1
|
Regulative Loop between β-catenin and Protein Tyrosine Receptor Type γ in Chronic Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21072298. [PMID: 32225105 PMCID: PMC7177637 DOI: 10.3390/ijms21072298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Protein tyrosine phosphatase receptor type γ (PTPRG) is a tumor suppressor gene, down-regulated in Chronic Myeloid Leukemia (CML) cells by the hypermethylation of its promoter region. β-catenin (CTNNB1) is a critical regulator of Leukemic Stem Cells (LSC) maintenance and CML proliferation. This study aims to demonstrate the antagonistic regulation between β-catenin and PTPRG in CML cells. The specific inhibition of PTPRG increases the activation state of BCR-ABL1 and modulates the expression of the BCR-ABL1- downstream gene β-Catenin. PTPRG was found to be capable of dephosphorylating β-catenin, eventually causing its cytosolic destabilization and degradation in cells expressing PTPRG. Furthermore, we demonstrated that the increased expression of β-catenin in PTPRG-negative CML cell lines correlates with DNA (cytosine-5)-methyl transferase 1 (DNMT1) over-expression, which is responsible for PTPRG promoter hypermethylation, while its inhibition or down-regulation correlates with PTPRG re-expression. We finally confirmed the role of PTPRG in regulating BCR-ABL1 and β-catenin phosphorylation in primary human CML samples. We describe here, for the first time, the existence of a regulative loop occurring between PTPRG and β-catenin, whose reciprocal imbalance affects the proliferation kinetics of CML cells.
Collapse
|
2
|
Mafficini A, Vezzalini M, Zamai L, Galeotti L, Bergamini G, Peruta MD, Melotti P, Sorio C. Protein Tyrosine Phosphatase Gamma (PTPγ) is a Novel Leukocyte Marker Highly Expressed by CD34+ Precursors. Biomark Insights 2017. [DOI: 10.1177/117727190700200036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein Tyrosine Phosphatase gamma (PTPγ) is a receptor-like transmembrane protein belonging to the family of classical protein tyrosine phosphatases. PTPγ is known to regulate haematopoietic differentiation in a murine embryonic stem cells model. We have recently demonstrated that PTPγ mRNA is expressed in monocytes, tissue-localized myeloid dendritic cells and in both myeloid and plasmacytoid dendritic cells in peripheral blood. We now developed a PTPγ specific antibody that recognizes the protein by flow cytometry. PTPγ expression was detected in monocytes and both myeloid and plasmacytoid dendritic cells, while PMN showed a low but consistent staining in contrast with previous mRNA data. B cells were found to express the phosphatase while T cells were negative. In keeping with RNA data, PTPγ was detected in monocyte-derived dendritic cells and its expression rose upon LPS stimulation. Finally, we discovered that CD34+ haematopoietic precursors express high PTPγ level that drops during in vitro expansion induced by IL-3 and SCF growth factors. We therefore propose PTPγ as a new functionally regulated leukocyte marker whose role in normal and pathological context deserve further investigation.
Collapse
Affiliation(s)
| | | | - Loris Zamai
- Institute of Histology and Laboratory Analysis, University of Urbino “Carlo Bo”, Italy
- Flow Cytometry and Cytomorphology Center, University of Urbino “Carlo Bo”, Italy
- INFN-Gran Sasso National Laboratory, SS17bis km 18+910, 67010 Assergi, L'Aquila, Italy
| | - Laura Galeotti
- Institute of Histology and Laboratory Analysis, University of Urbino “Carlo Bo”, Italy
- Flow Cytometry and Cytomorphology Center, University of Urbino “Carlo Bo”, Italy
| | | | | | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera of Verona, Verona, Italy
| | - Claudio Sorio
- Department of Pathology, University of Verona, Italy
| |
Collapse
|
3
|
Vezzalini M, Mafficini A, Tomasello L, Lorenzetto E, Moratti E, Fiorini Z, Holyoake TL, Pellicano F, Krampera M, Tecchio C, Yassin M, Al-Dewik N, Ismail MA, Al Sayab A, Monne M, Sorio C. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients. J Hematol Oncol 2017. [PMID: 28637510 PMCID: PMC5479035 DOI: 10.1186/s13045-017-0494-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. METHODS TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. RESULTS Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. CONCLUSIONS The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions.
Collapse
Affiliation(s)
- Marzia Vezzalini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Andrea Mafficini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Luisa Tomasello
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Present address: The Ohio State University, Wexner Medical Center Biomedical Research Tower, 460W 12th Avenue, room 1070, Columbus, OH, 43210, USA
| | - Erika Lorenzetto
- Section of Physiology, Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, Italy
| | - Elisabetta Moratti
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Zeno Fiorini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Pellicano
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland, UK
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mohamed Yassin
- National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Nader Al-Dewik
- Qatar Medical Genetics Center, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Ismail
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation, Doha, Qatar
| | - Ali Al Sayab
- National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, ASL3, Nuoro, 08100, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
4
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
5
|
Xiao J, Lee ST, Xiao Y, Ma X, Houseman EA, Hsu LI, Roy R, Wrensch M, de Smith AJ, Chokkalingam A, Buffler P, Wiencke JK, Wiemels JL. PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia. Int J Cancer 2014; 135:1101-9. [PMID: 24496747 DOI: 10.1002/ijc.28759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023]
Abstract
While the cytogenetic and genetic characteristics of childhood acute lymphoblastic leukemias (ALL) are well studied, less clearly understood are the contributing epigenetic mechanisms that influence the leukemia phenotype. Our previous studies and others identified gene mutation (RAS) and DNA methylation (FHIT) to be associated with the most common cytogenetic subgroup of childhood ALL, high hyperdiploidy (having five more chromosomes). We screened DNA methylation profiles, using a genome-wide high-dimension platform of 166 childhood ALLs and 6 normal pre-B cell samples and observed a strong association of DNA methylation status at the PTPRG locus in human samples with levels of PTPRG gene expression as well as with RAS gene mutation status. In the 293 cell line, we found that PTPRG expression induces dephosphorylation of ERK, a downstream RAS target that may be critical for mutant RAS-induced cell growth. In addition, PTPRG expression is upregulated by RAS activation under DNA hypomethylating conditions. An element within the PTPRG promoter is bound by the RAS-responsive transcription factor RREB1, also under hypomethylating conditions. In conclusion, we provide evidence that DNA methylation of the PTPRG gene is a complementary event in oncogenesis induced by RAS mutations. Evidence for additional roles for PTPR family member genes is also suggested. This provides a potential therapeutic target for RAS-related leukemias as well as insight into childhood ALL etiology and pathophysiology.
Collapse
Affiliation(s)
- Jianqiao Xiao
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vezzalini M, Mombello A, Menestrina F, Mafficini A, Della Peruta M, van Niekerk C, Barbareschi M, Scarpa A, Sorio C. Expression of transmembrane protein tyrosine phosphatase gamma (PTPgamma) in normal and neoplastic human tissues. Histopathology 2007; 50:615-28. [PMID: 17394498 DOI: 10.1111/j.1365-2559.2007.02661.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To establish the conditions for protein tyrosine phosphatase gamma (PTPgamma) detection in paraffin tissues using two antibodies raised against its NH(2)- (anti-P4) and COOH-termini (gammaTL1); to analyse its expression in normal tissues and to perform an initial screening of neoplastic tissues. METHODS AND RESULTS Membranous and/or cytoplasmic PTPgamma expression was detected in the majority of epithelial cell types and in endocrine cells, with the highest expression in adrenal medulla, endocrine cells of the gastrointestinal tract and pancreatic islets. Both antibodies stained the thyroid follicular epithelium, but only anti-P4 antibody stained the colloid matrix, suggesting shedding/secretion of the PTPgamma extracellular domain. Marked loss of PTPgamma immunoreactivity was detected in subsets of ovarian (21%), breast (56%) and lung (80%) neoplasms. Conversely, cytoplasmic positivity was found in 37% of lymphomas, mainly of high-grade histotypes, while normal lymphocytes were negative. Brain tissue showed PTPgamma expression in a few neuronal and glial elements and PTPgamma was overexpressed in the majority of high-grade astrocytomas. CONCLUSIONS We have analysed PTPgamma expression in archival paraffin-embedded tissues for the first time, demonstrating particularly high expression in endocrine cells and both down- and up-regulation in neoplasia, the latter possibly reflecting the undifferentiated state of the neoplastic cells, suggesting a complex role for this phosphatase.
Collapse
Affiliation(s)
- M Vezzalini
- Department of Pathology, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lissandrini D, Vermi W, Vezzalini M, Sozzani S, Facchetti F, Bellone G, Mafficini A, Gentili F, Ennas MG, Tecchio C, Sorio C. Receptor-type protein tyrosine phosphatase gamma (PTPgamma), a new identifier for myeloid dendritic cells and specialized macrophages. Blood 2006; 108:4223-31. [PMID: 16896153 DOI: 10.1182/blood-2006-05-024257] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase (PTPgamma) is a receptor-like molecule with a known role in murine hematopoiesis. We analyzed the regulation of PTPgamma expression in the human hematopoietic system, where it was detected in human peripheral blood monocytes and dendritic cells (DCs) of myeloid and plasmacytoid phenotypes. Its expression was maintained during in vitro monocyte differentiation to dendritic cells (moDC) and was further increased after maturation with bacterial lipopolysaccharide (LPS), CD40L, and TNFalpha. But PTPgamma was absent when monocytes from the same donor were induced to differentiate in macrophages. B and T lymphocytes did not express PTPgamma. Rather, PTPgamma mRNA was expressed in primary and secondary lymphoid tissues, and the highest expression was in the spleen. PTPgamma was detected by immunohistochemistry in subsets of myeloid-derived DCs and specialized macrophages (tingible bodies, sinus and alveolar macrophages). Classic macrophages in infective or reactive granulomatous reactions did not express PTPgamma. Increased PTPgamma expression was associated with a decreased ability to induce proliferation and interferon-gamma secretion in T cells by moDCs from patients with advanced pancreatic cancer. Taken together, these results indicate that PTPgamma is a finely regulated protein in DC and macrophage subsets in vitro and in vivo.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Antigens, Differentiation/biosynthesis
- CD40 Ligand/pharmacology
- Cell Differentiation/drug effects
- Cell Proliferation
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/enzymology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Hematopoiesis/drug effects
- Hematopoiesis/physiology
- Humans
- Interferon-gamma/biosynthesis
- Lipopolysaccharides/pharmacology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/enzymology
- Male
- Mice
- Middle Aged
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/pathology
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 5
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
|
8
|
Liu S, Sugimoto Y, Sorio C, Tecchio C, Lin YC. Function analysis of estrogenically regulated protein tyrosine phosphatase gamma (PTPgamma) in human breast cancer cell line MCF-7. Oncogene 2004; 23:1256-62. [PMID: 14676845 DOI: 10.1038/sj.onc.1207235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphatase gamma (PTPgamma) is a member of the receptor-like family of tyrosine phosphatases and has been implicated as a tumor suppressor gene in kidney and lung cancers. Based on our previous findings, we hypothesize that PTPgamma is a potential estrogen-regulated tumor suppressor gene in human breast cancer. To examine the effects of PTPgamma on growth of MCF-7 human breast cancer cells and compare the estrogenic responses of human breast cells with different PTPgamma expression levels, we established several stably transfected MCF-7 cell lines expressing different levels of PTPgamma, which were confirmed by RT-PCR and immunostaining. In our work, we used the antisense construct to breakdown endogenous PTPgamma level in MCF-7 cells. The results from doubling time assay suggested that PTPgamma is capable of inhibiting MCF-7 breast cancer cell growth. We further demonstrated that PTPgamma is able to inhibit anchorage-independent growth of breast cancer cells in soft agar and reduce the estrogenic responses of MCF-7 cell proliferation to estradiol-17beta (E(2)) and zeranol (Z, a nonsteroidal growth promoter with estrogenic activity). Our data suggest that PTPgamma may function as an important modulator in regulating the process of tumorigenesis in human breast.
Collapse
Affiliation(s)
- Suling Liu
- Laboratory of Reproductive and Molecular Endocrinology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Chilton JK, Stoker AW. Expression of receptor protein tyrosine phosphatases in embryonic chick spinal cord. Mol Cell Neurosci 2000; 16:470-80. [PMID: 11085882 DOI: 10.1006/mcne.2000.0887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Receptor-like protein tyrosine phosphatases potentially play a crucial role in axon growth and targeting. We focus here on their role within the embryonic avian spinal cord, in particular the development and outgrowth of motorneurons. We have used in situ mRNA hybridization to examine the spatiotemporal expression of eight receptor-like protein tyrosine phosphatases and find that it is both dynamic and highly varied, including novel, isoform-specific expression patterns. CRYP alpha 1 is expressed in all of the ventral motorneuron pools, whereas CRYP2, RPTP gamma, and RPTP alpha are only expressed in specific subsets of these neurons. CRYP alpha 2, RPTP psi, and RPTP delta are neuronally expressed elsewhere in the cord, but not in ventral motorneurons, whereas RPTP mu is unique in being restricted to capillaries. The developmentally regulated expression of these genes strongly suggests that the encoded phosphatases play numerous roles during neurogenesis and axonogenesis in the vertebrate spinal cord.
Collapse
Affiliation(s)
- J K Chilton
- Neural Development Unit, Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
10
|
Avraham H, Avraham S, Taniguchi Y. Receptor protein tyrosine phosphatases in hematopoietic cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:425-32. [PMID: 10982240 DOI: 10.1089/152581600419080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PTPs and PTKs control the level of tyrosine phosphorylation of cellular proteins. Although many substrates for PTKs have been identified, the specific targets of individual PTP family members, along with the consequences of protein dephosphorylation for cellular physiology, remain largely unknown. Fine regulation of tyrosine phosphorylation events is required for the proper progression of hematopoiesis. In this review, we have summarized the characterization of tyrosine phosphatases in hematopoietic cells and delineated their potential role in the process of hematopoiesis and the development of hematopoietic disorders.
Collapse
Affiliation(s)
- H Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA.
| | | | | |
Collapse
|
11
|
The Receptor Protein Tyrosine Phosphatase, PTP-RO, Is Upregulated During Megakaryocyte Differentiation and Is Associated With the c-Kit Receptor. Blood 1999. [DOI: 10.1182/blood.v94.2.539] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have recently isolated a cDNA encoding a novel human receptor-type tyrosine phosphatase, termed PTP-RO (for a protein tyrosine phosphatase receptor omicron), from 5-fluorouracil–treated murine bone marrow cells. PTP-RO is a human homologue of murine PTPλ and is related to the homotypically adhering κ and μ receptor-type tyrosine phosphatases. PTP-RO is expressed in human megakaryocytic cell lines, primary bone marrow megakaryocytes, and stem cells. PTP-RO mRNA and protein expression are upregulated upon phorbol 12-myristate 13-acetate (PMA) treatment of the megakaryocytic cell lines CMS, CMK, and Dami. To elucidate the function of PTP-RO in megakaryocytic cells and its potential involvement in the stem cell factor (SCF)/c-Kit receptor pathway, COS-7 and 293 cells were cotransfected with the cDNAs of both the c-Kit tyrosine kinase receptor and PTP-RO. PTP-RO was found to be associated with the c-Kit receptor in these transfected cells and the SCF/Kit ligand induced a rapid tyrosine phosphorylation of PTP-RO. Interestingly, these transfected cells demonstrated a decrease in their proliferative response to the SCF/Kit ligand. In addition, we assessed the association of PTP-RO with c-Kit in vivo. The results demonstrated that PTP-RO associates with c-Kit but not with the tyrosine kinase receptor FGF-R and that PTP-RO is tyrosine-phosphorylated after SCF stimulation of Mo7e and CMK cells. Antisense oligonucleotides directed against PTP-RO mRNA sequences significantly inhibited megakaryocyte progenitor proliferation. Therefore, these data show that the novel tyrosine kinase phosphatase PTP-RO is involved in megakaryocytopoiesis and that its function is mediated by the SCF/c-Kit pathway.
Collapse
|
12
|
Martelli ML, Trapasso F, Bruni P, Berlingieri MT, Battaglia C, Vento MT, Belletti B, Iuliano R, Santoro M, Viglietto G, Fusco A. Protein tyrosine phosphatase-eta expression is upregulated by the PKA-dependent and is downregulated by the PKC-dependent pathways in thyroid cells. Exp Cell Res 1998; 245:195-202. [PMID: 9828116 DOI: 10.1006/excr.1998.4257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have recently reported the isolation of a rat cDNA encoding a receptor-type tyrosine phosphatase, which appears to be a marker of thyroid differentiation. To elucidate the molecular mechanisms underlying r-PTPeta expression in normal thyroid cells both in vitro and in vivo, we investigated the regulation of r-PTPeta expression in cultured thyrocytes (the rat cell line PC Cl 3) and in an animal model of TSH-dependent thyroid goitrogenesis. In vitro studies showed that mRNA expression of r-PTPeta in thyroid cells is induced in a time- and dose-dependent manner by the activation of growth- and differentiation-linked PKA pathways (TSH and forskolin), whereas it is down-regulated by the activation of the proliferative dedifferentiating PKC-dependent transduction pathway (TPA). However, the regulation of r-PTPeta expression by TSH and TPA, respectively, is observed only in normal thyroid cells, but is lost in transformed thyroid cells. In vivo studies with thiouracil-fed rats demonstrated that increased serum levels of TSH up-regulated r-PTPeta mRNA expression in parallel with the stimulation of thyroid growth and function. The reduction of blood TSH levels due to iodide refeeding to goitrous rats determined a marked down-regulation of r-PTPeta expression, in parallel with involution of thyroid hyperplasia. Taken together these results demonstrate that the phosphatase r-PTPeta is regulated by the two main thyroid regulatory pathways and suggest that it may play an important role in the growth and differentiation of thyroid cells.
Collapse
Affiliation(s)
- M L Martelli
- Facoltà di Medicina e Chirurgia di Catanzaro, Università degli Studi di Reggio Calabria, via Tommaso Campanella 5, Catanzaro, 88100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Y, Siebert R, Matthiesen P, Yang Y, Ha H, Schlegelberger B. Cytogenetical assignment and physical mapping of the human R-PTP-kappa gene (PTPRK) to the putative tumor suppressor gene region 6q22.2-q22.3. Genomics 1998; 51:309-11. [PMID: 9722959 DOI: 10.1006/geno.1998.5323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Zhang
- Department of Human Genetics, University of Kiel, Germany
| | | | | | | | | | | |
Collapse
|