1
|
Rinaldi L, Pozdniakova S, Jayarajan V, Troidl C, Abdallah Y, Aslam M, Ladilov Y. Protective role of soluble adenylyl cyclase against reperfusion-induced injury of cardiac cells. Biochim Biophys Acta Mol Basis Dis 2018; 1865:252-260. [PMID: 30044950 DOI: 10.1016/j.bbadis.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
AIMS Disturbance of mitochondrial function significantly contributes to the myocardial injury that occurs during reperfusion. Increasing evidence suggests a role of intra-mitochondrial cyclic AMP (cAMP) signaling in promoting respiration and ATP synthesis. Mitochondrial levels of cAMP are controlled by type 10 soluble adenylyl cyclase (sAC) and phosphodiesterase 2 (PDE2), however their role in the reperfusion-induced injury remains unknown. Here we aimed to examine whether sAC may support cardiomyocyte survival during reperfusion. METHODS AND RESULTS Adult rat cardiomyocytes or rat cardiac H9C2 cells were subjected to metabolic inhibition and recovery as a model of simulated ischemia and reperfusion. Cytosolic Ca2+, pH, mitochondrial cAMP (live-cell imaging), and cell viability were analyzed during a 15-min period of reperfusion. Suppression of sAC activity in cardiomyocytes and H9C2 cells, either by sAC knockdown, by pharmacological inhibition or by withdrawal of bicarbonate, a natural sAC activator, compromised cell viability and recovery of cytosolic Ca2+ homeostasis during reperfusion. Contrariwise, overexpression of mitochondria-targeted sAC in H9C2 cells suppressed reperfusion-induced cell death. Analyzing cAMP concentration in mitochondrial matrix we found that inhibition of PDE2, a predominant mitochondria-localized PDE isoform in mammals, during reperfusion significantly increased cAMP level in mitochondrial matrix, but not in cytosol. Accordingly, PDE2 inhibition attenuated reperfusion-induced cardiomyocyte death and improved recovery of the cytosolic Ca2+ homeostasis. CONCLUSION sAC plays an essential role in supporting cardiomyocytes viability during reperfusion. Elevation of mitochondrial cAMP pool either by sAC overexpression or by PDE2 inhibition beneficially affects cardiomyocyte survival during reperfusion.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
| | | | | | - Christian Troidl
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
| | - Yaser Abdallah
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
| | - Muhammad Aslam
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhein-Main, Bad Nauheim, Germany
| | - Yury Ladilov
- Center for Cardiovascular Research, Charité, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Ackerman ME, Dugast AS, Alter G. Emerging Concepts on the Role of Innate Immunity in the Prevention and Control of HIV Infection. Annu Rev Med 2012; 63:113-30. [DOI: 10.1146/annurev-med-050310-085221] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Margaret E. Ackerman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
| |
Collapse
|
3
|
|
4
|
Abstract
PURPOSE OF REVIEW Because complement is present in all fluids of the body, including serum, saliva and seminal fluid, and is found at mucosal surfaces and in the brain, all pathogens have to deal with complement proteins. Thus, immediately upon entering the host, independent on the route of infection, HIV activates the complement system. Although a first line of immune defense, complement cannot eliminate retroviral infections completely. RECENT FINDINGS Recent data indicate that complement, in concert with non-neutralizing antibodies, contributes to the control of HIV replication at early stages of infection. In parallel or at later stages, complement and non-neutralizing antibodies may counteract the immune response by enhancing HIV infection via complement and Fc-receptor-positive cells in 'cis' and 'trans'. SUMMARY This review highlights current knowledge in this field and emphasizes the contribution of complement and non-neutralizing antibodies in controlling versus and enhancing infection.
Collapse
|
5
|
Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 2008; 39:127-32. [PMID: 18323530 DOI: 10.1165/rcmb.2008-0091tr] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) was the original "second messenger" to be discovered. Its formation is promoted by adenylyl cyclase activation after ligation of G protein-coupled receptors by ligands including hormones, autocoids, prostaglandins, and pharmacologic agents. Increases in intracellular cAMP generally suppress innate immune functions, including inflammatory mediator generation and the phagocytosis and killing of microbes. The importance of the host cAMP axis in regulating antimicrobial defense is underscored by the fact that microbes have evolved virulence-enhancing strategies that exploit it. Many clinical situations that predispose to infection are associated with increases in cAMP, and therapeutic strategies to interrupt cAMP generation or actions have immunostimulatory potential. This article reviews the anatomy of the cAMP axis, the mechanisms by which it controls phagocyte immune function, microbial strategies to dysregulate it, and its clinical relevance.
Collapse
Affiliation(s)
- Carlos H Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health, System, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
6
|
Brock TG, Serezani CH, Carstens JK, Peters-Golden M, Aronoff DM. Effects of prostaglandin E2 on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages. Exp Cell Res 2007; 314:255-63. [PMID: 18021770 DOI: 10.1016/j.yexcr.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated a central role for the exchange protein activated by cAMP (Epac) in the inhibition of Fcgamma-receptor-mediated phagocytosis and bacterial killing by prostaglandin E(2) (PGE(2)) in macrophages. However, the subcellular localization of Epac, and its primary target Rap1, has yet to be determined in primary macrophages. Therefore, we used immunofluorescent techniques and phagosome isolation to localize Epac-1 and Rap1 in alveolar macrophages. Epac-1 was predominantly expressed on punctate and tubular membranes throughout the cell body; on the plasma membrane; and co-localized with microtubule organizing centers (MTOCs). Rap1 was abundant on punctate membranes, less abundant on plasma membrane, and also found on MTOCs. Following PGE(2) treatment, Epac-1, but not Rap1, accumulated on the nuclear envelope and disappeared from MTOCs. By immunofluorescent microscopy, both Epac-1 and Rap1 were seen to associate with phagosomes containing IgG-opsonized beads, but this association appeared weak, as we failed to observe such interactions in phagosomes isolated from cells at various time points after bead ingestion. Strikingly, however, Epac-1, but not Rap1, appeared to accumulate on maturing phagosomes, but only after PGE(2) treatment (or treatment with a selective Epac-1 agonist). This association was confirmed in isolated phagosome preparations. The changes in Epac-1 localization were too slow to account for the inhibitory effects of PGE(2) on phagocytosis. However, the appearance of Epac-1 on late phagosomes following PGE(2) treatment might be important for suppressing H(2)O(2) production and inhibiting the killing of intraphagosomal pathogens. The absence of Rap1 on late phagosomes suggests that the effect of Epac-1 might not require Rap1.
Collapse
Affiliation(s)
- Thomas G Brock
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, The University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
7
|
Azzam R, Kedzierska K, Leeansyah E, Chan H, Doischer D, Gorry PR, Cunningham AL, Crowe SM, Jaworowski A. Impaired complement-mediated phagocytosis by HIV type-1-infected human monocyte-derived macrophages involves a cAMP-dependent mechanism. AIDS Res Hum Retroviruses 2006; 22:619-29. [PMID: 16831086 DOI: 10.1089/aid.2006.22.619] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 infection of cells of macrophage lineage impairs a number of effector functions performed by these cells, including phagocytosis of opsonized pathogens. In this study we investigate the effects of HIV-1 on the mechanism of complement (C')-mediated phagocytosis by human monocyte-derived macrophages (MDM). Using C'-opsonized sheep red blood cells (sRBC) as targets, we demonstrate that phagocytosis is inhibited by HIV-1 infection in vitro. Inhibition is not due to downregulation of surface C' receptors (R) or altered binding of C'-opsonized targets to HIV-1-infected MDM, suggesting a postreceptor-mediated mechanism of suppression. Having shown that increased levels of intracellular cAMP in uninfected MDM inhibit phagocytosis, we demonstrate that HIV-1 infection of MDM is associated with increased intracellular cAMP. Using the adenylate cyclase inhibitors 2',5'-dideoxyadenosine and MDL-12,330A, we show that phagocytosis by HIV-1- infected MDM can be restored by inhibition of cAMP production. Defective phagocytosis by HIV-1-infected MDM did not correlate with prostaglandin secretion, and was less in uninfected MDM within the HIV-1-infected cell culture suggesting a minimal bystander effect. Inhibition required viral entry but not active viral replication, as shown by use of the antiretroviral drug lamivudine. Hence, our study suggests that HIV-1 impairs C'R-mediated phagocytosis in MDM by elevating intracellular cAMP levels, independent of prostaglandin secretion, and contributes to our understanding of how HIV-1 impairs cell-mediated immunity.
Collapse
Affiliation(s)
- Rula Azzam
- AIDS Pathogenesis and Clinical Research Program, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lugo-Chinchilla AM, Báez D, Vélez M, Ildefonso C, Renaud FL. Altered subcellular signaling in murine peritoneal macrophages upon chronic morphine exposure. J Neuroimmunol 2006; 176:86-94. [PMID: 16750574 DOI: 10.1016/j.jneuroim.2006.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 03/30/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Alterations in opioid signaling that take place in murine peritoneal macrophages in vitro are variably dependent on opiate exposure conditions. Acute exposure to morphine inhibits Fc-mediated phagocytosis by a pertussis toxin (PT)-sensitive mechanism, but has no effect on cAMP levels. In contrast, chronic exposure to morphine results in a "tolerant" state, wherein test and control values for both phagocytosis and cAMP are equivalent. However, drug withdrawal after chronic exposure to morphine results in inhibition of phagocytosis and a concomitant 4-fold increase in cAMP by a PT-insensitive mechanism. This increase is causally related to inhibition of phagocytosis since an artificial increase in cAMP inhibits phagocytosis in non-withdrawn cells exposed chronically to morphine. We suggest that macrophage opioid receptors signaling switches from a Gi/o-mediated mechanism that does not involve adenylate cyclase in acute exposure to a non-Gi/o-mediated adenylate cyclase superactivation during chronic exposure.
Collapse
Affiliation(s)
- Ana M Lugo-Chinchilla
- Department of Natural Sciences, Interamerican University, Bayamón Campus, Bayamón, Puerto Rico
| | | | | | | | | |
Collapse
|
9
|
Zhao C, Thibault S, Messier N, Ouellette M, Papadopoulou B, Tremblay MJ. In primary human monocyte-derived macrophages exposed to Human immunodeficiency virus type 1, does the increased intracellular growth of Leishmania infantum rely on its enhanced uptake? J Gen Virol 2006; 87:1295-1302. [PMID: 16603532 DOI: 10.1099/vir.0.81647-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Concurrent uncontrolled development of human immunodeficiency virus type 1 (HIV-1) and Leishmania spp. is regarded as an emerging pathogenic combination in countries where human beings are exposed to these two micro-organisms. The present study was aimed at exploring whether HIV-1 development within a culture of human monocyte-derived macrophages (MDMs) affected the further development of luciferase-encoding Leishmania infantum using the luciferase activity as a readout assay. It was demonstrated that, in cultures of HIV-1-loaded MDMs exposed to axenic amastigotes, the luciferase activity was higher than in HIV-1-free MDMs. As a preliminary approach to deciphering the possible mechanism through which HIV-1 can affect Leishmania infantum, attention was focused on the very early processes that could underlie this increased luciferase activity. Using GFP-labelled parasites, it was possible to establish that, in HIV-1-infected MDMs, the percentage of GFP-expressing MDMs was higher (10-20 %) than in cell cultures not exposed to HIV-1 (5 %). Two-colour immunofluorescence staining suggested that HIV-1 indirectly affects the uptake of parasites inside MDMs. Thus, the observed phenomenon seems to be linked with a higher uptake of parasites within MDMs. Taken together, the data reported here may contribute to our understanding of disseminated Leishmania infection in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Chenqi Zhao
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| | - Sandra Thibault
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| | - Nadine Messier
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| | - Marc Ouellette
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| | - Michel J Tremblay
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, RC709, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada
| |
Collapse
|
10
|
Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 2006; 53:441-8. [PMID: 16345030 DOI: 10.1002/glia.20303] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal by phagocytosis of degenerated myelin is central for repair in Wallerian degeneration that follows traumatic injury to axons and in autoimmune demyelinating diseases (e.g., multiple sclerosis). We tested for roles played by the cAMP cascade in the regulation of myelin phagocytosis mediated by complement receptor-3 (CR3/MAC-1) and scavenger receptor-AI/II (SRAI/II) separately and combined in mouse microglia and macrophages. Components of the cAMP cascade tested are cAMP, adenylyl cyclase (AC), Gi, protein kinase A (PKA), exchange protein directly activated by cAMP (Epac), and phosphodiesterases (PDE). PKA inhibitors H-89 and PKI(14-22) amide inhibited phagocytosis at normal operating cAMP levels (i.e., those occurring in the absence of reagents that alter cAMP levels), suggesting activation of phagocytosis through PKA at normal cAMP levels. Phagocytosis was inhibited by reagents that elevate endogenous cAMP levels to above normal: Gi-inhibitor Pertussis toxin (PTX), AC activator Forskolin, and PDE inhibitors IBMX and Rolipram. Phagocytosis was inhibited also by cAMP analogues whose addition mimics abnormal elevations in endogenous cAMP levels: nonselective 8-bromo-cAMP, PKA-specific 6-Benz-cAMP, and Epac-specific 8-CPT-2'-O-Me-cAMP, suggesting that abnormal high cAMP levels inhibit phagocytosis through PKA and Epac. Altogether, observations suggest a dual role for cAMP and PKA in phagocytosis: activation at normal cAMP levels and inhibition at higher. Furthermore, a balance between Gi-controlled cAMP production by AC and cAMP degradation by PDE maintains normal operating cAMP levels that enable efficient phagocytosis.
Collapse
Affiliation(s)
- Chen Makranz
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical Schooland the Eric Roland Center for Neurodegenerative Diseases, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
11
|
Plekhova NG, Somova LM, Slonova RA, Companets GG, Luk'yanova VV, Yakubovich NV. Metabolic activity of macrophages infected with hantavirus, an agent of hemorrhagic fever with renal syndrome. BIOCHEMISTRY (MOSCOW) 2006; 70:990-7. [PMID: 16266269 DOI: 10.1007/s10541-005-0214-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Monocytes/macrophages are thought to play an important role in pathogenesis of viral infections. These cells are involved in distribution and persistence of viruses in the organism and also influence the regulation of immune reactions. The functional and enzymatic activities of macrophages infected with an agent of hemorrhagic fever with renal syndrome were analyzed for the first time. This disease is caused by a virus of the Hantavirus genus, the Bunyaviridae family. Activities of ectoenzymes 5 -nucleotidase and ATPase of the plasma membrane of the hantavirus-infected macrophages decreased along with the antigen accumulation in the infected cells. The contact of phagocytes with hantavirus resulted in activation in the cells of the oxygen-dependent metabolism and NO-synthase. The NO-synthase-dependent system of the infected macrophages was activated earlier than their oxygen-dependent system. The intracellular contents of acid and alkaline phosphatases increased within the first hours after the infection. The bactericidal activity of the hantavirus-infected macrophages relatively to Staphylococcus aureus increased during the specific antigen accumulation in the phagocytes. Thus, the infection of macrophages with hantavirus was associated with intracellular metabolic changes.
Collapse
Affiliation(s)
- N G Plekhova
- Institute of Epidemiology and Microbiology, Siberian Division of the Russian Academy of Medical Sciences, Vladivostok, 690087, Russia.
| | | | | | | | | | | |
Collapse
|
12
|
Laux WHG, Pande P, Shoshani I, Gao J, Boudou-Vivet V, Gosselin G, Johnson RA. Pro-nucleotide inhibitors of adenylyl cyclases in intact cells. J Biol Chem 2003; 279:13317-32. [PMID: 14699161 DOI: 10.1074/jbc.m309535200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9-substituted adenine derivatives with protected phosphoryl groups were synthesized and tested as inhibitors of adenylyl cyclase in isolated enzyme and intact cell systems. Protected 3'-phosphoryl derivatives of 2',5'-dideoxyadenosine (2',5'-dd-Ado) and beta-l-2',5'-dd-Ado, protected 5'-phosphoryl derivatives of beta-l-2',3'-dd-Ado, and protected phosphoryl derivatives of two 9-(2-phosphonomethoxy-acyl)-adenines were synthesized. Protection was afforded by two cyclosaligenyl- or three S-acyl-2-thioethyl-substituents. These pro-nucleotides were tested for their capacity to block forskolin-induced increases in [(3)H]cAMP in OB1771 and F442A preadipocytes and human macrophages prelabeled with [(3)H]adenine. A striking selectivity for 2',5'-dd-Ado-3'-phosphoryl derivatives was observed. Cyclosaligenyl-derivatives (IC(50) approximately 2 microm) were much less potent than S-acyl-2-thioethyl-derivatives. Best studied of these was 2',5'-dd-Ado-3'-O-bis(S-pivaloyl-2-thioethyl)-phosphate, which blocked [(3)H]cAMP formation in preadipocytes (IC(50) approximately 30 nm) and suppressed opening of cAMP-dependent Cl(-) channels in cardiac myocytes (IC(50) approximately 800 nm). None of the pro-nucleotides inhibited adenylyl cyclase per se, whether isolated from rat brain or OB1771 cells. These compounds exhibit the hallmarks of prodrugs. Data suggest they are taken up, are deprotected, and are converted to a potent inhibitory form to inhibit adenylyl cyclase, but only by intact cells. The availability and characteristics of these prodrugs should make them useful for blocking cAMP-mediated pathways in intact cell systems, in biochemical, pharmacological, and potentially therapeutic contexts.
Collapse
Affiliation(s)
- Wolfgang H G Laux
- Department of Physiology and Biophysics, Health Sciences Center, State University of New York, Stony Brook, New York 11794-8661, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol 2003; 26:247-63. [PMID: 12600656 DOI: 10.1016/s1386-6532(02)00123-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defective immunological function of cells of the macrophage lineage contributes considerably to the pathogenesis of HIV-1 infection. Impairment of phagocytosis of opportunistic pathogens such as Mycobacterium avium complex (MAC), Pneumocystis carinii, Toxoplasma gondii or Candida albicans by peripheral blood monocytes, tissue macrophages and monocyte-derived macrophages following in vivo and in vitro HIV-1 infection is well documented. The development of opportunistic infections due to these pathogens in HIV-infected individuals at late stages of disease is attributed to defective monocyte/macrophage function. The mechanisms whereby HIV-1 impairs phagocytosis are not well known. A number of phagocytic receptors normally mediate engulfment of specific opportunistic pathogens by cells of macrophage lineage; distinct mechanisms are triggered by pathogen-receptor binding to promote cytoskeletal rearrangements and engulfment. This review focuses on the signalling events occurring during Fcgamma receptor- and complement receptor-mediated phagocytosis, and considers the mechanisms by which HIV-1 inhibits those signalling events. Since macrophage function is enhanced by cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon-gamma (IFN-gamma), the use of these immunomodulators is of potential interest as adjunctive immunotherapy in immunosuppressed individuals. In this review we present examples of clinical applications of GM-CSF and IFN-gamma therapy for the treatment of opportunistic infections in HIV-infected individuals receiving antiretroviral drugs.
Collapse
Affiliation(s)
- Katherine Kedzierska
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Punt and Commercials Rds, Prahran, Melbourne, VIC 3181, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Kalla R, Bohatschek M, Kloss CUA, Krol J, Von Maltzan X, Raivich G. Loss of microglial ramification in microglia-astrocyte cocultures: involvement of adenylate cyclase, calcium, phosphatase, and Gi-protein systems. Glia 2003; 41:50-63. [PMID: 12465045 DOI: 10.1002/glia.10176] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduction in microglial branching is a common feature in brain pathology and culminates in the transformation into small, rounded, microglia-derived phagocytes in the presence of neural debris. The molecular factors responsible for this transformation are unknown. Here we explored the effect of different classes of intra- and extracellular stimuli in vitro on the morphology of ramified microglia cultured on a confluent astrocyte substrate. These studies showed a strong dose-dependent effect for the Ca(2+) ionophore calcimycine/A21837 (50 microM) and for dibutyryl-cAMP (1 mM), with a loss of microglial ramification. Direct activation of the adenylate cyclase with forskolin (0.1 mM) also led to the disappearance of microglial branching. Okadaic acid (70 nM), the inhibitor of protein phosphatases 1 and 2A (PP1/PP2A), and pertussis toxin (12.5 microg/ml), a G(i)-protein inhibitor, also showed similar effects. No effect was observed for dibutyryl-cGMP or for UTP; addition of ATP had a moderate effect, but only at very high, probably nonphysiological concentrations (100 mM). Extracellular matrix components such as keratatan-sulfate, integrin receptor blockers, the disintegrins kistrin, echistatin, and flavoridin, or the serine protease thrombin all had no effect. Addition of prostaglandin D(2) (PGD(2)), a molecule produced by activated microglial cells, had a transforming effect, but at concentrations two orders of magnitude higher than that of established PGD(2) receptors. In summary, addition of agents causing intracellular elevation of Ca(2+) and cAMP or inhibition of G(i)-proteins and phosphatases to ramified microglia cultured on top of confluent astrocytes leads to a rapid loss of microglial branching. Signaling cascades controlled by these molecules may play an important role in the regulation of this common physiological process in the injured brain.
Collapse
Affiliation(s)
- Roger Kalla
- Department of Neuromorphology, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kedzierska K, Ellery P, Mak J, Lewin SR, Crowe SM, Jaworowski A. HIV-1 down-modulates gamma signaling chain of Fc gamma R in human macrophages: a possible mechanism for inhibition of phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2895-903. [PMID: 11884460 DOI: 10.4049/jimmunol.168.6.2895] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcgammaR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcgammaRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcgammaRs, suggesting a defect downstream of initial receptor activation. FcgammaR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the gamma signaling subunit of FcgammaR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the gamma signaling subunit augmented FcgammaR-mediated phagocytosis, suggesting that down-modulation of gamma-chain protein expression in HIV-infected MDM caused the defective FcgammaR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcgammaR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.
Collapse
|
16
|
Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L, Huang L, Levy JA, Liu YJ. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001; 98:906-12. [PMID: 11493432 DOI: 10.1182/blood.v98.4.906] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural interferon-alpha producing cells (IPCs) are a newly characterized blood cell type, which is the major source of type I interferons in antiviral innate immune responses. The relationship between the number of circulating IPCs, HIV disease progression, and the occurrence of HIV-related complications was investigated. The study of 25 healthy donors and 54 HIV-infected subjects demonstrated a direct correlation between blood IPC number, interferon-alpha production, and clinical state of HIV-infected subjects. Asymptomatic long-term survivors had increased IPC number and function relative to uninfected controls and infected individuals with progressive disease. IPC numbers were markedly reduced in AIDS patients developing opportunistic infections and cancer. A negative correlation was found between the IPC number in the blood and the HIV viral load, suggesting that IPCs are important in controlling HIV replication. This study provides the first evidence that IPCs are being affected during the course of HIV infection and suggests that these cells can play a vital role in the protection against opportunistic pathogens and cancer. (Blood. 2001;98:906-912)
Collapse
Affiliation(s)
- V Soumelis
- Department of Immunobiology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Savard M, Bélanger C, Tardif M, Gourde P, Flamand L, Gosselin J. Infection of primary human monocytes by Epstein-Barr virus. J Virol 2000; 74:2612-9. [PMID: 10684275 PMCID: PMC111749 DOI: 10.1128/jvi.74.6.2612-2619.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported that infection of monocytes by viruses such as cytomegalovirus and human immunodeficiency virus weakens host natural immunity. In the present study, we demonstrated the capability of Epstein-Barr virus (EBV) to infect and replicate in freshly isolated human monocytes. Using electron microscopy analysis, we observed the presence of EBV virions in the cytoplasm and nuclei of approximately 20% of monocytes. This was confirmed by Southern blot analysis of EBV genomic DNA sequences in isolated nuclei from monocytes. Infection of monocytes by EBV leads to the activation of the replicative cycle. This was supported by the detection of immediate-early lytic mRNA BZLF-1 transcripts, and by the presence of two early lytic transcripts (BALF-2, which appears to function in DNA replication, and BHRF-1, also associated with the replicative cycle). The late lytic BcLF-1 transcripts, which code for the major nucleocapsid protein, were also detected, as well as EBNA-1 transcripts. However, attempts to detect EBNA-2 transcripts have yielded negative results. Viral replication was also confirmed by the release of newly synthesized infectious viral particles in supernatants of EBV-infected monocytes. EBV-infected monocytes were found to have significantly reduced phagocytic activity, as evaluated by the quantification of ingested carboxylated fluoresceinated latex beads. Taken together, our results suggest that EBV infection of monocytes and alteration of their biological functions might represent a new mechanism to disrupt the immune response and promote viral propagation during the early stages of infection.
Collapse
Affiliation(s)
- M Savard
- Laboratory of Viral Immunology, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Thomas DA, Kantarjian H, Smith TL, Koller C, Cortes J, O'Brien S, Giles FJ, Gajewski J, Pierce S, Keating MJ. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer 1999; 86:1216-30. [PMID: 10506707 DOI: 10.1002/(sici)1097-0142(19991001)86:7<1216::aid-cncr17>3.0.co;2-o] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Relapses continue to be problematic for adults with acute lymphoblastic leukemia (ALL). New therapies generally are first tested in the salvage setting prior to incorporation into frontline regimens. Defining the prognosis at relapse (or at failure of induction) and subsequently predicting outcome would be useful to select the population in whom to test new strategies, rather than attempting traditional reinduction therapy. METHODS Between March 1980 and March 1997, 314 eligible adults with primary refractory (24%) or primary relapsed (76%) ALL were treated with various chemotherapy or stem cell transplantation (SCT) regimens. The Cox proportional hazards model was used to assess biologic factors and disease history in relation to survival. RESULTS A complete remission (CR) was achieved in 97 patients (31%), 21% died prior to a response, and 49% were refractory to salvage therapy. Of the 76 patients refractory to induction therapy for their de novo ALL, 26 patients (34%) achieved a CR with salvage therapy. The median overall CR duration was 6 months. The median overall survival was 5 months; 24% of the patients were alive at 1 year, and the projected survival at 5 years was 3%. Nineteen patients were alive at the time of last follow-up, 10 with 6 weeks to 10 years of continuous CR from the time of their first salvage therapy. SCT consolidation in second CR was performed in 25% of patients; 28% of those who received allogeneic SCT remain in continuous CR at 4 months, 2(1/2) years, 3(1/2) years, and 10 years, whereas all 8 who received autologous SCT have relapsed. Favorable factors for longer survival by multivariate analysis were age <40 years, absence of circulating blasts, and first CR duration longer than 1 year. Patients were stratified into 4 risk groups: Group 1, with no unfavorable features or only short initial CR duration; Group 2, with only increased age or peripheral blasts; Group 3, with any 2 unfavorable features; and Group 4, with all 3 unfavorable features. The median survival times for each group were 11, 6, 4, and 2 months, respectively; 1-year survival rates were 44%, 25%, 12%, and 9%, respectively (P < 0.01). The resulting model was also predictive for CR rates; the corresponding CR rates were 47%, 35%, 14%, and 9%, respectively (P < 0.01). CONCLUSIONS Salvage therapy for adult ALL patients continues to yield poor results, but it is an area of research where it may be possible to discover new agents or strategies to be incorporated into frontline therapy. The prognostic model derived will be utilized prospectively to select patients for new therapeutic strategies involving such novel agents as liposomal compounds, purine nucleoside phosphorylase inhibitors, and monoclonal antibodies.
Collapse
Affiliation(s)
- D A Thomas
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thomas TE, Miller CL, Eaves CJ. Purification of hematopoietic stem cells for further biological study. Methods 1999; 17:202-18. [PMID: 10080906 DOI: 10.1006/meth.1998.0731] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For many years, the hematopoietic system has provided a convenient and fascinating model for studies of the molecular processes regulating cell growth and differentiation. However, this system also poses considerable challenges because the most primitive "stem" cells as well as their initial differentiating progeny are normally present in hematopoietic tissues at extremely low frequencies and no unique, stable phenotype has yet been identified to allow hematopoietic cells with specific stem and progenitor functions to be measured directly. Rather, this requires the use of functional assays that detect their developmental properties and take several weeks to complete. Accordingly, many investigations of primitive hematopoietic cell behavior and their responses to molecular cues in the environment have relied on the development of cell separation techniques specifically designed for obtaining highly enriched populations of primitive hematopoietic cells. Key to these procedures is the use of a preenrichment step(s) in which differences in cell density, size, or sensitivity to pharmacological agents or surface phenotype are exploited to first "debulk" the sample. This step can then be followed by a more selective antibody-mediated procedure to generate useful numbers of highly purified cells. Batchwise immunoadsorption techniques offer many advantages for obtaining enriched populations of hematopoietic progenitors because they avoid the nonspecific toxicity seen with antibody-mediated cell killing and are suitable for rapidly processing large samples. For any cell separation procedure, a balance must be struck between the purity and the recovery of the desired cells because steps to increase cell purity usually reduce yields. Both the negative and the positive selection techniques are useful strategies but negative selection usually requires one less manipulation step and circumvents potential effects incurred by the presence of antibody on the surface of the cell being isolated. Specific details for the use and results obtained with an immunomagnetic negative column selection technique are then presented.
Collapse
Affiliation(s)
- T E Thomas
- StemCell Technologies Inc., Vancouver, British Columbia, Canada
| | | | | |
Collapse
|