1
|
Doty RT, Lausted CG, Munday AD, Yang Z, Yan X, Meng C, Tian Q, Abkowitz JL. The transcriptomic landscape of normal and ineffective erythropoiesis at single-cell resolution. Blood Adv 2023; 7:4848-4868. [PMID: 37352261 PMCID: PMC10469080 DOI: 10.1182/bloodadvances.2023010382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic and always reflect ineffective erythropoiesis yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA or MDS-5q. We defined an unhealthy (vs healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die express high levels of heme-responsive genes, including ribosomal protein and globin genes, whereas surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24% ± 12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of colony forming unit-erythroid, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent data sets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.
Collapse
Affiliation(s)
- Raymond T. Doty
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | - Adam D. Munday
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Zhantao Yang
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Qiang Tian
- Institute for Systems Biology, Seattle, WA
| | - Janis L. Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020; 136:1262-1273. [PMID: 32702755 PMCID: PMC7483438 DOI: 10.1182/blood.2019000947] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adenosine Deaminase/blood
- Adenosine Deaminase/genetics
- Anemia, Diamond-Blackfan/diagnosis
- Anemia, Diamond-Blackfan/genetics
- Anemia, Diamond-Blackfan/metabolism
- Anemia, Diamond-Blackfan/therapy
- Child, Preschool
- Congenital Abnormalities/genetics
- Diagnosis, Differential
- Disease Management
- Drug Resistance
- Erythrocytes/enzymology
- Fetal Growth Retardation/etiology
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/physiology
- Genetic Heterogeneity
- Genetic Therapy
- Glucocorticoids/therapeutic use
- HSP70 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Models, Biological
- Mutation
- Neoplastic Syndromes, Hereditary/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- U1134, Université Paris, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thierry Leblanc
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France; and
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| |
Collapse
|
3
|
Abstract
Rare inherited anemias are a subset of anemias caused by a genetic defect along one of the several stages of erythropoiesis or in different cellular components that affect red blood cell integrity, and thus its lifespan. Due to their low prevalence, several complications on growth and development, and multi-organ system damage are not yet well defined. Moreover, during the last decade there has been a lack of proper understanding of the impact of rare anemias on maternal and fetal outcomes. In addition, there are no clear-cut guidelines outlining the pathophysiological trends and management options unique to this special population. Here, we present on behalf of the European Hematology Association, evidence- and consensus-based guidelines, established by an international group of experts in different fields, including hematologists, gynecologists, general practitioners, medical geneticists, and experts in rare inherited anemias from various European countries for standardized and appropriate choice of therapeutic interventions for the management of pregnancy in rare inherited anemias, including Diamond-Blackfan Anemia, Congenital Dyserythropoietic Anemias, Thalassemia, Sickle Cell Disease, Enzyme deficiency and Red cell membrane disorders.
Collapse
|
4
|
Jahan D, Al Hasan MM, Haque M. Diamond-Blackfan anemia with mutation in RPS19: A case report and an overview of published pieces of literature. J Pharm Bioallied Sci 2020; 12:163-170. [PMID: 32742115 PMCID: PMC7373105 DOI: 10.4103/jpbs.jpbs_234_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Diamond-Blackfan anemia (DBA), one of a rare group of inherited bone marrow failure syndromes, is characterized by red cell failure, the presence of congenital anomalies, and cancer predisposition. It can be caused by mutations in the RPS19 gene (25% of the cases). Methods This case report describes a 10-month-old boy who presented with 2 months' history of gradually increasing weakness and pallor. Results The patient was diagnosed as a case of DBA based on peripheral blood finding, bone marrow aspiration with trephine biopsy reports, and genetic mutation analysis of the RPS19 gene. His father refused hematopoietic stem cell transplantation for financial constraints. Patient received prednisolone therapy with oral folic acid and iron supplements. Conclusion Hemoglobin raised from 6.7 to 9.8g/dL after 1 month of therapeutic intervention.
Collapse
Affiliation(s)
- Dilshad Jahan
- Department of Hematology, Apollo Hospitals, Dhaka, Bangladesh
| | | | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Abstract
Diamond-Blackfan anaemia (DBA) is a rare inherited marrow failure disorder, characterized by hypoplastic anaemia, congenital anomalies and a predisposition to cancer as a result of ribosomal dysfunction. Historically, treatment is based on glucocorticoids and/or blood transfusions, which is accompanied by significant toxicity and long-term sequelae. Currently, stem cell transplantation is the only curative option for the haematological DBA phenotype. Whereas this procedure has been quite successful in the last decade in selected patients, novel therapies and biological insights are still warranted to improve clinical care for all DBA patients. In addition to paediatric haematologists, other physicians (e.g. endocrinologist, gynaecologist) should ideally be involved in the care of this chronic condition from an early age, to improve lifelong management of haematological and non-haematological symptoms, and screen for DBA-associated malignancies. Here we provide an overview of current knowledge and recommendations for the day-to-day care of DBA patients.
Collapse
Affiliation(s)
- Marije Bartels
- Paediatric Haematology DepartmentWilhelmina Children's HospitalUniversity Medical Centre Utrecht Utrechtthe Netherlands
| | - Marc Bierings
- Department of Stem cell transplantationPrincess Maxima Centre for Paediatric OncologyWilhelmina Children's HospitalUniversity Medical Centre UtrechtUtrechtthe Netherlands
| |
Collapse
|
6
|
Da Costa L, O'Donohue MF, van Dooijeweert B, Albrecht K, Unal S, Ramenghi U, Leblanc T, Dianzani I, Tamary H, Bartels M, Gleizes PE, Wlodarski M, MacInnes AW. Molecular approaches to diagnose Diamond-Blackfan anemia: The EuroDBA experience. Eur J Med Genet 2017; 61:664-673. [PMID: 29081386 DOI: 10.1016/j.ejmg.2017.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 11/19/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital erythroblastopenia and inherited bone marrow failure syndrome that affects approximately seven individuals in every million live births. In addition to anemia, about 50% of all DBA patients suffer from various physical malformations of the face, hands, heart, or urogenital region. The disorder is almost exclusively driven by haploinsufficient mutations in one of several ribosomal protein (RP) genes, although for ∼30% of diagnosed patients no mutation is found in any of the known DBA-linked genes. Because DBA is such a rare disease with a particularly wide range of clinical phenotypes and molecular signatures, the development of collaborative efforts such as the ERARE-funded European DBA consortium (EuroDBA) has become imperative for DBA research. EuroDBA was founded in 2012 and brings together dedicated clinical and biological researchers of DBA from France, Italy, the Netherlands, Germany, Israel, Poland, and Turkey to achieve a number of goals including the consolidation of data in patient registries, establishment of minimal diagnostic criteria, and projects aimed at more fully describing the different mutations linked to DBA. This review will cover the history of the EuroDBA registries, the methods used by EuroDBA in the diagnosis of DBA, and how the consortium has successfully worked together towards the discovery of new DBA-linked genes and the better understanding their pathophysiological effects.
Collapse
Affiliation(s)
- Lydie Da Costa
- University Paris VII Denis DIDEROT, Faculté de Médecine Xavier Bichat, F-75019 Paris, France; Laboratory of Excellence for Red Cell, LABEX GR-Ex, F-75015 Paris, France; Inserm Unit 1134, INTS, F-75015 Paris, France; Service d'onco-hématologie pédiatrique, Robert Debré Hospital, F-75019 Paris, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Birgit van Dooijeweert
- Department of Pediatric Hematology and Stem Cell Transplantation, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Katarzyna Albrecht
- Medical University of Warsaw, Department of Pediatric Hematology and Oncology, Ul. Żwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Sule Unal
- Hacettepe University, Center of Research, Diagnosis and Treatment for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara 06100, Turkey
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Torino, 10126 Torino, Italy
| | - Thierry Leblanc
- Service d'onco-hématologie pédiatrique, Robert Debré Hospital, F-75019 Paris, France
| | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy
| | - Hannah Tamary
- Pediatric Hematology/Oncology Department, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, 84101 Beer Sheva, Israel
| | - Marije Bartels
- Department of Pediatric Hematology and Stem Cell Transplantation, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Marcin Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Yang Z, Keel SB, Shimamura A, Liu L, Gerds AT, Li HY, Wood BL, Scott BL, Abkowitz JL. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med 2016; 8:338ra67. [PMID: 27169803 PMCID: PMC5010382 DOI: 10.1126/scitranslmed.aaf3006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias.
Collapse
Affiliation(s)
- Zhantao Yang
- University of Washington, Seattle, WA 98195, USA
| | | | - Akiko Shimamura
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Li Liu
- University of Washington, Seattle, WA 98195, USA
| | - Aaron T Gerds
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Brent L Wood
- University of Washington, Seattle, WA 98195, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
8
|
Recommendations on hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Bone Marrow Transplant 2015; 50:1168-72. [PMID: 26052913 DOI: 10.1038/bmt.2015.117] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/23/2015] [Accepted: 04/18/2015] [Indexed: 12/19/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers the potential to cure patients with an inherited bone marrow failure syndrome (IBMFS). However, the procedure involves the risk of treatment-related mortality and may be associated with significant early and late morbidity. For these reasons, the benefits should be carefully weighed against the risks. IBMFS are rare, whereas case reports and small series in the literature illustrate highly heterogeneous practices in terms of indications for HSCT, timing, stem cell source and conditioning regimens. A consensus meeting was therefore held in Vienna in September 2012 on behalf of the European Group for Blood and Marrow Transplantation to discuss HSCT in the setting of IBMFS. This report summarizes the recommendations from this expert panel, including indications for HSCT, timing, stem cell source and conditioning regimen.
Collapse
|
9
|
Blatt J, Corey SJ. Drug repurposing in pediatrics and pediatric hematology oncology. Drug Discov Today 2012; 18:4-10. [PMID: 22835502 DOI: 10.1016/j.drudis.2012.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 12/12/2022]
Abstract
Drug 'repurposing', that is, using old drugs for new indications, has been proposed as a more efficient strategy for drug development than the current standard of beginning with novel agents. In this review, we explore the scope of drug repurposing in pediatric hematology oncology and in pediatrics in general. Drugs commonly used in children were identified using the Harriet Lane Handbook (HLH) and searched in PubMed for different uses. Additional drugs were identified by searching PubMed and Google.com for 'drug repurposing' or 'drug repositioning'. Almost 10% of drugs with primary uses in pediatrics have been repurposed in pediatric hematology oncology or pediatrics. The observant clinician, pharmacologist and translational bioinformatician, as well as structural targeting, will have a role in discovering new repurposing opportunities.
Collapse
Affiliation(s)
- Julie Blatt
- Department of Pediatrics and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
10
|
Sjögren SE, Flygare J. Progress towards mechanism-based treatment for Diamond-Blackfan anemia. ScientificWorldJournal 2012; 2012:184362. [PMID: 22619618 PMCID: PMC3349117 DOI: 10.1100/2012/184362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/20/2011] [Indexed: 11/17/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplastic anemia, characterized by macrocytic anemia, reticulocytopenia, and severely reduced numbers of erythroid precursors in the bone marrow. For more than fifty years, glucocorticoids have remained the main option for pharmacological treatment of DBA. While continuous glucocorticoid administration increases hemoglobin levels in a majority of DBA patients, it also causes severe side effects. There is therefore a great need for more specific and effective treatments to boost or replace the use of glucocorticoids. Over the years, many alternative therapies have been tried out, but most of them have shown to be ineffective. Here we review previous and current attempts to develop such alternative therapies for DBA. We further discuss how emerging knowledge regarding the pathological mechanism in DBA and the therapeutic mechanism of glucocorticoids treatment may reveal novel drug targets for DBA treatment.
Collapse
Affiliation(s)
- Sara E Sjögren
- Department of Molecular Medicine and Gene Therapy, 22184 Lund University, Lund, Sweden
| | | |
Collapse
|
11
|
Abstract
Despite significant improvements in our understanding of the pathophysiology of Diamond Blackfan anemia (DBA), there have been few advances in therapy. The cornerstones of treatment remain corticosteroids, chronic red blood cell transfusions, and hematopoietic stem cell transplantation, each of which is fraught with complications. In this article, we will review the history of therapies that have been offered to patients with DBA, summarize the current standard of care, including management of side effects, and discuss novel therapeutics that are being developed in the context of the research into the roles of ribosomal haplo-insufficiency and p53 activation in Diamond Blackfan anemia.
Collapse
Affiliation(s)
- Anupama Narla
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
12
|
Holmes GI, Shepherd P, Walker JD. Panhypopituitarism secondary to a macroprolactinoma manifesting with pancytopenia: case report and literature review. Endocr Pract 2011; 17:e32-6. [PMID: 21247847 DOI: 10.4158/ep10298.cr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To present a case of pancytopenia associated with hypopituitarism secondary to a macroprolactinoma. METHODS We report the clinical features on presentation and results of laboratory investigation. Findings on magnetic resonance imaging are illustrated. The response to hormone replacement therapy is summarized. RESULTS A 46-year-old man was referred with pancytopenia and secondary hypothyroidism. Laboratory investigation revealed hypopituitarism and a substantially increased prolactin level. Magnetic resonance imaging of the head demonstrated a macroprolactinoma. Hematologic investigation disclosed no other cause for the pancytopenia. Hormone replacement therapy was initiated with hydrocortisone, levothyroxine, and testosterone. Cabergoline was used to induce regression of the prolactinoma. A rapid improvement was seen in the cytopenias, with normalization of the blood cell counts after 8 months of treatment. This result has been sustained during 29 months of follow-up. CONCLUSION Pancytopenia associated with hypopituitarism has been reported in the literature as a rare occurrence limited to isolated case reports, predominantly associated with Sheehan syndrome. To our knowledge, this is the first reported case of pancytopenia associated with a macroprolactinoma. This finding is noteworthy because prolactin alone has been reported to support hematopoiesis in animal studies.
Collapse
Affiliation(s)
- George I Holmes
- Department of Haematology, St John's Hospital, Livingston, West Lothian, Scotland.
| | | | | |
Collapse
|
13
|
Da Costa L, Moniz H, Simansour M, Tchernia G, Mohandas N, Leblanc T. Diamond-Blackfan anemia, ribosome and erythropoiesis. Transfus Clin Biol 2010; 17:112-9. [PMID: 20655265 DOI: 10.1016/j.tracli.2010.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 01/19/2023]
Abstract
Diamond-Blackfan anemia is a rare inherited bone marrow failure syndrome (five to seven cases per million live births) characterized by an aregenerative, usually macrocytic anemia with an absence or less than 5% of erythroid precursors (erythroblastopenia) in an otherwise normal bone marrow. The platelet and the white cell counts are usually normal but neutropenia, thrombopenia or thrombocytosis have been noted at diagnosis. In 40 to 50% of DBA patients, congenital abnormalities mostly in the cephalic area and in thumbs and upper limbs have been described. Recent analysis did show a phenotype/genotype correlation. Congenital erythroblastopenia of DBA is the first human disease identified to result from defects in ribosomal biogenesis. The first ribosomal gene involved in DBA, ribosomal protein (RP) gene S19 (RPS19 gene), was identified in 1999. Subsequently, mutations in 12 other RP genes out of a total of 78 RP genes have been identified in DBA. All RP gene mutations described to date are heterozygous and dominant inheritance has been documented in 40 to 45% of affected individuals. As RP mutations are yet to be identified in approximately 50% of DBA cases, it is likely that other yet to be identified genes involved in ribosomal biogenesis or other pathways may be responsible for DBA phenotype.
Collapse
Affiliation(s)
- L Da Costa
- Service d'hématologie biologique, hôpital R.-Debré, 48, boulevard Sérurier, 75019 Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Diamond-Blackfan anemia (DBA) is characterized by red cell failure, the presence of congenital anomalies, and cancer predisposition. In addition to being an inherited bone marrow failure syndrome, DBA is also categorized as a ribosomopathy as, in more than 50% of cases, the syndrome appears to result from haploinsufficiency of either a small or large subunit-associated ribosomal protein. Nonetheless, the exact mechanism by which haploinsufficiency results in erythroid failure, as well as the other clinical manifestations, remains uncertain. New knowledge regarding genetic and molecular mechanisms combined with robust clinical data from several international patient registries has provided important insights into the diagnosis of DBA and may, in the future, provide new treatments as well. Diagnostic criteria have been expanded to include patients with little or no clinical findings. Patient management is therefore centered on accurate diagnosis, appropriate use of transfusions and iron chelation, corticosteroids, hematopoietic stem cell transplantation, and a coordinated multidisciplinary approach to these complex patients.
Collapse
|
15
|
Transfusion independence in Diamond-Blackfan anemia after deferasirox therapy. Ann Hematol 2009; 88:1263-4. [PMID: 19415275 DOI: 10.1007/s00277-009-0750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
|
16
|
Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, Meerpohl J, Karlsson S, Liu JM, Leblanc T, Paley C, Kang EM, Leder EJ, Atsidaftos E, Shimamura A, Bessler M, Glader B, Lipton JM. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142:859-76. [PMID: 18671700 PMCID: PMC2654478 DOI: 10.1111/j.1365-2141.2008.07269.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diamond Blackfan anaemia (DBA) is a rare, genetically and clinically heterogeneous, inherited red cell aplasia. Classical DBA affects about seven per million live births and presents during the first year of life. However, as mutated genes have been discovered in DBA, non-classical cases with less distinct phenotypes are being described in adults as well as children. In caring for these patients it is often difficult to have a clear understanding of the treatment options and their outcomes because of the lack of complete information on the natural history of the disease. The purpose of this document is to review the criteria for diagnosis, evaluate the available treatment options, including corticosteroid and transfusion therapies and stem cell transplantation, and propose a plan for optimizing patient care. Congenital anomalies, mode of inheritance, cancer predisposition, and pregnancy in DBA are also reviewed. Evidence-based conclusions will be made when possible; however, as in many rare diseases, the data are often anecdotal and the recommendations are based upon the best judgment of experienced clinicians. The recommendations regarding the diagnosis and management described in this report are the result of deliberations and discussions at an international consensus conference.
Collapse
Affiliation(s)
- Adrianna Vlachos
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bustamante JJ, Dai G, Soares MJ. Pregnancy and lactation modulate maternal splenic growth and development of the erythroid lineage in the rat and mouse. Reprod Fertil Dev 2008; 20:303-10. [DOI: 10.1071/rd07106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 12/03/2007] [Indexed: 11/23/2022] Open
Abstract
Maternal physiology changes dramatically during the course of gestation and lactation to meet the needs of the developing fetus and newborn. In the present study, we examined the influence of pregnancy and lactation on growth and erythroid gene expression patterns of the maternal spleen. Holtzman Sprague-Dawley rats and CD-1 mice were killed at various stages of gestation and post partum. We observed pregnancy dependent increases in spleen weight and spleen DNA content in both the rat and mouse. In the rat, spleen size was greatest at the end of pregnancy and regressed post partum. In contrast, mouse spleen size peaked by gestational Day 13 and regressed to its non-pregnant weight before parturition. Pregnancy dependent changes in the size of the spleen were primarily due to an increase in red pulp. Maternal spleen expression of erythroid-associated genes (erythroid Krüppel-like factor, erythroid 5-aminolevulinate synthase-2, β-major globin) was influenced by pregnancy and lactation. A pregnancy dependent increase in erythroid progenitors was also observed. In summary, the demands of pregnancy and lactation cause marked adaptations in the maternal spleen. The maternal spleen increases in size and exhibits an expansion of the erythroid lineage.
Collapse
|
18
|
|
19
|
Leblanc TM, Da Costa L, Marie I, Demolis P, Tchernia G. Metoclopramide treatment in DBA patients: no complete response in a French prospective study. Blood 2007; 109:2266-7. [PMID: 17312003 DOI: 10.1182/blood-2006-08-039545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents as macrocytic anemia during infancy. Linkage analysis suggests that at least 4 genes are associated with DBA of which 2 have been identified so far. The known DBA genes encode the ribosomal proteins S19 and S24 accounting for 25% and 2% of the patients, respectively. Herein, we review possible links between ribosomal proteins and erythropoiesis that might explain DBA pathogenesis. Recent studies and emerging findings suggest that a malfunctioning translational machinery may be a cause of anemia in patients with DBA.
Collapse
Affiliation(s)
- Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Institute of Molecular Medicine, and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, A12 221-84 Lund, Sweden.
| | | |
Collapse
|
21
|
Affiliation(s)
- Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan.
| | | |
Collapse
|
22
|
Roy V, Pérez WS, Eapen M, Marsh JCW, Pasquini M, Pasquini R, Mustafa MM, Bredeson CN. Bone Marrow Transplantation for Diamond-Blackfan Anemia. Biol Blood Marrow Transplant 2005; 11:600-8. [PMID: 16041310 DOI: 10.1016/j.bbmt.2005.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Patients with Diamond-Blackfan anemia (DBA) who are unresponsive to or intolerant of corticosteroids, experience treatment failure with other treatments, develop additional cytopenias or clonal disease, or opt for curative therapy are often treated with allogeneic bone marrow transplantation. We studied the transplantation outcomes of 61 DBA patients whose data were reported to the International Bone Marrow Transplant Registry between 1984 and 2000. The median age was 7 years (range, 1-32 years). Among 55 patients with available transfusion information, 35 (64%) had received > or =20 units of blood before transplantation. Most patients (67%) received their bone marrow grafts from an HLA-matched related donor. The median time to neutrophil recovery was 17 days (range, 10-119 days) and to platelet recovery was 23 days (range, 9-119 days). Five patients did not achieve neutrophil engraftment. The 100-day mortality was 18% (95% confidence interval, 10%-29%). Grade II to IV acute graft-versus-host disease occurred in 28% (range, 17%-39%) and chronic graft-versus-host disease in 26% (range, 15%-39%). The 3-year probability of overall survival was 64% (range, 50%-74%). In univariate analysis, a Karnofsky score > or =90 and transplantation from an HLA-identical sibling donor were associated with better survival. These data suggest that allogeneic bone marrow transplantation is effective for the treatment of DBA. Transplantation before deterioration of the performance status and from an HLA-identical sibling donor may improve survival.
Collapse
Affiliation(s)
- Vivek Roy
- Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Akiyama M, Yanagisawa T, Yuza Y, Yokoi K, Ariga M, Fujisawa K, Hoshi Y, Eto Y. Successful treatment of Diamond-Blackfan anemia with metoclopramide. Am J Hematol 2005; 78:295-8. [PMID: 15795909 DOI: 10.1002/ajh.20278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital anemia characterized by a low reticulocyte count, the absence or severe reduction of hemoglobin-containing cells in the bone marrow, and normal megakaryocytic and granulocytic differentiation. Although the anemia may initially respond to corticosteroid therapy, many patients require lifelong red blood cell (RBC) transfusion, leading to infectious complications and iron overload. Metoclopramide has recently been used to treat DBA. Treatment with metoclopramide induces the release of prolactin from the pituitary and stimulates erythropoiesis. For these reasons, we used metoclopramide to treat a 20-year-old man with DBA refractory to low and high doses of corticosteroids, cyclosporin A, and tacrolimus (FK506). The hemoglobin and hematocrit slowly increased, and he has remained asymptomatic and transfusion-independent for 8 months. Metoclopramide therapy should be considered in patients with refractory DBA before treatment-related complications develop.
Collapse
Affiliation(s)
- Masaharu Akiyama
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Cordiano V. Complete remission of hyperprolactinemia and erythrocytosis after hysterectomy for a uterine fibroid in a woman with a previous diagnosis of prolactin-secreting pituitary microadenoma. Ann Hematol 2004; 84:200-2. [PMID: 15599545 DOI: 10.1007/s00277-004-0973-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 10/18/2004] [Indexed: 01/28/2023]
Abstract
A 44-year-old woman who had been suffering for 10 years from amenorrhea and hyperprolactinemia resistant to high doses of bromocriptine was hospitalized with erythrocytosis, normal serum erythropoietin (sEpo) levels, and hypertension. Erythrocytosis secondary to uterine myoma and a prolactin-secreting pituitary microadenoma were initially diagnosed. The hyperprolactinemia was bromocriptine resistant, despite gradual increase of the dosage to 30 mg/day. Both hyperprolactinemia and erythrocytosis unexpectedly regressed completely after the patient underwent hysterectomy for a uterine fibroid 9 months after the erythrocytosis was first disclosed. Given the well-known effects of prolactin on hematopoietic cells, we hypothesize that--in this very unusual case--the two main, apparently unrelated abnormalities (erythrocytosis with normal sEpo levels and hyperprolactinemia) may have been the clinical consequence of the functional redundancy and pleiotropy of the "pituitary" hormone prolactin, inappropriately secreted by a uterine fibroid for more than 10 years.
Collapse
|
26
|
Ohene-Abuakwa Y, Orfali KA, Marius C, Ball SE. Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect. Blood 2004; 105:838-46. [PMID: 15238419 DOI: 10.1182/blood-2004-03-1016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The erythroid defect in Diamond Blackfan anemia (DBA) is known to be intrinsic to the stem cell, but its molecular pathophysiology remains obscure. Using a 2-phase liquid erythroid culture system, we have demonstrated a consistent defect in DBA, regardless of clinical severity, including 3 first-degree relatives with normal hemoglobin levels but increased erythrocyte adenosine deaminase activity. DBA cultures were indistinguishable from controls until the end of erythropoietin (Epo)-free phase 1, but failed to demonstrate the normal synchronized wave of erythroid expansion and terminal differentiation on exposure to Epo. Dexamethasone increased Epo sensitivity of erythroid progenitor cells, and enhanced erythroid expansion in phase 2 in both normal and DBA cultures. In DBA cultures treated with dexamethasone, Epo sensitivity was comparable to normal, but erythroid expansion remained subnormal. In clonogenic phase 2 cultures, the number of colonies did not significantly differ between normal cultures and DBA, in the presence or absence of dexamethasone, and at both low and high Epo concentrations. However, colonies were markedly smaller in DBA under all conditions. This suggests that the Epo-triggered onset of terminal maturation is intact in DBA, and the defect lies down-stream of the Epo receptor, influencing survival and/or proliferation of erythroid progenitors.
Collapse
Affiliation(s)
- Yaw Ohene-Abuakwa
- Department of Cellular and Molecular Sciences (Haematology), St George's Hospital Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
Djaldetti M, Blay A, Bergman M, Salman H, Bessler H. Pure red cell aplasia--a rare disease with multiple causes. Biomed Pharmacother 2004; 57:326-32. [PMID: 14568226 DOI: 10.1016/j.biopha.2003.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pure red cell aplasia (PRCA) is a relatively rare disease although multiple factors are implied in the pathogenesis of its development. A slow progressive normocytic-normochromic anemia and reticulocytopenia, without leukopenia and thrombocytopenia in a patient who, except pallor, does not show abnormal findings on physical examination, should arise the suspicion that he has PRCA. Search for underlying diseases or infections and intake of drugs may help for the establishment of the diagnosis of acquired PRCA. Lack of erythroblasts in the bone marrow with normal development of the other hemopoietic series, as well as high level of serum erythropoietin are important clues for the diagnosis. Elimination of potentially causative factors, administration of immunosuppressive agents and/or recombinant erythropoietin, preferably epoetin beta, may induce remission and complete recovery.
Collapse
Affiliation(s)
- M Djaldetti
- Research Laboratory Unit, Rabin Medical Center, Golda Campus, 7, Keren Kayemet Street, Petah Tiqva, The Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | | | | | |
Collapse
|