1
|
Chen Z, Guo Q, Song G, Hou Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci 2022; 79:218. [PMID: 35357574 PMCID: PMC11072845 DOI: 10.1007/s00018-022-04200-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Guo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Zhou P, Chen X, Shi K, Qu H, Xia J. The characteristics, tumorigenicities and therapeutics of cancer stem cells based on circRNAs. Pathol Res Pract 2022; 233:153822. [DOI: 10.1016/j.prp.2022.153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
3
|
Abstract
Stem cells can reside in a state of reversible growth arrest, or quiescence, for prolonged periods of time. Although quiescence has long been viewed as a dormant, low-activity state, increasing evidence suggests that quiescence represents states of poised potential and active restraint, as stem cells "idle" in anticipation of activation, proliferation, and differentiation. Improved understanding of quiescent stem cell dynamics is leading to novel approaches to enhance maintenance and repair of aged or diseased tissues. In this Review, we discuss recent advances in our understanding of stem cell quiescence and techniques enabling more refined analyses of quiescence in vivo.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Raghav PK, Singh AK, Gangenahalli G. Stem cell factor and NSC87877 synergism enhances c-Kit mediated proliferation of human erythroid cells. Life Sci 2018; 214:84-97. [PMID: 30308182 DOI: 10.1016/j.lfs.2018.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 11/27/2022]
Abstract
The biological mechanisms underlying the effects of stem cell factor (SCF) and an inhibitor, NSC87877 (N) of the c-Kit negative regulator (SHP-1 and SHP-2) on cell proliferation are different. Therefore, we compared the cell's response to these two either alone or in combination in K562 cells. Binding of SCF (S) to c-Kit induces dimerization that activates its kinase activity. The activated c-Kit undergoes autophosphorylation at tyrosine residues that serve as a docking site for signal transduction molecules containing SH2 domains. Predominantly, the phosphotyrosine 568 (pY568) in Juxtamembrane (JM) region of c-Kit interacts with adaptor protein APS, Src family kinase, and SHP-2, while phosphotyrosine 570 (pY570) interacts with the SHP-1 and the adaptor protein Shc. The dephosphorylation of phosphotyrosine residues by SHP-1/SHP-2 leads to inhibition of c-Kit proliferative signaling. A chemical molecule, N is reported to inhibit the enzymatic activity of SHP-1/SHP-2, but its effect on c-Kit-mediated proliferation has not been studied yet. Thus, this work aims at examining the effect of the combination of S and N on cells growth as compared to individual treatment. The present study is performed with erythroleukemic K562 cells, chosen for its mRNA expression concerning the c-Kit, and SHP-1/SHP-2. Interestingly, proliferation assay showed that combination significantly increased proliferation when G1 sorted K562 cells were used. These changes were significantly higher when K562 cells were initially treated with N followed by S treatment. Collectively, these results give mechanistic insight into the proliferation enhancement of bone marrow transplantation through the synergistic effect of S and N by inhibiting SHP-1/SHP-2. The study gives solid evidence that S and N combination can be used to enhance cell proliferation/growth.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Ajay Kumar Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India.
| |
Collapse
|
5
|
The in vitro growth of a cord blood-derived cell population enriched for CD34 + cells is influenced by its cell cycle status and treatment with hydroxyurea. Cytotherapy 2018; 20:1345-1354. [PMID: 30322708 DOI: 10.1016/j.jcyt.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cell cycle plays a fundamental role in the physiology of hematopoietic stem and progenitor cells. In the present study we used a negative selection system to obtain an immature cell population-enriched for cord blood-derived CD34+ cells-and we determined its proliferation, expansion and differentiation patterns as a function of the cell cycle status. The effects of hydroxyurea (HU) were also assessed. RESULTS As compared with cells in synthesis (S)/Gap2 (G2)/mitosis (M), cells in quiescent state (G0)/Gap1 (G1) showed a higher proliferation potential in vitro. At culture onset, G0, G1 and S/G2/M cells corresponded with 63%, 33% and 4%, respectively. Treatment with HU before culture resulted in an increase in the proportion of cells in G1 with a concomitant decrease in S/G2/M cells, without affecting the proportion of cells in G0. After 3 days of culture in the presence of recombinant cytokines, the vast majority of the cells (90%) were in G1, and by day 8, G0, G1 and S/G2/M cells corresponded with 18%, 67% and 15%, respectively. HU also induced an increase in colony-forming cell (CFC) frequency, in the proliferation and expansion capacities of cultured cells under myeloid conditions, and favored the development of the erythroid lineage. CONCLUSION Our results show that the in vitro proliferation, expansion and differentiation potentials of immature hematopoietic cells are determined, at least in part, by their cell cycle status and that the cell cycle modifier HU significantly influences the growth of human hematopoietic cells. These results are of potential relevance for the development of ex vivo expansion protocols.
Collapse
|
6
|
Autophagy Is Indispensable for the Self-Renewal and Quiescence of Ovarian Cancer Spheroid Cells with Stem Cell-Like Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7010472. [PMID: 30319732 PMCID: PMC6167563 DOI: 10.1155/2018/7010472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer has the highest mortality rate of all gynecologic cancers. Cancer stem cells are considered to be the initiating cells of tumors. It is known that spheroid culture promotes ovarian cancer cells to acquire stem cell characteristics and to become stem cell-like. But the mechanisms remain largely unclear. Our data show that autophagy is sustainably activated in ovarian cancer spheroid cells. Inhibition of autophagy by knockdown of ATG5 abolishes the self-renewal ability of ovarian cancer spheroid cells. Knockdown of ATG5 prevents ovarian cancer spheroid cells to enter quiescent state. Autophagy is critical for quiescent ovarian cancer spheroid cells to reenter the cell cycle because rapamycin can promote quiescent ovarian cancer spheroid cells to form colonies on soft agar and knockdown of ATG5 can arrest ovarian cancer cells in G0/G1. Autophagy and NRF2 form a positive feedback regulation loop to regulate reactive oxygen species (ROS) levels in ovarian cancer spheroid cells. The optimal ROS level, neither too high nor too low, facilitates the self-renewal marker, NOTCH1, to reach to the highest level. Bafilomycin A1 can impair the self-renewal of ovarian cancer spheroid cells by disturbing ROS levels.
Collapse
|
7
|
Akinduro O, Weber TS, Ang H, Haltalli MLR, Ruivo N, Duarte D, Rashidi NM, Hawkins ED, Duffy KR, Lo Celso C. Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun 2018; 9:519. [PMID: 29410432 PMCID: PMC5802720 DOI: 10.1038/s41467-017-02376-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/24/2017] [Indexed: 02/01/2023] Open
Abstract
Leukaemia progressively invades bone marrow (BM), outcompeting healthy haematopoiesis by mechanisms that are not fully understood. Combining cell number measurements with a short-timescale dual pulse labelling method, we simultaneously determine the proliferation dynamics of primitive haematopoietic compartments and acute myeloid leukaemia (AML). We observe an unchanging proportion of AML cells entering S phase per hour throughout disease progression, with substantial BM egress at high levels of infiltration. For healthy haematopoiesis, we find haematopoietic stem cells (HSCs) make a significant contribution to cell production, but we phenotypically identify a quiescent subpopulation with enhanced engraftment ability. During AML progression, we observe that multipotent progenitors maintain a constant proportion entering S phase per hour, despite a dramatic decrease in the overall population size. Primitive populations are lost from BM with kinetics that are consistent with ousting irrespective of cell cycle state, with the exception of the quiescent HSC subpopulation, which is more resistant to elimination. How leukaemia cells invade the bone marrow by outcompeting haematopoietic cells is still unclear. Here, the authors used detailed cell number measurements in conjunction with a dual pulse labelling method to determine proliferation rates and followed the in vivo dynamics of AML disease progression.
Collapse
Affiliation(s)
- O Akinduro
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - T S Weber
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare, W23 WK26, Ireland.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - H Ang
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - M L R Haltalli
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - N Ruivo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - D Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK.,The Francis Crick Institute, 1 Midland Road, London, NW1A 1AT, UK
| | - N M Rashidi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - E D Hawkins
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - K R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare, W23 WK26, Ireland.
| | - C Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK. .,The Francis Crick Institute, 1 Midland Road, London, NW1A 1AT, UK.
| |
Collapse
|
8
|
Abstract
Cellular quiescence is a reversible mode of cell cycle exit that allows cells and organisms to withstand unfavorable stress conditions. The factors that underlie the entry, exit, and maintenance of the quiescent state are crucial for understanding normal tissue development and function as well as pathological conditions such as chronic wound healing and cancer. In vitro models of quiescence have been used to understand the factors that contribute to quiescence under well-controlled experimental conditions. Here, we describe an in vitro model of quiescence that is based on neonatal human dermal fibroblasts. The fibroblasts are induced into quiescence by antiproliferative signals, contact inhibition, and serum-starvation (mitogen withdrawal). We describe the isolation of fibroblasts from skin, methods for inducing quiescence in isolated fibroblasts, and approaches to manipulate the fibroblasts in proliferating and quiescent states to determine critical regulators of quiescence.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, 90095-7329, USA
| | - Linda D Ho
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, 90095-7329, USA.
| |
Collapse
|
9
|
Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent. Blood Adv 2017; 1:2088-2104. [PMID: 29296856 DOI: 10.1182/bloodadvances.2017007773] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34+ (hCD34+) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34+ cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDγc-/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34+ cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34+ cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34+ progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34+ cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now.
Collapse
|
10
|
Cai S, Kalisky T, Sahoo D, Dalerba P, Feng W, Lin Y, Qian D, Kong A, Yu J, Wang F, Chen EY, Scheeren FA, Kuo AH, Sikandar SS, Hisamori S, van Weele LJ, Heiser D, Sim S, Lam J, Quake S, Clarke MF. A Quiescent Bcl11b High Stem Cell Population Is Required for Maintenance of the Mammary Gland. Cell Stem Cell 2016; 20:247-260.e5. [PMID: 28041896 DOI: 10.1016/j.stem.2016.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
Stem cells in many tissues sustain themselves by entering a quiescent state to avoid genomic insults and to prevent exhaustion caused by excessive proliferation. In the mammary gland, the identity and characteristics of quiescent epithelial stem cells are not clear. Here, we identify a quiescent mammary epithelial cell population expressing high levels of Bcl11b and located at the interface between luminal and basal cells. Bcl11bhigh cells are enriched for cells that can regenerate mammary glands in secondary transplants. Loss of Bcl11b leads to a Cdkn2a-dependent exhaustion of ductal epithelium and loss of epithelial cell regenerative capacity. Gain- and loss-of-function studies show that Bcl11b induces cells to enter the G0 phase of the cell cycle and become quiescent. Taken together, these results suggest that Bcl11b acts as a central intrinsic regulator of mammary epithelial stem cell quiescence and exhaustion and is necessary for long-term maintenance of the mammary gland.
Collapse
Affiliation(s)
- Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tomer Kalisky
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Debashis Sahoo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Department of Computer Science and Engineering, University of California San Diego, San Diego, CA 92123-0984, USA
| | - Piero Dalerba
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Weiguo Feng
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuan Lin
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Kong
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey Yu
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Flora Wang
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth Y Chen
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ferenc A Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shaheen S Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shigeo Hisamori
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linda J van Weele
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Diane Heiser
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sopheak Sim
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jessica Lam
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stephen Quake
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells. Viruses 2016; 8:v8100265. [PMID: 27690083 PMCID: PMC5086601 DOI: 10.3390/v8100265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Parvovirus B19 (B19V) is a small non-enveloped virus and known as the causative agent for the mild childhood disease erythema infectiosum. B19V has an extraordinary narrow tissue tropism, showing only productive infection in erythroid precursor cells in the bone marrow. We recently found that the viral protein 1 unique region (VP1u) contains an N-terminal receptor-binding domain (RBD), which mediates the uptake of the virus into cells of the erythroid lineage. To further investigate the role of the RBD in connection with a B19V-unrelated capsid, we chemically coupled the VP1u of B19V to the bacteriophage MS2 capsid and tested the internalization capacity of the bioconjugate on permissive cells. In comparison, we studied the cellular uptake and infection of B19V along the erythroid differentiation. The results showed that the MS2-VP1u bioconjugate mimicked the specific internalization of the native B19V into erythroid precursor cells, which further coincides with the restricted infection profile. The successful mimicry of B19V uptake demonstrates that the RBD in the VP1u is sufficient for the endocytosis of the viral capsid. Furthermore, the recombinant VP1u competed with B19V uptake into permissive cells, thus excluding a significant alternative uptake mechanism by other receptors. Strikingly, the VP1u receptor appeared to be expressed only on erythropoietin-dependent erythroid differentiation stages that also provide the necessary intracellular factors for a productive infection. Taken together, these findings suggest that the VP1u binds to a yet-unknown erythroid-specific cellular receptor and thus restricts the virus entry to permissive cells.
Collapse
|
12
|
Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I. Biophysical differences between chronic myelogenous leukemic quiescent and proliferating stem/progenitor cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2429-2437. [PMID: 27431055 DOI: 10.1016/j.nano.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022]
Abstract
The treatment of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder has improved recently, but most patients have not yet been cured. Some patients develop resistance to the available tyrosine kinase treatments. Persistence of residual quiescent CML stem cells (LSCs) that later resume proliferation is another common cause of recurrence or relapse of CML. Eradication of quiescent LSCs is a promising approach to prevent recurrence of CML. Here we report on new biophysical differences between quiescent and proliferating CD34+ LSCs, and speculate how this information could be of use to eradicate quiescent LSCs. Using AFM measurements on cells collected from four untreated CML patients, substantial differences are observed between quiescent and proliferating cells in the elastic modulus, pericellular brush length and its grafting density at the single cell level. The higher pericellular brush densities of quiescent LSCs are common for all samples. The significance of these observations is discussed.
Collapse
Affiliation(s)
- Nataliia V Guz
- Department of Chemistry, Clarkson University, Potsdam, NY, USA
| | - Sapan J Patel
- Department of Chemistry, Clarkson University, Potsdam, NY, USA; Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Molecular Pharmacology and Chemistry Program, New York, NY
| | - Maxim E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Bayard Clarkson
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Molecular Pharmacology and Chemistry Program, New York, NY.
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
| |
Collapse
|
13
|
Naito H, Wakabayashi T, Kidoya H, Muramatsu F, Takara K, Eino D, Yamane K, Iba T, Takakura N. Endothelial Side Population Cells Contribute to Tumor Angiogenesis and Antiangiogenic Drug Resistance. Cancer Res 2016; 76:3200-10. [DOI: 10.1158/0008-5472.can-15-2998] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
|
14
|
Hematopoietic ontogeny and its relevance for pediatric leukemias. Med Hypotheses 2016; 88:70-3. [DOI: 10.1016/j.mehy.2016.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
|
15
|
Tang KD, Holzapfel BM, Liu J, Lee TKW, Ma S, Jovanovic L, An J, Russell PJ, Clements JA, Hutmacher DW, Ling MT. Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget 2016; 7:2572-84. [PMID: 25978029 PMCID: PMC4823056 DOI: 10.18632/oncotarget.3950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 04/08/2015] [Indexed: 11/27/2022] Open
Abstract
Ample evidence supports that prostate tumor metastasis originates from a rare population of cancer cells, known as cancer stem cells (CSCs). Unfortunately, little is known about the identity of these cells, making it difficult to target the metastatic prostate tumor. Here, for the first time, we report the identification of a rare population of prostate cancer cells that express the Tie-2 protein. We found that this Tie-2High population exists mainly in prostate cancer cell lines that are capable of metastasizing to the bone. These cells not only express a higher level of CSC markers but also demonstrate enhanced resistance to the chemotherapeutic drug Cabazitaxel. In addition, knockdown of the expression of the Tie-2 ligand angiopoietin (Ang-1) led to suppression of CSC markers, suggesting that the Ang-1/Tie-2 signaling pathway functions as an autocrine loop for the maintenance of prostate CSCs. More importantly, we found that Tie-2High prostate cancer cells are more adhesive than the Tie-2Low population to both osteoblasts and endothelial cells. Moreover, only the Tie-2High, but not the Tie-2Low cells developed tumor metastasis in vivo when injected at a low number. Taken together, our data suggest that Tie-2 may play an important role during the development of prostate tumor metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Proliferation
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- Immunoenzyme Techniques
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/secondary
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, TIE-2/antagonists & inhibitors
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kai-Dun Tang
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Boris M. Holzapfel
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Ji Liu
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Terence Kin-Wah Lee
- Department of Pathology, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Stephanie Ma
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Jiyuan An
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Dietmar W. Hutmacher
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Ming-Tat Ling
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| |
Collapse
|
16
|
Won EJ, Kim HR, Park RY, Choi SY, Shin JH, Suh SP, Ryang DW, Szardenings M, Shin MG. Direct confirmation of quiescence of CD34+CD38- leukemia stem cell populations using single cell culture, their molecular signature and clinicopathological implications. BMC Cancer 2015; 15:217. [PMID: 25881148 PMCID: PMC4391681 DOI: 10.1186/s12885-015-1233-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023] Open
Abstract
Background The proliferating activity of a single leukemia stem cell and the molecular mechanisms for their quiescent property remain unknown, and also their prognostic value remains a matter of debate. Therefore, this study aimed to demonstrate the quiescence property and molecular signature of leukemia stem cell and their clinicopathological implications. Methods Single cell sorting and culture were performed in the various sets of hematopoietic stem cells including CD34+CD38- acute myeloid leukemia (AML) cell population (ASCs) from a total of 60 patients with AML, and 11 healthy controls. Their quiescence related-molecular signatures and clinicopathological parameters were evaluated in AML patients. Results Single cell plating efficiency of ASCs was significantly lower (8.6%) than those of normal hematopoietic stem cells i.e.: cord blood, 79.0%; peripheral blood, 45.3%; and bone marrow stem cell, 31.1%. Members of the TGFβ super-family signaling pathway were most significantly decreased; as well as members of the Wnt, Notch, pluripotency maintenance and hedgehog pathways, compared with non ASC populations. mtDNA copy number of ASCs was significantly lower than that of corresponding other cell populations. However, our data couldn’t support the prognostic value of the ASCs in AML. Conclusions ASCs showed remarkable lower plating efficiency and slower dividing properties at the single cell level. This quiescence is represented as a marked decrease in the mtDNA copy number and also linked with down-regulation of genes in various molecular pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| | - Hye-Ran Kim
- College of Korean Medicine, Dongshin University, Naju, South Korea.
| | - Ra-Young Park
- Brain Korea 21 Project, Center for Biomedical Human Resources, Chonnam National University, Gwangju, South Korea.
| | - Seok-Yong Choi
- Brain Korea 21 Project, Center for Biomedical Human Resources, Chonnam National University, Gwangju, South Korea.
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| | - Soon-Pal Suh
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| | - Dong-Wook Ryang
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| | - Michael Szardenings
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea. .,Brain Korea 21 Project, Center for Biomedical Human Resources, Chonnam National University, Gwangju, South Korea. .,Environment Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| |
Collapse
|
17
|
Schoft VK, Chumak N, Bindics J, Slusarz L, Twell D, Köhler C, Tamaru H. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content. PLANT REPRODUCTION 2015; 28:61-72. [PMID: 25676347 DOI: 10.1007/s00497-015-0258-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.
Collapse
Affiliation(s)
- Vera K Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria,
| | | | | | | | | | | | | |
Collapse
|
18
|
Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2015; 141:4656-66. [PMID: 25468935 DOI: 10.1242/dev.106575] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| |
Collapse
|
19
|
Babovic S, Eaves CJ. Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 2014; 329:185-91. [DOI: 10.1016/j.yexcr.2014.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/02/2014] [Indexed: 02/06/2023]
|
20
|
Catelain C, Michelet F, Hattabi A, Poirault-Chassac S, Kortulewski T, Tronik-Le Roux D, Vainchenker W, Lauret E. The Notch Delta-4 ligand helps to maintain the quiescence and the short-term reconstitutive potential of haematopoietic progenitor cells through activation of a key gene network. Stem Cell Res 2014; 13:431-41. [PMID: 25460604 DOI: 10.1016/j.scr.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
Understanding the role of Notch and its ligands within the different bone marrow niches could shed light on the mechanisms regulating haematopoietic progenitor cells (HPCs) maintenance and self-renewal. Here, we report that murine bone marrow HPCs activation by the vascular Notch Delta-4 ligand maintains a significant proportion of cells specifically in the G0 state. Furthermore, Delta-4/Notch pathway limits significantly the loss of the in vivo short-term reconstitutive potential upon transplantation of Delta-4 activated HPCs into lethally irradiated recipient mice. Both effects are directly correlated with the decrease of cell cycle genes transcription such as CYCLIN-D1, -D2, and -D3, and the upregulation of stemness related genes transcription such as BMI1, GATA2, HOXB4 and C-MYC. In addition, the transcriptional screening also highlights new downstream post-transcriptional factors, named PUMILIO1 and -2, as part of the stem signature associated with the Delta-4/Notch signalling pathway.
Collapse
Affiliation(s)
- Cyril Catelain
- Inserm U974, CNRS (UMR 7215), UM 76, Institut de Myologie, Paris F-75013, France; Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France.
| | - Fabio Michelet
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| | - Aurore Hattabi
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| | - Sonia Poirault-Chassac
- Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France
| | | | | | - William Vainchenker
- Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France
| | - Evelyne Lauret
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| |
Collapse
|
21
|
Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014; 124:1221-31. [PMID: 24951430 DOI: 10.1182/blood-2014-02-558163] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.
Collapse
|
22
|
Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. ScientificWorldJournal 2014; 2014:859817. [PMID: 24563632 PMCID: PMC3916026 DOI: 10.1155/2014/859817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Collapse
|
23
|
Abstract
Lifelong production of blood cells is sustained by hematopoietic stem cells (HSC). HSC reside in a mitotically quiescent state within specialized areas of the bone marrow (BM) microenvironment known as the hematopoietic niche (HN). HSC enter into active phases of cell cycle in response to intrinsic and extrinsic biological cues thereby undergoing differentiation or self-renewal divisions. Quiescent and mitotically active HSC have different metabolic states and different functional abilities such as engraftment and BM repopulating potential following their transplantation into conditioned recipients. Recent studies reveal that various cancers also utilize the same mechanisms of quiescence as normal stem cells and preserve the root of malignancy thus contributing to relapse and metastasis. Therefore, exploring the stem cell behavior and function in conjunction with their cell cycle status has significant clinical implications in HSC transplantation and in treating cancers. In this chapter, we describe methodologies to isolate or analytically measure the frequencies of quiescent (G0) and active (G1, S, and G2-M) hematopoietic progenitor and stem cells among murine BM cells.
Collapse
|
24
|
Villanueva-Toledo J, Ponciano-Gómez A, Ortiz-Sánchez E, Garrido E. Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep 2014; 41:1993-2004. [PMID: 24420854 DOI: 10.1007/s11033-014-3047-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
The target cells for the transforming mutations caused by high-risk human papillomavirus (HPV) infection could be the stem cells of the uterine cervical epithelium, generating particular cancer stem cells (CSCs). The aim of this study was to identify and characterize the CSCs from cervical-cancer-derived cell lines. The ability of SiHa, CaLo, and C-33A cell lines to efflux Hoechst 33342 was evaluated by flow cytometry and cells from the corresponding side populations (SPs) and nonside populations (NSPs) were analyzed for their cell-cycle status (pyronin Y) and their mRNA levels of ABC transporter family members (with qPCR). Specific markers (α6-integrin(bri)/CD71(dim), CK17) of normal epithelial stem cells were evaluated by flow cytometry. The biological properties of these cells were analyzed, including their colony heterogeneity, repopulation, and anchorage-independent colony formation. We identified SPs (around 3 %) in the SiHa and CaLo cell lines, more than 70 % of which were in G0 phase and strongly expressed ABC transporters (predominantly ABCG2 and ABCB1). The SP from CaLo cells showed an α6-integrin(bri)/CD(dim) pattern, whereas the SP from the SiHa cells showed an α6-integrin(-)/CD(dim) pattern. Recultured cells from the SPs of both cell lines generated both SPs and NSPs, and had higher clonogenic potential to form mainly holoclones and greater colony-forming efficiency under anchorage-independent growth conditions than the cells from the NSPs or total cell populations. Interestingly, we identified no SP in the HPV-uninfected C-33A cell line, and it did not express ABCG2 or other members of the ABC transporters (ABCB1, ABCC1, or ABCA3).
Collapse
Affiliation(s)
- Jairo Villanueva-Toledo
- Laboratory of Research in Cancer Molecular and Cell Biology, Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico, DF, Mexico,
| | | | | | | |
Collapse
|
25
|
Goldberg LR, Dooner MS, Johnson KW, Papa EF, Pereira MG, Del Tatto M, Adler DM, Aliotta JM, Quesenberry PJ. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 2013; 28:813-22. [PMID: 23989430 DOI: 10.1038/leu.2013.252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022]
Abstract
Prevailing wisdom holds that hematopoietic stem cells (HSCs) are predominantly quiescent. Although HSC cycle status has long been the subject of scrutiny, virtually all marrow stem cell research has been based on studies of highly purified HSCs. Here we explored the cell cycle status of marrow stem cells in un-separated whole bone marrow (WBM). We show that a large number of long-term multi-lineage engraftable stem cells within WBM are in S/G2/M phase. Using bromodeoxyuridine, we show rapid transit through the cell cycle of a previously defined relatively dormant purified stem cell, the long-term HSC (LT-HSC; Lineage(-)/c-kit(+)/Sca-1(+)/Flk-2(-)). Actively cycling marrow stem cells have continually changing phenotype with cell cycle transit, likely rendering them difficult to purify to homogeneity. Indeed, as WBM contains actively cycling stem cells, and highly purified stem cells engraft predominantly while quiescent, it follows that the population of cycling marrow stem cells within WBM are lost during purification. Our studies indicate that both the discarded lineage-positive and lineage-negative marrow cells in a stem cell separation contain cycling stem cells. We propose that future work should encompass this larger population of cycling stem cells that is poorly represented in current studies solely focused on purified stem cell populations.
Collapse
Affiliation(s)
- L R Goldberg
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - M S Dooner
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - K W Johnson
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - E F Papa
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - M G Pereira
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - M Del Tatto
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - D M Adler
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - J M Aliotta
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - P J Quesenberry
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
26
|
Lainey E, Wolfromm A, Sukkurwala AQ, Micol JB, Fenaux P, Galluzzi L, Kepp O, Kroemer G. EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell Cycle 2013; 12:2978-91. [PMID: 23974111 DOI: 10.4161/cc.26016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-hydroxycholecalciferol, VD). Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38(MAPK)) and SRC family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38(MAPK) or SFKs with specific pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.
Collapse
Affiliation(s)
- Elodie Lainey
- INSERM; U848; Villejuif, France; Gustave Roussy; Villejuif, France; Université Paris Sud/Paris XI; Le Kremlin Bicêtre, France; Hôpital Robert Debré; AP-HP; Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pallis M, Burrows F, Whittall A, Boddy N, Seedhouse C, Russell N. Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacol Toxicol 2013; 14:32. [PMID: 23767415 PMCID: PMC3685571 DOI: 10.1186/2050-6511-14-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/05/2013] [Indexed: 11/16/2022] Open
Abstract
Background Dormant cells are characterised by low RNA synthesis. In contrast, cancer cells can be addicted to high RNA synthesis, including synthesis of survival molecules. We hypothesised that dormant cancer cells, already low in RNA, might be sensitive to apoptosis induced by RNA Polymerase II (RP2) inhibitors that further reduce RNA synthesis. Methods We cultured leukaemia cells continuously in vitro in the presence of an mTOR inhibitor to model dormancy. Apoptosis, damage, RNA content and reducing capacity were evaluated. We treated dormancy-enriched cells for 48 hours with the nucleoside analogues ara-C, 5-azacytidine and clofarabine, the topoisomerase targeting agents daunorubicin, etoposide and irinotecan and three multikinase inhibitors with activity against RP2 - flavopiridol, roscovitine and TG02, and we measured growth inhibition and apoptosis. We describe use of the parameter 2 × IC50 to measure residual cell targeting. RNA synthesis was measured with 5-ethynyl uridine. Drug-induced apoptosis was measured flow cytometrically in primary cells from patients with acute myeloid leukaemia using a CD34/CD71/annexinV gating strategy to identify dormant apoptotic cells. Results Culture of the KG1a cell line continuously in the presence of an mTOR inhibitor induced features of dormancy including low RNA content, low metabolism and low basal ROS formation in the absence of a DNA damage response or apoptosis. All agents were more effective against the unmanipulated than the dormancy-enriched cells, emphasising the chemoresistant nature of dormant cells. However, the percentage of cell reduction by RP2 inhibitors at 2 × IC50 was significantly greater than that of other agents. RP2 inhibitors strongly inhibited RNA synthesis compared with other drugs. We also showed that RP2 inhibitors induce apoptosis in proliferating and dormancy-enriched KG1a cells and in the CD71neg CD34pos subset of primary acute myeloid leukaemia cells. Conclusion We suggest that RP2 inhibitors may be a useful class of agent for targeting dormant leukaemia cells.
Collapse
|
28
|
Sun Q, Zhong Y, Wu F, Zhou C, Wang D, Ma W, Zhang Y, Zhang S. Immunotherapy using slow-cycling tumor cells prolonged overall survival of tumor-bearing mice. BMC Med 2012; 10:172. [PMID: 23270473 PMCID: PMC3568736 DOI: 10.1186/1741-7015-10-172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite considerable progress in the development of anticancer therapies, there is still a high mortality rate caused by cancer relapse and metastasis. Dormant or slow-cycling residual tumor cells are thought to be a source of tumor relapse and metastasis, and are therefore an obstacle to therapy. In this study, we assessed the drug resistance of tumor cells in mice, and investigated whether vaccination could promote survival. METHODS The mouse colon carcinoma cell line CT-26 was treated with 5-fluorouracil to assess its sensitivity to drug treatment. Mice with colon tumors were immunized with inactivated slow-cycling CT-26 cells to estimate the efficacy of this vaccine. RESULTS We identified a small population of slow-cycling tumor cells in the mouse colon carcinoma CT-26 cell line, which was resistant to conventional chemotherapy. To inhibit tumor recurrence and metastasis more effectively, treatments that selectively target the slow-cycling tumor cells should be developed to complement conventional therapies. We found that drug-treated, slow-cycling tumor cells induced a more intense immune response in vitro. Moreover, vaccination with inactivated slow-cycling tumor cells caused a reduction in tumor volume and prolonged the overall survival of tumor-bearing mice. CONCLUSIONS These findings suggest that targeting of slow-cycling tumor cells application using immunotherapy is a possible treatment to complement traditional antitumor therapy.
Collapse
Affiliation(s)
- Qing Sun
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, Pla M, Vasquez N, Zhang QS, Pondarre C, Peffault de Latour R, Gluckman E, Cavazzana-Calvo M, Leblanc T, Larghero J, Grompe M, Socié G, D'Andrea AD, Soulier J. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 2012; 11:36-49. [PMID: 22683204 DOI: 10.1016/j.stem.2012.05.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/28/2012] [Accepted: 05/02/2012] [Indexed: 01/03/2023]
Abstract
Fanconi anemia (FA) is an inherited DNA repair deficiency syndrome. FA patients undergo progressive bone marrow failure (BMF) during childhood, which frequently requires allogeneic hematopoietic stem cell transplantation. The pathogenesis of this BMF has been elusive to date. Here we found that FA patients exhibit a profound defect in hematopoietic stem and progenitor cells (HSPCs) that is present before the onset of clinical BMF. In response to replicative stress and unresolved DNA damage, p53 is hyperactivated in FA cells and triggers a late p21(Cdkn1a)-dependent G0/G1 cell-cycle arrest. Knockdown of p53 rescued the HSPC defects observed in several in vitro and in vivo models, including human FA or FA-like cells. Taken together, our results identify an exacerbated p53/p21 "physiological" response to cellular stress and DNA damage accumulation as a central mechanism for progressive HSPC elimination in FA patients, and have implications for clinical care.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité 75010, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kruszewski M, Iwanenko T, Machaj EK, Oldak T, Wojewodzka M, Kapka-Skrzypczak L, Pojda Z. Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis 2012; 27:551-8. [DOI: 10.1093/mutage/ges018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
HIF-1α deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency. Blood 2012; 119:2789-98. [PMID: 22308296 DOI: 10.1182/blood-2011-10-387902] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cited2 is a transcriptional modulator involved in various biologic processes including fetal liver hematopoiesis. In the present study, the function of Cited2 in adult hematopoiesis was investigated in conditional knockout mice. Deletion of Cited2 using Mx1-Cre resulted in increased hematopoietic stem cell (HSC) apoptosis, loss of quiescence, and increased cycling, leading to a severely impaired reconstitution capacity as assessed by 5-fluorouracil treatment and long-term transplantation. Transcriptional profiling revealed that multiple HSC quiescence- and hypoxia-related genes such as Egr1, p57, and Hes1 were affected in Cited2-deficient HSCs. Because Cited2 is a negative regulator of HIF-1, which is essential for maintaining HSC quiescence, and because we demonstrated previously that decreased HIF-1α gene dosage partially rescues both cardiac and lens defects caused by Cited2 deficiency, we generated Cited2 and HIF-1α double-knockout mice. Additional deletion of HIF-1α in Cited2-knockout BM partially rescued impaired HSC quiescence and reconstitution capacity. At the transcriptional level, deletion of HIF-1α restored expression of p57 and Hes1 but not Egr1 to normal levels. Our results suggest that Cited2 regulates HSC quiescence through both HIF-1-dependent and HIF-1-independent pathways.
Collapse
|
32
|
Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 2011; 31:842-55. [PMID: 22179698 DOI: 10.1038/emboj.2011.465] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 11/23/2011] [Indexed: 02/02/2023] Open
Abstract
Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy.
Collapse
|
33
|
Andrade PZ, da Silva CL, dos Santos F, Almeida-Porada G, Cabral JMS. Initial CD34+ cell-enrichment of cord blood determines hematopoietic stem/progenitor cell yield upon ex vivo expansion. J Cell Biochem 2011; 112:1822-31. [PMID: 21400571 DOI: 10.1002/jcb.23099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since umbilical cord blood (UCB), contains a limited hematopoietic stem/progenitor cells (HSC) number, successful expansion protocols are needed to overcome the hurdles associated with inadequate numbers of HSC collected for transplantation. UCB cultures were performed using a human stromal-based serum-free culture system to evaluate the effect of different initial CD34(+) cell enrichments (Low: 24 ± 1.8%, Medium: 46 ± 2.6%, and High: 91 ± 1.5%) on the culture dynamics and outcome of HSC expansion. By combining PKH tracking dye with CD34(+) and CD34(+) CD90(+) expression, we have identified early activation of CD34 expression on CD34(-) cells in Low and Medium conditions, prior to cell division (35 ± 4.7% and 55 ± 4.1% CD34(+) cells at day 1, respectively), affecting proliferation/cell cycle status and ultimately determining CD34(+)/CD34(+) CD90(+) cell yield (High: 14 ± 1.0/3.5 ± 1.4-fold; Medium: 22 ± 2.0/3.4 ± 1,0-fold; Low: 31 ± 3.0/4.4 ± 1.5-fold) after a 7-day expansion. Considering the potential benefits of using expanded UCB HSC in transplantation, here we quantified in single UCB units, the impact of using one/two immunomagnetic sorting cycles (corresponding to Medium and High initial progenitor content), and the average CD34(+) cell recovery for each strategy, on overall CD34(+) cell expansion. The higher cell recovery upon one sorting cycle lead to higher CD34(+) cell numbers after 7 days of expansion (30 ± 2.0 vs. 13 ± 1.0 × 10(6) cells). In particular, a high (>90%) initial progenitor content was not mandatory to successfully expand HSC, since cell populations with moderate levels of enrichment readily increased CD34 expression ex-vivo, generating higher stem/progenitor cell yields. Overall, our findings stress the importance of establishing a balance between the cell proliferative potential and cell recovery upon purification, towards the efficient and cost-effective expansion of HSC for cellular therapy.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
34
|
Further phenotypic characterization of the primitive lineage- CD34+CD38-CD90+CD45RA- hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia. Blood Cancer J 2011; 1:e36. [PMID: 22829197 PMCID: PMC3255253 DOI: 10.1038/bcj.2011.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/25/2011] [Indexed: 01/19/2023] Open
Abstract
The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin-CD34+CD38-CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin-CD34+CD38-CD90+CD45RA- HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin-CD34+CD38-CD90+CD45RA- sub-population.
Collapse
|
35
|
Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 2011; 79:405-25. [PMID: 21595013 DOI: 10.1002/cyto.a.21061] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondria are most important organelles in the survival of eukaryotic aerobic cells because they are the primary producers of ATP, regulators of ion homeostasis or redox state, and producers of free radicals. The key role of mitochondria in the generation of primordial ATP for the survival and proliferation of eukaryotic cells has been proven by extensive biochemical studies. In this context, it is crucial to understand the complexity of the mitochondrial compartment and its functionality and to develop experimental tools allowing the assessment of its nature and its function and metabolism. This review covers the role of the mitochondria in the cell, focusing on its structure, the mechanism of the mitochondrial respiratory chain, the maintenance of the transmembrane potential and the production of reactive oxygen species. The main probes used for mitochondrial compartment monitoring are described. In addition, various applications using mitochondrial-specific probes are detailed to illustrate the potential of flow and image cytometry in the study of the mitochondrial compartment. This review contains a panel of tools to explore mitochondria and to help researchers design experiments, determine the approach to be employed, and interpret their results.
Collapse
Affiliation(s)
- Cécile Cottet-Rousselle
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Inserm U1055, Université Joseph Fourier Grenoble, France.
| | | | | | | |
Collapse
|
36
|
Piro D, Piccoli C, Guerra L, Sassone F, D'Aprile A, Favia M, Castellani S, Di Gioia S, Lepore S, Garavaglia ML, Trotta T, Maffione AB, Casavola V, Meyer G, Capitanio N, Conese M. Hematopoietic stem/progenitor cells express functional mitochondrial energy-dependent cystic fibrosis transmembrane conductance regulator. Stem Cells Dev 2011; 21:634-46. [PMID: 21561312 DOI: 10.1089/scd.2011.0041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine. Cystic fibrosis (CF) is one of the diseases whose hope of cure relies on the successful application of cell-based gene therapy. This study was aimed at characterizing murine HSPCs on the basis of their bioenergetic competence and CF transmembrane conductance regulator (CFTR) expression. Positively immunoselected Sca-1(+) HSPCs encompassed 2 populations distinguished by their different size, Sca-1 expression and mitochondrial content. The smaller were the cells, the higher was Sca-1 expression and the lower was the intracellular density of functional mitochondria. Reverse transcription-polymerase chain reaction and western blotting revealed that HSPCs expressed CFTR mRNA and protein, which was also functional, as assessed by spectrofluorimetric and patch-clamp techniques. Inhibition of mitochondrial oxidative phosphorylation by oligomycin resulted in a 70% decrease of both the intracelluar adenosine triphosphate content and CFTR-mediated channel activity. Finally, HSPCs with lower Sca-1 expression and higher mitochondrial content displayed higher CFTR levels. Our findings identify 2 subpopulations in HSPCs and unveil a so-far unappreciated relationship between bioenergetic metabolism and CFTR in HSPC biology.
Collapse
Affiliation(s)
- Donatella Piro
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genomic and proteomic analysis of the impact of mitotic quiescence on the engraftment of human CD34+ cells. PLoS One 2011; 6:e17498. [PMID: 21408179 PMCID: PMC3049784 DOI: 10.1371/journal.pone.0017498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/07/2011] [Indexed: 12/25/2022] Open
Abstract
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34+ cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34+ cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34+ cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34+ cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.
Collapse
|
38
|
Myers J, Huang Y, Wei L, Yan Q, Huang A, Zhou L. Fucose-deficient hematopoietic stem cells have decreased self-renewal and aberrant marrow niche occupancy. Transfusion 2011; 50:2660-9. [PMID: 20573072 DOI: 10.1111/j.1537-2995.2010.02745.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Modification of Notch receptors by O-linked fucose and its further elongation by the Fringe family of glycosyltransferase has been shown to be important for Notch signaling activation. Our recent studies disclose a myeloproliferative phenotype, hematopoietic stem cell (HSC) dysfunction, and abnormal Notch signaling in mice deficient in FX, which is required for fucosylation of a number of proteins including Notch. The purpose of this study was to assess the self-renewal and stem cell niche features of fucose-deficient HSCs. STUDY DESIGN AND METHODS Homeostasis and maintenance of HSCs derived from FX(-/-) mice were studied by serial bone marrow transplantation, homing assay, and cell cycle analysis. Two-photon intravital microscopy was performed to visualize and compare the in vivo marrow niche occupancy by fucose-deficient and wild-type (WT) HSCs. RESULTS Marrow progenitors from FX(-/-) mice had mild homing defects that could be partially prevented by exogenous fucose supplementation. Fucose-deficient HSCs from FX(-/-) mice displayed decreased self-renewal capability compared with the WT controls. This is accompanied with their increased cell cycling activity and suppressed Notch ligand binding. When tracked in vivo by two-photon intravital imaging, the fucose-deficient HSCs were found localized farther from the endosteum of the calvarium marrow than the WT HSCs. CONCLUSIONS The current reported aberrant niche occupancy by HSCs from FX(-/-) mice, in the context of a faulty blood lineage homeostasis and HSC dysfunction in mice expressing Notch receptors deficient in O-fucosylation, suggests that fucosylation-modified Notch receptor may represent a novel extrinsic regulator for HSC engraftment and HSC niche maintenance.
Collapse
Affiliation(s)
- Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen Z, Ayala P, Wang M, Fayad L, Katz RL, Romaguera J, Caraway N, Neelapu SS, Kwak LW, Simmons PJ, McCarty N. Prospective isolation of clonogenic mantle cell lymphoma-initiating cells. Stem Cell Res 2010; 5:212-25. [PMID: 20851072 DOI: 10.1016/j.scr.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/23/2010] [Accepted: 07/22/2010] [Indexed: 01/09/2023] Open
Abstract
Here, we have prospectively isolated and characterized, for the first time, clonogenic cells with self-renewal capacities from mantle cell lymphoma (MCL), a particularly deadly form of non-Hodgkin's lymphoma (NHL). Self-renewal and tumorigenic activities were enriched in MCL cell fractions that lacked expression of the prototypic B-cell surface marker, CD19. CD45+CD19- cells represented a relatively small fraction of the total MCL tumor cells; however, they recapitulated the heterogeneity of original patient tumors on transplantation into immunodeficient mice. As few as 100 of these cells displayed self-renewal capacities in secondary and tertiary recipient mice by in vivo limiting dilution assays. Similar to leukemic stem cells, CD45+CD19- MCL cells also displayed a quiescent status as determined by dye efflux assays. In summary, this study is the first to isolate subpopulations of MCL cells that have self-renewal and tumorigenic capacities. Identification and characterization of MCL-ICs are important first steps toward understanding how self-renewal and tumorigenicity are regulated in MCL and designing targeted therapies against MCL-ICs will ultimately lead to improved outcomes for MCL patients.
Collapse
Affiliation(s)
- Zheng Chen
- Centre for Stem Cell Research, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 2010; 12:116-27. [PMID: 20126470 DOI: 10.1593/neo.91384] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 11/05/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022] Open
Abstract
Our recent studies have shown that annexin II, expressed on the cell surface of osteoblasts, plays an important role in the adhesion of hematopoietic stem cells (HSCs) to the endosteal niche. Similarly, prostate cancer (PCa) cells express the annexin II receptor and seem to use the stem cell niche for homing to the bone marrow. The role of the niche is thought to be the induction and sustenance of HSC dormancy. If metastatic PCa cells occupy a similar or the same ecological niche as HSCs, then it is likely that the initial role of the HSC niche will be to induce dormancy in metastatic cells. In this study, we demonstrate that the binding of PCa to annexin II induces the expression of the growth arrest-specific 6 (GAS6) receptors AXL, Sky, and Mer, which, in the hematopoietic system, induce dormancy. In addition, GAS6 produced by osteoblasts prevents PCa proliferation and protects PCa from chemotherapy-induced apoptosis. Our results suggest that the activation of GAS6 receptors on PCa in the bone marrow environment may play a critical role as a molecular switch, establishing metastatic tumor cell dormancy.
Collapse
|
41
|
Shiozawa Y, Pedersen EA, Taichman RS. GAS6/Mer axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche. Exp Hematol 2010; 38:132-40. [PMID: 19922767 PMCID: PMC2815170 DOI: 10.1016/j.exphem.2009.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Despite improvements in current combinational chemotherapy regimens, the prognosis of the (1;19)(q23;p13) translocation (E2A/PBX1)-positive B-cell precursor acute lymphoblastic leukemia (ALL) is poor in pediatric leukemia patients. MATERIALS AND METHODS In this study, we examined the roles of growth arrest-specific-6 (GAS6)/Mer axis in the interactions between E2A/PBX1-positive B-cell precursor ALL cells and the osteoblastic niche in the bone marrow. RESULTS Data show that primary human osteoblasts secrete GAS6 in response to the Mer-overexpressed E2A/PBX1-positive ALL cells through mitogen-activated protein kinase signaling pathway and that leukemia cells migrate toward GAS6 using pathways activated by Mer. Importantly, GAS6 supports survival and prevents apoptosis from chemotherapy of E2A/PBX1-positive ALL cells by inducing dormancy. CONCLUSIONS These data suggest that GAS6/Mer axis regulates homing and survival of the E2A/PBX1-positive B-cell precursor ALL in the bone marrow niche.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Elisabeth A. Pedersen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| |
Collapse
|
42
|
Pierre-Louis O, Clay D, Brunet de la Grange P, Blazsek I, Desterke C, Guerton B, Blondeau C, Malfuson JV, Prat M, Bennaceur-Griscelli A, Lataillade JJ, Le Bousse-Kerdilès MC. Dual SP/ALDH Functionalities Refine the Human Hematopoietic Lin−CD34+CD38−Stem/Progenitor Cell Compartment. Stem Cells 2009; 27:2552-62. [DOI: 10.1002/stem.186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib. PLoS Comput Biol 2009; 5:e1000503. [PMID: 19749982 PMCID: PMC2730033 DOI: 10.1371/journal.pcbi.1000503] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022] Open
Abstract
Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic. Imatinib mesylate (Gleevec) is currently the standard treatment for chronic myeloid leukemia (CML) and elicits a large reduction in leukemic cell burden in most patients. However, strong evidence suggests that imatinib does not cure the disease; approximately 20% of patients relapse within three years, and discontinuation of imatinib therapy often leads to a rebound of the leukemic cell burden. Laboratory studies have suggested that there exists a subpopulation of “quiescent” leukemia cells (i.e., cells that do not divide) that may be insensitive to imatinib treatment. It has been postulated that the disease outcome may be improved by administering imatinib in conjunction with the Granulocyte-Colony Stimulating Factor (G-CSF), a growth factor which “wakes up” the quiescent stem cells and sensitizes them to imatinib. In this study, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that adding G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent. Our model also predicts that adding G-CSF leads to a higher risk of resistance, since it increases the number of leukemic stem cell divisions and thus the probability of acquiring a resistance mutation.
Collapse
|
44
|
Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 2009; 114:3783-92. [PMID: 19652197 DOI: 10.1182/blood-2009-06-227843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The predominant outgrowth of malignant cells over their normal counterparts in a given tissue is a shared feature for all types of cancer. However, the impact of a cancer environment on normal tissue stem and progenitor cells has not been thoroughly investigated. We began to address this important issue by studying the kinetics and functions of hematopoietic stem and progenitor cells in mice with Notch1-induced leukemia. Although hematopoiesis was progressively suppressed during leukemia development, the leukemic environment imposed distinct effects on hematopoietic stem and progenitor cells, thereby resulting in different outcomes. The normal hematopoietic stem cells in leukemic mice were kept in a more quiescent state but remained highly functional on transplantation to nonleukemic recipients. In contrast, the normal hematopoietic progenitor cells in leukemic mice demonstrated accelerated proliferation and exhaustion. Subsequent analyses on multiple cell-cycle parameters and known regulators (such as p21, p27, and p18) further support this paradigm. Therefore, our current study provides definitive evidence and plausible underlying mechanisms for hematopoietic disruption but reversible inhibition of normal hematopoietic stem cells in a leukemic environment. It may also have important implications for cancer prevention and treatment in general.
Collapse
|
45
|
Abe K, Shimizu R, Pan X, Hamada H, Yoshikawa H, Yamamoto M. Stem cells of GATA1-related leukemia undergo pernicious changes after 5-fluorouracil treatment. Exp Hematol 2009; 37:435-445.e1. [PMID: 19302918 DOI: 10.1016/j.exphem.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 11/25/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Transcription factor GATA1 plays a critical role in erythropoiesis through the integrated regulation of cell proliferation, differentiation, and apoptosis. In Gata1.05 gene knockdown mice, Gata1 expression deteriorates to 5% of wild-type allelic expression, a level insufficient for supporting normal erythropoiesis and one that leads to accumulation of erythroid progenitors that are readily transformed into erythroblastic leukemia. Serial engraftment of leukemic cells into primary or subsequent nude mice reconstituted complete leukemic phenotype in recipient. To delineate characteristics of leukemic stem cells (LSCs), we analyzed LSCs of Gata1.05 leukemia, which have a potential to reestablish leukemia in mice. MATERIALS AND METHODS Leukemic cells isolated from the first recipient mice of Gata1.05 leukemia cells were divided into two fractions using Hoechst dye. Fractionated cells were transplanted into second recipient, or analyzed gene expression profiles and cell-cycle status. Consequences of 5-fluorouracil (5-FU) treatment on leukemic cells in vivo were studied. RESULTS LSCs were enriched in the Hoechst dye-excluded side population (SP), and leukemic cells in the SP population (LSP cells) were morphologically and immunophenotypically indistinguishable from other leukemic cells. However, expression of hematopoietic stem cell (HSC)-related genes was upregulated in the LSP cells. In cell-cycle analyses, LSP cells were quiescent like HSCs, but reentry into the cell cycle was stimulated by 5-FU treatment. Nonetheless, 5-FU treatment established a point of newly adjusted equilibrium in the LSP cells and the cells never recovered to their previous quiescent state. CONCLUSION Based on this observation, distinct self-renewal regulatory mechanisms in LSCs may be considered as one of the causes of worsening of the features of leukemia after injury and relapse.
Collapse
Affiliation(s)
- Kanako Abe
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
46
|
High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 2009; 113:2661-72. [PMID: 19168794 DOI: 10.1182/blood-2008-06-161117] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G(0) residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34(+)CD38(-)Hoechst(lo)Pyronin Y(lo)) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2-conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21(CIP1) and p27(KIP1) do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2(hi)) failed to contribute to hematopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2(lo) cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.
Collapse
|
47
|
Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, Macdonald HR, Trumpp A. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135:1118-29. [PMID: 19062086 DOI: 10.1016/j.cell.2008.10.048] [Citation(s) in RCA: 1430] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/08/2008] [Accepted: 10/30/2008] [Indexed: 02/06/2023]
Abstract
Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Seet LF, Teng E, Lai YS, Laning J, Kraus M, Wnendt S, Merchav S, Chan SL. Valproic acid enhances the engraftability of human umbilical cord blood hematopoietic stem cells expanded under serum-free conditions. Eur J Haematol 2008; 82:124-32. [PMID: 19067743 DOI: 10.1111/j.1600-0609.2008.01169.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Valproic acid (VPA) is a histone deacetylase inhibitor previously shown to promote the proliferation and self-renewal of CD34(+) hematopoietic cells. We tested the effect of VPA in conjunction with the selective amplification technology developed by Viacell Inc. Stem cells enriched from frozen cord blood were cultured for 7 d, subjected to reselection and grown in fresh medium for a further 7 d. Treatment with VPA resulted in an average two-fold higher expansion of CD45(+)34(+) cells compared with control. Furthermore, VPA-treatment induced higher numbers of CD45(+)34(+) cells to reside in the S phase than control cultured cells and resulted in a 2.5-fold upregulation in HOXB4 expression. Importantly, VPA-treated cells reconstituted hematopoiesis in non-obese diabetic/severe combined immunodeficient mice with a six-fold higher efficiency than control cells. Collectively, our results indicate that VPA, already used clinically for neurologic disorder treatment, is a useful additive for the ex vivo culture of hematopoietic stem/progenitor cells to enhance engraftment efficiency.
Collapse
Affiliation(s)
- Li-Fong Seet
- ViaCell Singapore Research Centre, Singapore, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Banerjee P, Sieburg M, Samuelson E, Feuer G. Human T-cell lymphotropic virus type 1 infection of CD34+ hematopoietic progenitor cells induces cell cycle arrest by modulation of p21(cip1/waf1) and survivin. Stem Cells 2008; 26:3047-58. [PMID: 18818438 DOI: 10.1634/stemcells.2008-0353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an oncogenic retrovirus and the etiologic agent of adult T-cell leukemia (ATL), an aggressive CD4(+) malignancy. HTLV-2 is highly homologous to HTLV-1; however, infection with HTLV-2 has not been associated with lymphoproliferative diseases. Although HTLV-1 infection of CD4(+) lymphocytes induces cellular replication and transformation, infection of CD34(+) human hematopoietic progenitor cells (HPCs) strikingly results in G(0)/G(1) cell cycle arrest and suppression of in vitro clonogenic colony formation by induction of expression of the cdk inhibitor p21(cip1/waf1) (p21) and concurrent repression of survivin. Immature CD34(+)/CD38(-) hematopoietic stem cells (HSCs) were more susceptible to alterations of p21 and survivin expression as a result of HTLV-1 infection, in contrast to more mature CD34(+)/CD38(+) HPCs. Knockdown of p21 expression in HTLV-1-infected CD34(+) HPCs partially abrogated cell cycle arrest. Notably, HTLV-2, an HTLV strain that is not associated with leukemogenesis, does not significantly modulate p21 and survivin expression and does not suppress hematopoiesis from CD34(+) HPCs in vitro. We speculate that the remarkable differences in the activities displayed by CD34(+) HPCs following infection with HTLV-1 or HTLV-2 suggest that HTLV-1 uniquely exploits cell cycle arrest mechanisms to establish a latent infection in hematopoietic progenitor/hematopoietic stem cells and initiates preleukemic events in these cells, which eventually results in the manifestation of ATL.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
50
|
Walkley CR, Sankaran VG, Orkin SH. Rb and hematopoiesis: stem cells to anemia. Cell Div 2008; 3:13. [PMID: 18775080 PMCID: PMC2562376 DOI: 10.1186/1747-1028-3-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
The retinoblastoma protein, Rb, was one of the first tumor suppressor genes identified as a result of the familial syndrome retinoblastoma. In the period since its identification and cloning a large number of studies have described its role in various cellular processes. The application of conditional somatic mutation with lineage and temporally controlled gene deletion strategies, thus circumventing the lethality associated with germ-line deletion of Rb, have allowed for a reanalysis of the in vivo role of Rb. In the hematopoietic system, such approaches have led to new insights into stem cell biology and the role of the microenvironment in regulating hematopoietic stem cell fate. They have also clarified the role that Rb plays during erythropoiesis and defined a novel mechanism linking mitochondrial function to terminal cell cycle withdrawal. These studies have shed light on the in vivo role of Rb in the regulation of hematopoiesis and also prompt further analysis of the role that Rb plays in both the regulation of hematopoietic stem cells and the terminal differentiation of their progeny.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,St. Vincent's Institute, Department of Medicine at St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|