and tumor progression are quite important as they may be for other states of chronic inflammation.
Collapse
Affiliation(s)
- Richard A DeMarco
- Department of Surgery, Molecular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
39
|
van den Berg H. Biology and therapy of malignant solid tumors in childhood. ACTA ACUST UNITED AC 2005; 22:643-76. [PMID: 16110632 DOI: 10.1016/s0921-4410(04)22028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Henk van den Berg
- Department of Paediatric Oncology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Abstract
The cure rate for cancer in children is currently almost 75%. This rate has remained fairly constant over the past few years, which suggests that the limits of today's curative treatment potential have been reached. The development of cell therapy techniques opens up new therapeutic possibilities in paediatric oncology. Here, we deal both with a number of cell therapy techniques, which have already proved their efficacy in children, and other more innovative approaches, which require validation. Examples of the use of autologous and allogeneic cells are described. Clinical studies and their results, while often preliminary, are reported. The importance of well run clinical research, a clear and progressive legal framework and the necessary substantial economic support for the development of cell therapy are underlined.
Collapse
Affiliation(s)
- J Kanold
- Unité bioclinique de thérapie cellulaire, service de pédiatrie B, Hôtel-Dieu, C.H.U., B.P.69, 11, boulevard Léon Malfreyt, 63003 Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
41
|
Abstract
The role of host defense in cancer is highly variable. Although there are cases where spontaneous cures of cancer appear to be mediated by immunologic mechanisms, malignant disease generally progresses even in patients where tumor-specific immunity can be demonstrated. It is apparent that there are complex interactions between tumor cells and dendritic cells, the dominant antigen-presenting cells of the immune system. Through their inhibitory actions upon dendritic cells, tumor cells can negatively regulate priming of tumor-specific immunity. Recent work has also shown that dendritic cells have direct cytotoxic effects upon tumor cells. These interactions may impact on the efficacy of current strategies using dendritic cell-based vaccines for tumor immunotherapy.
Collapse
Affiliation(s)
- Hearn Jay Cho
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|