1
|
Abstract
Despite extensive efforts to identify a clinically useful diagnostic biomarker in prostate cancer, no new test has been approved by regulatory authorities. As a result, this unmet need has shifted to biomarkers that additionally indicate presence or absence of "significant" disease. EN2 is a homeodomain-containing transcription factor secreted by prostate cancer into the urine and can be detected by enzyme-linked immunoassay. EN2 may be an ideal biomarker because normal prostate tissue and benign prostatic hypertrophic cells do not secrete EN2. This review discusses the enormous potential of EN2 to address this unmet need and provide the urologist with a simple, inexpensive, and reliable prostate cancer biomarker.
Collapse
Affiliation(s)
- Sophie E McGrath
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Agnieszka Michael
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Richard Morgan
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Hardev Pandha
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
2
|
Wurm M, Kowalski J, Heckl D, Zhang XB, Nelson V, Beard BC, Kiem HP. Ectopic expression of HOXC6 blocks myeloid differentiation and predisposes to malignant transformation. Exp Hematol 2013; 42:114-25.e4. [PMID: 24513167 DOI: 10.1016/j.exphem.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/07/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
Insertional mutagenesis resulting from the integration of retroviral vectors has led to the discovery of many oncogenes associated with leukemia. We investigated the role of HOXC6, identified by proximal provirus integration in a large animal hematopoietic stem cell gene therapy study, for a potential involvement in hematopoietic stem cell activity and hematopoietic cell fate decision. HOXC6 was overexpressed in the murine bone marrow transplantation model and tested in a competitive repopulation assay in comparison to the known hematopoietic stem cell expansion factor, HOXB4. We have identified HOXC6 as a factor that enhances competitive repopulation capacity in vivo and colony formation in vitro. Ectopic HOXC6 expression also induced strong myeloid differentiation and expansion of granulocyte-macrophage progenitors/common myeloid progenitors (GMPs/CMPs) in vivo, resulting in myeloid malignancies with low penetrance (3 of 17 mice), likely in collaboration with Meis1 because of a provirus integration mapped to the 3' region in the malignant clone. We characterized the molecular basis of HOXC6-induced myeloid differentiation and malignant cell transformation with complementary DNA microarray analysis. Overexpression of HOXC6 induced a gene expression signature similar to several acute myeloid leukemia subtypes when compared with normal GMPs/CMPs. These results demonstrate that HOXC6 acts as a regulator in hematopoiesis and is involved in malignant transformation.
Collapse
Affiliation(s)
- Melanie Wurm
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - John Kowalski
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Dirk Heckl
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiao-Bing Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Veronica Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Brian C Beard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA.,Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA.,Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
3
|
McGrath SE, Michael A, Pandha H, Morgan R. Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Lett 2013; 587:549-54. [DOI: 10.1016/j.febslet.2013.01.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 01/10/2023]
|
4
|
White CA, Seth Hawkins J, Pone EJ, Yu ES, Al-Qahtani A, Mai T, Zan H, Casali P. AID dysregulation in lupus-prone MRL/Fas(lpr/lpr) mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity 2011; 44:585-98. [PMID: 21585311 DOI: 10.3109/08916934.2011.577128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Immunoglobulin gene somatic hypermutation (SHM) and class switch DNA recombination (CSR) play important roles in the generation of autoantibodies in systemic lupus erythematosus. Systemic lupus is characterized by the production of an array of pathogenic high-affinity mutated and class-switched, mainly IgG, antibodies to a variety of self-antigens, including nuclear components, such as dsDNA, histones, and chromatin. We previously found that MRL/Fas(lpr/lpr) mice, which develop a systemic autoimmune syndrome sharing many features with human lupus, display greatly upregulated CSR, particularly to IgG2a, in B cells of the spleen, lymph nodes, and Peyer's patches. In MRL/Fas(lpr/lpr) mice, the significant upregulation of CSR is associated with increased expression of activation-induced cytidine deaminase (AID), which is critical for CSR and SHM. We also found that HoxC4 directly activates the promoter of the AID gene to induce AID expression, CSR and SHM. Here, we show that in both lupus patients and lupus-prone MRL/Fas(lpr/lpr) mice, the expression of HoxC4 and AID is significantly upregulated. To further analyze the role of HoxC4 in lupus, we generated HoxC4(-/-) MRL/Fas(lpr/lpr) mice. In these mice, HoxC4-deficiency resulted in reduced AID expression, impaired CSR, and decreased serum anti-dsDNA IgG, particularly IgG2a, autoantibodies, which were associated with a reduction in IgG deposition in kidney glomeruli. In addition, consistent with our previous findings in MRL/Fas(lpr/lpr) mice that upregulated AID expression is associated with extensive DNA lesions, comprising deletions and insertions in the IgH locus, we found that c-Myc to IgH (c-Myc/IgH) translocations occur frequently in B cells of MRL/Fas(lpr/lpr) mice. The frequency of such translocations was significantly reduced in HoxC4(-/-) MRL/Fas(lpr/lpr) mice. These findings suggest that in lupus B cells, upregulation of HoxC4 plays a major role in dysregulation of AID expression, thereby increasing CSR and autoantibody production and promoting c-Myc/IgH translocations.
Collapse
Affiliation(s)
- Clayton A White
- School of Medicine and School of Biological Sciences, Institute for Immunology, University of California, 3028 Hewitt Hall, Irvine, CA 92697-4120, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer 2011; 129:1064-74. [PMID: 21077158 DOI: 10.1002/ijc.25768] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/21/2010] [Indexed: 12/18/2022]
Abstract
Resulting from a screening for microRNAs differentially regulated in melanocytes and melanoma cells, we found expression of miR-196a to be significantly down-regulated in malignant melanoma cell lines and tissue samples. As it was stated before that miR-196a might negatively regulate expression of the transcription factor HOX-C8, we analyzed HOX-C8 levels in NHEMs and melanoma cells and found a strong up-regulation of HOX-C8 expression in malignant melanoma cell lines and tissue samples compared with melanocytes. Several HOX-C8 target genes are known to be involved in processes such as oncogenesis, cell adhesion, proliferation and apoptosis. We, therefore, aimed to further investigate a potential "miR-196a → HOX-C8 → HOX-C8 target gene" relationship. Stable transfection with an miR-196a expression plasmid led to strong down-regulation of HOX-C8 expression in melanoma cells. Luciferase assays using reporter plasmids containing different fragments of the HOX-C8 3'UTR confirmed direct interactions of miR-196a with the HOX-C8 mRNA. Focusing on target genes of HOX-C8, which might play an important role in melanomagenesis, we identified three genes (cadherin-11, calponin-1 and osteopontin) that are up- or down-regulated, respectively, by altered HOX-C8 expression in miR-196a expressing cell clones and are thus indirectly regulated by this microRNA. As those target genes are closely related to important cellular mechanisms such as cell adhesion, cytoskeleton remodeling, tumor formation and invasive behavior of tumor cells, altered miR-196a expression exerts strong effects contributing to tumor cell transformation and formation and progression of malignant melanoma. This fact is underlined by a strongly reduced invasive behavior of melanoma cells re-expressing miR-196a in vitro.
Collapse
Affiliation(s)
- Daniel W Mueller
- Institute of Pathology, University of Regensburg Medical School, Regensburg, Germany
| | | |
Collapse
|
6
|
Kinney MC, Higgins RA, Medina EA. Anaplastic large cell lymphoma: twenty-five years of discovery. Arch Pathol Lab Med 2011; 135:19-43. [PMID: 21204709 DOI: 10.5858/2010-0507-rar.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The year 2010 commemorates the 25th year since the seminal publication by Karl Lennert and Harald Stein and others in Kiel, West Germany, describing an unusual large cell lymphoma now known as anaplastic large cell lymphoma (ALCL). Investigators at many universities and hospitals worldwide have contributed to our current in-depth understanding of this unique peripheral T-cell lymphoma, which in its systemic form, principally occurs in children and young adults. OBJECTIVE To summarize our current knowledge of the clinical and pathologic features of systemic and primary cutaneous ALCL. Particular emphasis is given to the biology and pathogenesis of ALCL. DATA SOURCES Search of the medical literature (Ovid MEDLINE In-Process & Other Non-Indexed Citations and Ovid MEDLINE: 1950 to Present [National Library of Medicine]) and more than 20 years of diagnostic experience were used as the source of data for review. CONCLUSIONS Based on immunostaining for activation antigen CD30 and the presence of dysregulation of the anaplastic lymphoma kinase gene (2p23), the diagnosis of ALCL has become relatively straightforward for most patients. Major strides have been made during the last decade in our understanding of the complex pathogenesis of ALCL. Constitutive NPM-ALK signaling has been shown to drive oncogenesis via an intricate network of redundant and interacting pathways that regulate cell proliferation, cell fate, and cytoskeletal modeling. Nevertheless, pathomechanistic, therapeutic, and diagnostic challenges remain that should be resolved as we embark on the next generation of discovery.
Collapse
Affiliation(s)
- Marsha C Kinney
- Department of Pathology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
7
|
Daniels TR, Neacato II, Rodríguez JA, Pandha HS, Morgan R, Penichet ML. Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells. Leukemia 2010; 24:1555-65. [PMID: 20574452 PMCID: PMC3743965 DOI: 10.1038/leu.2010.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The HOX genes encode a family of transcription factors that are dysregulated in several malignancies and have been implicated in oncogenesis and cancer cell survival. Disruption of HOX protein function using the peptide HXR9 has shown anti-tumor effects against melanoma, lung cancer and renal cancer. In this report, we evaluated the expression of all 39 HOX genes in a panel of six malignant B-cell lines, including multiple myeloma cells and found different levels of expression of HOX family members suggesting that they also have a role in malignant B-cell survival. We show that disrupting HOX function using the peptide HXR9 induces significant cytotoxicity in the entire panel of cell lines. Importantly, we found that the cytotoxic effects of HXR9 can be enhanced by combining it with ch128.1Av, an antibody-avidin fusion protein specific for the human transferrin receptor 1 (CD71). Iron starvation induced by the fusion protein contributes to the enhanced effect and involves, at least in part, the induction of a caspase-independent pathway. These results show the relevance of HOX proteins in malignant B-cell survival and suggest that our therapeutic strategy may be effective in the treatment of incurable B-cell malignancies such as multiple myeloma.
Collapse
Affiliation(s)
- T R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1782, USA
| | | | | | | | | | | |
Collapse
|
8
|
Park SR, Zan H, Pal Z, Zhang J, Al-Qahtani A, Pone EJ, Xu Z, Mai T, Casali P. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat Immunol 2009; 10:540-50. [PMID: 19363484 PMCID: PMC2753990 DOI: 10.1038/ni.1725] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/09/2009] [Indexed: 01/02/2023]
Abstract
AID is critical for immunoglobulin class switch DNA recombination (CSR) and somatic hypermutation (SHM). Here we showed that AID expression was induced by the HoxC4 homeodomain transcription factor, which bound to a highly conserved HoxC4-Oct site in the Aicda promoter. This site functioned in synergy with a conserved Sp-NF-κB-binding site. HoxC4 was preferentially expressed in germinal center B cells and was upregulated by CD154:CD40 engagement, lipopolysaccharide and interleukin-4. HoxC4 deficiency resulted in impaired CSR and SHM, due to decreased AID expression and not other putative HoxC4-dependent activity. Enforced expression of AID in Hoxc4−/− B cells fully restored CSR. Thus, HoxC4 directly activates the Aicda promoter, thereby inducing AID expression, CSR and SHM.
Collapse
Affiliation(s)
- Seok-Rae Park
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cantile M, Kisslinger A, Cindolo L, Schiavo G, D'Antò V, Franco R, Altieri V, Gallo A, Villacci A, Tramontano D, Cillo C. cAMP induced modifications of HOX D gene expression in prostate cells allow the identification of a chromosomal area involved in vivo with neuroendocrine differentiation of human advanced prostate cancers. J Cell Physiol 2005; 205:202-10. [PMID: 15895411 DOI: 10.1002/jcp.20384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The acquisition of epithelial-neuroendocrine differentiation (ND) is a peculiarity of human advanced, androgen-independent, prostate cancers. The HOX genes are a network of transcription factors controlling embryonal development and playing an important role in crucial adult eukaryotic cell functions. The molecular organization of this 39-gene network is unique in the genome and probably acts by regulating phenotype cell identity. The expression patterns of the HOX gene network in human prostate cell phenotypes, representing different stages of prostate physiology and prostate cancer progression, make it possible to discriminate between different human prostate cell lines and to identify loci and paralogous groups harboring the HOX genes mostly involved in prostate organogenesis and cancerogenesis. Exposure of prostate epithelial phenotypes to cAMP alters the expression of lumbo-sacral HOX D genes located on the chromosomal region 2q31-33 where the cAMP effector genes CREB1, CREB2, and cAMP-GEFII are present. Interestingly, this same chromosomal area harbors: (i) a global cis-regulatory DNA control region able to coordinate the expression of HOX D and contiguous phylogenetically unrelated genes; (ii) a prostate specific ncRNA gene associated with high-risk prostate cancer (PCGEM1); (iii) a series of neurogenic-related genes involved with epithelial-neuronal cell conversion. We report the expression of neurexin 1, Neuro D1, dlx1, and dlx2 in untreated and cAMP treated epithelial prostate cells. The in vivo expression of Neuro D1 in human advanced prostate cancers correlate with the state of tumor differentiation as measured by Gleason score. Thus, we suggest that the chromosomal area 2q 31-33 might be involved in the epithelial-ND characteristic of human advanced prostate cancers.
Collapse
Affiliation(s)
- M Cantile
- Department of Clinical and Experimental Medical, Federico II University Medical School, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR. The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem 2003; 279:866-75. [PMID: 14561764 DOI: 10.1074/jbc.m307280200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleoporin Nup98 gene is frequently rearranged in acute myelogenous leukemia (AML). In most cases this results in fusion of the N terminus of Nup98 to the DNA binding domain of a homeodomain transcription factor. The prototype of these fusions, Nup98-HOXA9, is associated with human AML and induces AML in mouse models. To understand the mechanisms by which Nup98-HOXA9 causes AML, we expressed it in myeloid cells and identified its target genes using high density oligonucleotide microarrays. The analysis was performed in triplicate and was confirmed by quantitative real time PCR. Of the 102 Nup98-HOXA9 target genes identified, 92 were up-regulated, and only 10 were down-regulated, suggesting a transcriptional activation function. A similar analysis of wild-type HOXA9 revealed 13 target genes, 12 of which were up-regulated, and 1 was down-regulated. In contrast, wild-type Nup98 had no effect on gene expression, demonstrating that the HOXA9 DNA binding domain is required for gene regulation. Co-transfection experiments using a luciferase reporter linked to the promoter of one of the Nup98-HOXA9 target genes confirmed up-regulation at the transcriptional level by Nup98-HOXA9 but not by either HOXA9 or Nup98. These data indicate that Nup98-HOXA9 is an aberrant transcription factor whose activity depends on the HOXA9 DNA binding domain but has a stronger and wider transcriptional effect than HOXA9. Several of the genes regulated by Nup98-HOXA9 are associated with increased cell proliferation and survival as well as drug metabolism, providing insights into the pathogenesis and epidemiology of Nup98-HOXA9-induced AML.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Survival
- Down-Regulation
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Green Fluorescent Proteins
- Homeodomain Proteins/physiology
- Humans
- Image Processing, Computer-Assisted
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Mice
- Models, Biological
- Myeloid Cells/metabolism
- Nuclear Pore Complex Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/physiology
- Plasmids/metabolism
- Protein Structure, Tertiary
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Ghada Ghannam
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gu BW, Wang Q, Wang JM, Xue YQ, Fang J, Wong KF, Chen B, Shi ZZ, Shi JY, Bai XT, Wu DH, Chen Z, Chen SJ. Major form of NUP98/HOXC11 fusion in adult AML with t(11;12)(p15;q13) translocation exhibits aberrant trans-regulatory activity. Leukemia 2003; 17:1858-64. [PMID: 12970787 DOI: 10.1038/sj.leu.2403036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Three adult patients with de novo acute myeloid leukemia of distinct subtypes harboring t(11;12)(p15;q13) have been investigated to characterize the genes involved in that translocation. Through molecular cytogenetics, a chromosome break was detected at the 3' part of nucleoporin 98 (NUP98) gene at 11p15. Using rapid amplification of cDNA end, we identified the partner gene at 12q13, HOXC11. Molecular analysis showed that exon 12 of NUP98 was fused in-frame to exon 2 of HOXC11 in all three cases with t(11;12)(p15;q13). Therefore, this type of fusion may represent the major form of the NUP98-HOXC11 chimera so far reported. Moreover, two out of three cases had a confirmed deletion of the 3' part of NUP98 gene and more telomeric region of 11p harboring a group of tumor-suppressor genes. Interestingly, the NUP98-HOXC11 protein when assayed in a GAL4 reporter system, showed an aberrant trans-regulatory activity as compared to the wild-type HOXC11 in both COS-7 and HL-60 cells. Therefore, NUP98-HOXC11 may contribute to the leukemogenesis by interfering with the cellular mechanism of transcriptional regulation.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Chlorocebus aethiops
- Chromosome Breakage/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 12/genetics
- DNA Primers/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- HL-60 Cells
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Male
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- RNA, Neoplasm
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Transfection
- Translocation, Genetic
Collapse
Affiliation(s)
- B-W Gu
- State Key Lab for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Second Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJT, Plum J, Leclercq G. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17:1157-63. [PMID: 12764384 DOI: 10.1038/sj.leu.2402947] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Class I homeobox (HOX) genes comprise a large family of transcription factors that have been implicated in normal and malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degenerated RT-PCR and Affymetrix microarray analysis, we analyzed the expression pattern of this gene family in human multipotent stem cells from fetal liver (FL) and adult bone marrow (ABM), and in T-cell progenitors from child thymus. We show that FL and ABM stem cells are similar in terms of HOX gene expression, but significant differences were observed between these two cell types and child thymocytes. As the most immature thymocytes are derived from immigrated FL and ABM stem cells, this indicates a drastic change in HOX gene expression upon entry into the thymus. Further analysis of HOX-A7, HOX-A9, HOX-A10, and HOX-A11 expression with specific RT-PCR in all thymocyte differentiation stages showed a sequential loss of 3' region HOX-A cluster genes during intrathymic T-cell development and an unexpected expression of HOX-A11, previously not recognized to play a role in hematopoiesis. Also HOX-B3 and HOX-C4 were expressed throughout thymocyte development. Overall, these data provide novel evidence for an important role of certain HOX genes in human T-cell development.
Collapse
Affiliation(s)
- T Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, Ghent B-9000, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Nunes FD, de Almeida FC, Tucci R, de Sousa SC. Homeobox genes: a molecular link between development and cancer. PESQUISA ODONTOLOGICA BRASILEIRA = BRAZILIAN ORAL RESEARCH 2003; 17:94-8. [PMID: 12908068 DOI: 10.1590/s1517-74912003000100018] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Homeobox genes are regulatory genes encoding nuclear proteins that act as transcription factors, regulating aspects of morphogenesis and cell differentiation during normal embryonic development of several animals. Vertebrate homeobox genes can be divided in two subfamilies: clustered, or HOX genes, and nonclustered, or divergent, homeobox genes. During the last decades, several homeobox genes, clustered and nonclustered ones, were identified in normal tissue, in malignant cells, and in different diseases and metabolic alterations. Homeobox genes are involved in the normal teeth development and in familial teeth agenesis. Normal development and cancer have a great deal in common, as both processes involve shifts between cell proliferation and differentiation. The literature is accumulating evidences that homeobox genes play an important role in oncogenesis. Many cancers exhibit expression of or alteration in homeobox genes. Those include leukemias, colon, skin, prostate, breast and ovarian cancers, among others. This review is aimed at introducing readers to some of the homeobox family functions in normal tissues and especially in cancer.
Collapse
Affiliation(s)
- Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo
| | | | | | | |
Collapse
|
14
|
Cillo C, Cantile M, Faiella A, Boncinelli E. Homeobox genes in normal and malignant cells. J Cell Physiol 2001; 188:161-9. [PMID: 11424082 DOI: 10.1002/jcp.1115] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Homeobox genes are transcription factors primarily involved in embryonic development. Several homeobox gene families have so far been identified: Hox, EMX, PAX, MSX as well as many isolated divergent homeobox genes. Among these, Hox genes are most intriguing for having a regulatory network structure organization. Recent indications suggest the involvement of homeobox genes in (i) crucial adult eukariotic cell functions and (ii) human diseases, spanning from diabetes to cancer. In this review we will discuss the mechanisms through which homeobox genes act, and will propose a model for the function of the Hox gene network as decoding system for achieving specific genetic programs. New technologies for whole-genome RNA expression will be crucial to evaluate the clinical relevance of homeobox genes in structural and metabolic diseases.
Collapse
Affiliation(s)
- C Cillo
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy.
| | | | | | | |
Collapse
|
15
|
Alami Y, Castronovo V, Belotti D, Flagiello D, Clausse N. HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes. Biochem Biophys Res Commun 1999; 257:738-45. [PMID: 10208853 DOI: 10.1006/bbrc.1999.0516] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A growing number of data have sustained the involvement of homeobox genes expression deregulation in cancer. In this study, we have performed an exhaustive survey of the expression of the 39 class I HOX genes expressed in normal and malignant human cervix keratinocytes. Using RT-PCR, we observed that the vast majority (34/39) of HOX genes are expressed in normal keratinocytes. Only HOXA2, HOXA7, HOXC5, HOXC8 and HOXD12 were found to be silent. Interestingly, this pattern is conserved in the transformed keratinocytes (SiHa cells) except for the appearance of HOXC5 and HOXC8 mRNA. The HOXC5 and HOXC8 expression was also observed in two other transformed keratinocytes cell lines of independent origins, Eil-8 and 18-11S3, and confirmed by in situ hybridization. Our data add weight to the body of evidence attributing to a specific adult tissue a particular combination of expressed HOX genes and suggest that HOXC5 and/or HOXC8 could be involved in the process leading to the transformation of cervical keratinocytes.
Collapse
Affiliation(s)
- Y Alami
- Metastasis Research Laboratory, University of Liege, Liege, Belgium
| | | | | | | | | |
Collapse
|