1
|
Foley CJ, Kuliopulos A. Mouse matrix metalloprotease-1a (Mmp1a) gives new insight into MMP function. J Cell Physiol 2014; 229:1875-80. [PMID: 24737602 DOI: 10.1002/jcp.24650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/18/2023]
Abstract
Matrix metalloprotease-1 (MMP1) has been implicated in many human disease processes, however the lack of a well characterized murine homologue has significantly limited the study of MMP1 and the development of MMP-targeted therapeutics. The discovery of murine Mmp1a in 2001, the functional mouse homologue of MMP1, offers a valuable tool for modeling MMP1-mediated processes in mice. Variation in physiologic expression levels of Mmp1a in mice as compared to MMP1 in humans highlights the importance of understanding the similarities and differences between the homologues. Recent studies have demonstrated tumor growth-, invasion-, and angiogenesis-promoting functions of Mmp1a in lung cancer models, consistent with the analogous functions observed for human MMP1. Biochemical investigations have shown that point mutations in the pro-domain of mouse Mmp1a weaken docking between the pro- and catalytic domains, generating an unstable zymogen primed for activation. The difficulty to effectively maintain Mmp1a in the zymogen form may account for the tight control of Mmp1a expression and reduced expression in normal tissue as compared to inflammatory states or cancer. This discovery raises important questions about the activation mechanisms and regulation of the MMP family in general.
Collapse
Affiliation(s)
- Caitlin J Foley
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts; Program in Genetics, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
2
|
Gupta D, Shah HP, Malu K, Berliner N, Gaines P. Differentiation and characterization of myeloid cells. ACTA ACUST UNITED AC 2014; 104:22F.5.1-22F.5.28. [PMID: 24510620 DOI: 10.1002/0471142735.im22f05s104] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ex vivo differentiation of myeloid cells begins with an enriched population of bone marrow-derived hematopoietic stem cells generated by lineage depletion and/or positive selection for CD34(+) antigen (human) or Sca-1(+) (mouse) cells, which are then expanded and subsequently induced in vitro in a process that recapitulates normal myeloid development. Myeloid cell lines include two human leukemic cell lines, NB-4 and HL-60, which have been demonstrated to undergo retinoic acid-induced myeloid development; however, both cell lines exhibit defects in the up-regulation of late-expressed neutrophil-specific genes. Multiple murine factor-dependent cell models of myelopoiesis are also available that express the full range of neutrophil maturation markers, including: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation; EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid; and ER-Hoxb8 cells, which undergo myeloid maturation upon removal of estradiol in the maintenance medium. In this unit, the induction of myeloid maturation in each of these model systems is described, including their differentiation to either neutrophils or macrophages, if applicable. Commonly used techniques to test for myeloid characteristics of developing cells are also described, including flow cytometry and real time RT-PCR.
Collapse
Affiliation(s)
- Dipti Gupta
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Hetavi Parag Shah
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Krishnakumar Malu
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Nancy Berliner
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
3
|
Darsigny M, St-Jean S, Boudreau F. Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitis. Inflamm Bowel Dis 2010; 16:1739-50. [PMID: 20848487 DOI: 10.1002/ibd.21274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cux1 is a ubiquitous transcriptional factor that has been associated with cell proliferation, migration, invasion, and differentiation. Cux1 is an effector of the transforming growth factor beta (TGFβ) pathway, PAR(2) receptor signaling, and cellular migration, mechanisms intimately related to inflammatory bowel diseases (IBD). METHODS CD1 mice treated with dextran sulfate sodium (DSS) in drinking water and cultured intestinal epithelial cells were used to determine Cux1 expression under inflammatory conditions. A commercial cDNA library was used to monitor CUX1 expression in IBD patients. The Cux1(ΔHD/ΔHD) hypomorphic mouse model (Cux1ΔHD) treated with DSS in drinking water was used and the disease severity assessed. RESULTS Cux1 expression increased in cultured intestinal epithelial cells stimulated with tumor necrosis factor alpha (TNFα), in the mouse intestinal epithelium during experimental colitis and in human IBD patient samples. DSS-induced colitis in Cux1ΔHD mice was more severe according to clinical observations such as weight loss, colon length, and rectal bleeding. Histological observations confirmed an increase of IBD-related morphological changes including ulceration and mucosal infiltration of leukocytes in Cux1ΔHD mice. An increased number of pSer(276)-RelA-positive cells and higher expression levels of proinflammatory cytokines were also measured in the colon of Cux1ΔHD diseased animals. Elevated levels of Cxcl1 were measured before and after DSS-treatment and a greater neutrophilic infiltration was quantified in DSS-treated Cux1ΔHD mice. Finally, mucosal healing was significantly impaired in Cux1ΔHD mice during recovery from DSS treatment. CONCLUSIONS CUX1 is increased in response to inflammatory stress and its nuclear expression is crucial to protect against DSS-induced colitis and subsequent mucosal healing.
Collapse
Affiliation(s)
- Mathieu Darsigny
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
4
|
Abstract
Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies result in the conditions leucocyte adhesion deficiency and chronic granulomatous disease. The granules of the neutrophil have traditionally been divided into two or three major types but are instead a continuum where several subtypes can be identified with differences in protein content and propensity for mobilization. This is explained by the 'targeting by timing hypothesis' which states that granules are filled with granule proteins that are synthesized at the time the granule is formed. The heterogeneity of granules arises because the synthesis of granule proteins is individually controlled and major differences exist in the timings of biosynthesis during granulocytopoiesis. This is largely controlled by gene transcription.
Collapse
Affiliation(s)
- M Häger
- Granulocyte Research Laboratory, Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Gaines P, Berliner N. Differentiation and characterization of myeloid cells. ACTA ACUST UNITED AC 2008; Chapter 22:Unit 22F.5. [PMID: 18432952 DOI: 10.1002/0471142735.im22f05s67] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent molecular studies of myeloid differentiation have utilized several in vitro models of myelopoiesis. Hematopoietic progenitors expressing the CD34+ antigen can be induced in vitro in a process that recapitulates the normal myeloid development. Two human leukemic cell lines, NB-4 and HL-60, have been demonstrated to undergo retinoic acid-induced myeloid development, however, both cell lines exhibit defects in the upregulation of late-expressed neutrophil-specific genes. In contrast, two murine factor-dependent cell models of myelopoiesis express the full range of neutrophil maturation markers: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation, and EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid. In this unit, the induction of myeloid maturation in each of these model systems is described. Commonly used techniques to test for myeloid characteristics of developing cells are also described. Together, these assays provide a solid foundation for in vitro investigations of myeloid development.
Collapse
Affiliation(s)
- Peter Gaines
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
6
|
A cascade of Ca(2+)/calmodulin-dependent protein kinases regulates the differentiation and functional activation of murine neutrophils. Exp Hematol 2008; 36:832-44. [PMID: 18400360 DOI: 10.1016/j.exphem.2008.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/28/2008] [Accepted: 02/14/2008] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The function of neutrophils as primary mediators of innate immunity depends on the activity of granule proteins and critical components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Expression of their cognate genes is regulated during neutrophil differentiation by a complex network of intracellular signaling pathways. In this study, we have investigated the role of two members of the calcium/calmodulin-dependent protein kinase (CaMK) signaling cascade, CaMK I-like kinase (CKLiK) and CaMKKalpha, in regulating neutrophil differentiation and functional activation. MATERIALS AND METHODS Mouse myeloid cell lines were used to examine the expression of a CaMK cascade in developing neutrophils and to examine the effects of constitutive activation vs inhibition of CaMKs on neutrophil maturation. RESULTS Expression of CaMKKalpha was shown to increase during neutrophil differentiation in multiple cell lines, whereas expression of CKLiK increased as multipotent progenitors committed to promyelocytes, but then decreased as cells differentiated into mature neutrophils. Expression of constitutively active CKLiKs did not affect morphologic maturation, but caused dramatic decreases in both respiratory burst responses and chemotaxis. This loss of neutrophil function was accompanied by reduced secondary granule and gp91(phox) gene expression. The CaMK inhibitor KN-93 attenuated cytokine-stimulated proliferative responses in promyelocytic cell lines, and inhibited the respiratory burst. Similar data were observed with the CaMKKalpha inhibitor, STO-609. CONCLUSIONS Overactivation of a cascade of CaMKs inhibits neutrophil maturation, suggesting that these kinases play an antagonistic role during neutrophil differentiation, but at least one CaMK is required for myeloid cell expansion and functional activation.
Collapse
|
7
|
Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 2008; 412:84-94. [PMID: 18313863 DOI: 10.1016/j.gene.2008.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023]
Abstract
Cux (Cut homeobox) genes are present in all metazoans. Early reports described many phenotypes caused by cut mutations in Drosophila melanogaster. In vertebrates, CUX1 was originally characterized as the CCAAT-displacement protein (CDP). Another line of investigation revealed the presence of CUX1 within a multi-protein complex called the histone nuclear factor D (HiNF-D). Recent studies led to the identification of several CUX1 isoforms with distinct DNA binding and transcriptional properties. While the CCAAT-displacement activity was implicated in the transcriptional repression of several genes, some CUX1 isoforms were found to participate in the transcriptional activation of some genes. The expression and activity of CUX1 was shown to be regulated through the cell cycle and to be a target of TGF-beta signaling. Mechanisms of regulation include alternative transcription initiation, proteolytic processing, phosphorylation and acetylation. Cell-based assays have established a role for CUX1 in the control of cell cycle progression, cell motility and invasion. In the mouse, gene inactivation as well as over-expression in transgenic mice has revealed phenotypes in multiple organs and cell types. While some phenotypes could be explained by the presumed functions of CUX1 in the affected cells, other phenotypes invoked non-cell-autonomous effects that suggest regulatory functions with an impact on cell-cell interactions. The implication of CUX1 in cancer was suggested first from its over-expression in primary tumors and cancer cell lines and was later confirmed in mouse models.
Collapse
|
8
|
|
9
|
Magalhães MAO, Zhu F, Sarantis H, Gray-Owen SD, Ellen RP, Glogauer M. Expression and translocation of fluorescent-tagged p21-activated kinase-binding domain and PH domain of protein kinase B during murine neutrophil chemotaxis. J Leukoc Biol 2007; 82:559-66. [PMID: 17535984 DOI: 10.1189/jlb.0207126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are key cells of the innate immune system; they are terminally differentiated and therefore difficult to genetically manipulate and study in vitro. In the present study, we describe a protocol to transiently express two fluorescent markers, the PH domain of protein kinase B fused to red fluorescent protein and the p21-activated kinase-binding domain fused to a yellow fluorescent protein, in primary neutrophils. Using this approach, we are able to achieve a transfection efficiency of approximately 30%. The expression of the transfected probes occurred within 2 h and allowed for real-time monitoring of intermediates in key neutrophil activation pathways at the leading edge of migrating cells. We describe here a transfection protocol for primary neutrophils, which preserves fMLP-mediated cell polarization and cytoskeleton reorganization with simultaneous accumulation of PI-3K products and active Rac at the leading edge. The visualization and analysis of transfected fluorescent markers in primary neutrophils are a powerful technique to monitor chemotaxis signaling pathways in real time.
Collapse
Affiliation(s)
- Marco A O Magalhães
- CIHR Group in Matrix Dynamics and Dental Research Institute, Faculty of Dentistry, University of Toronto, 241 Fitzgerald Building, 150 College Street, Toronto, Canada M5S 3E2
| | | | | | | | | | | |
Collapse
|
10
|
Lindsey S, Huang W, Wang H, Horvath E, Zhu C, Eklund EA. Activation of SHP2 Protein-tyrosine Phosphatase Increases HoxA10-induced Repression of the Genes Encoding gp91PHOX and p67PHOX. J Biol Chem 2007; 282:2237-49. [PMID: 17138561 DOI: 10.1074/jbc.m608642200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CYBB and NCF2 genes encode the phagocyte oxidase proteins gp91(PHOX) and p67(PHOX), respectively. These genes are transcribed after the promyelocyte stage of differentiation, and transcription continues until cell death. In undifferentiated myeloid cells, homologous cis-elements in the CYBB and NCF2 genes are repressed by the homeodomain transcription factor HoxA10. During cytokine-induced myelopoiesis, tyrosine phosphorylation of HoxA10 decreases binding affinity for the CYBB and NCF2 cis-elements. This abrogates HoxA10-induced transcriptional repression as differentiation proceeds. Therefore, mechanisms involved in differentiation stage-specific HoxA10 tyrosine phosphorylation are of interest because HoxA10 phosphorylation modulates myeloid-specific gene transcription. In this study, we found that HoxA10 is a substrate for SHP2 protein-tyrosine phosphatase in undifferentiated myeloid cells. In contrast, HoxA10 is a substrate for a constitutively active mutant form of SHP2 in both undifferentiated and differentiating myeloid cells. Expression of such SHP2 mutants results in persistent HoxA10 repression of CYBB and NCF2 transcription during myelopoiesis. Both HoxA10 overexpression and activating SHP2 mutations have been described in human myeloid malignancies. Therefore, our results suggest that these mutations could cooperate, leading to decreased myeloid-specific gene transcription and functional differentiation block in myeloid cells with both defects.
Collapse
Affiliation(s)
- Stephan Lindsey
- Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
11
|
Iotti G, Ferrari-Amorotti G, Rosafio C, Corradini F, Lidonnici MR, Ronchetti M, Bardini M, Zhang Y, Martinez R, Blasi F, Calabretta B. Expression of CCL9/MIP-1gamma is repressed by BCR/ABL and its restoration suppresses in vivo leukemogenesis of 32D-BCR/ABL cells. Oncogene 2006; 26:3482-91. [PMID: 17160016 DOI: 10.1038/sj.onc.1210146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transformation of hematopoietic cells by the BCR/ABL oncogene is caused by perturbation of signal transduction pathways leading to altered patterns of gene expression and activity. By oligonucleotide microarray hybridization of polysomal RNA of untreated and STI571-treated 32D-BCR/ABL cells, we identified the beta-chemokine CCL9 as a gene regulated by BCR/ABL in a tyrosine kinase-dependent manner. BCR/ABL repressed CCL9 expression at the transcriptional level by mechanisms involving suppression of p38 MAP kinase, and modulation of the activity of CDP/cut and C/EBPalpha, two transcription regulators of myeloid differentiation. However, repression of C/EBP-dependent transcription did not prevent the induction of CCL9 expression by STI571, suggesting that C/EBPalpha is involved in maintaining rather than in inducing CCL9 expression. Restoration of CCL9 expression in 32D-BCR/ABL cells had no effect on the in vitro proliferation of these cells, but reduced their leukemogenic potential in vivo, possibly by recruitment of CD3-positive immune cells. Together, these findings suggest that downregulation of chemokine expression may be involved in BCR/ABL-dependent leukemogenesis by altering the relationship between transformed cells and the microenvironment.
Collapse
MESH Headings
- Animals
- Benzamides
- Bone Marrow Cells/pathology
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Carcinogenicity Tests
- Cell Proliferation
- Chemokines, CC
- Down-Regulation
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Imatinib Mesylate
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tumor Cells, Cultured
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- G Iotti
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, Deogracias MP, Roelofs KJ, Woodrum DT, Ennis TL, Henke PK, Stanley JC, Thompson RW, Upchurch GR. Neutrophil Depletion Inhibits Experimental Abdominal Aortic Aneurysm Formation. Circulation 2005; 112:232-40. [PMID: 16009808 DOI: 10.1161/circulationaha.104.517391] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Neutrophils may be an important source of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two matrix-degrading enzymes thought to be critical in the formation of an abdominal aortic aneurysm (AAA). The purpose of this investigation was to test the hypothesis that neutrophil depletion would limit experimental AAA formation by altering one or both of these enzymes.
Methods and Results—
Control, rabbit serum–treated (RS; n=27) or anti-neutrophil-antibody–treated (anti-PMN; n=25) C57BL/6 mice underwent aortic elastase perfusion to induce experimental aneurysms. Anti-PMN–treated mice became neutropenic (mean, 349 cells/μL), experiencing an 84% decrease in the circulating absolute neutrophil count (
P
<0.001) before elastase perfusion. Fourteen days after elastase perfusion, control mice exhibited a mean aortic diameter (AD) increase of 104±14% (
P
<0.0001), and 67% developed AAAs, whereas anti-PMN–treated mice exhibited a mean AD increase of 42±33%, with 8% developing AAAs. The control group also had increased tissue neutrophils (20.3 versus 8.6 cells per 5 high-powered fields [HPFs];
P
=0.02) and macrophages (6.1 versus 2.1 cells per 5 HPFs,
P
=0.005) as compared with anti-PMN–treated mice. There were no differences in monocyte chemotactic protein-1 or macrophage inflammatory protein-1α chemokine levels between groups by enzyme-linked immunosorbent assay. Neutrophil collagenase (MMP-8) expression was detected only in the 14-day control mice, with increased MMP-8 protein levels by Western blotting (
P
=0.017), and MMP-8–positive neutrophils were seen almost exclusively in this group. Conversely, there were no statistical differences in MMP-2 or MMP-9 mRNA expression, protein levels, enzyme activity, or immunostaining patterns between groups. When C57BL/6 wild-type (n=15) and MMP-8–deficient mice (n=17) were subjected to elastase perfusion, however, ADs at 14 days were no different in size (134±7.9% versus 154±9.9%;
P
=0.603), which suggests that MMP-8 serves only as a marker for the presence of neutrophils and is not critical for AAA formation.
Conclusions—
Circulating neutrophils are an important initial component of experimental AAA formation. Neutrophil depletion inhibits AAA development through a non–MMP-2/9–mediated mechanism associated with attenuated inflammatory cell recruitment.
Collapse
Affiliation(s)
- Jonathan L Eliason
- Jobst Vascular Research Laboratories, Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Khanna-Gupta A, Zibello T, Idone V, Sun H, Lekstrom-Himes J, Berliner N. Human neutrophil collagenase expression is C/EBP-dependent during myeloid development. Exp Hematol 2005; 33:42-52. [PMID: 15661397 DOI: 10.1016/j.exphem.2004.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 09/27/2004] [Accepted: 09/27/2004] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Human neutrophil collagenase (HNC) is one of several secondary granule proteins (SGP) expressed late in the myeloid maturation pathway. SGPs are encoded by unlinked and functionally diverse genes that are hypothesized to be coordinately regulated at the transcriptional level and demonstrate uniform dysregulation in leukemic cells. In support of the hypothesis that tissue and stage-specific expression of SGP genes is regulated by shared factor(s), we sought to identify factors responsible for positive regulation of the SGP genes. METHODS Using 5' deletion analysis, we identified a minimal HNC promoter located within the first 193 bp upstream of the transcription start site. Three CCAAT enhancer binding protein (C/EBP) sites were identified within this region and their functional importance was confirmed by mutational analysis, gel retardation, and oligonucleotide pulldown assays. Using chromatin immunoprecipitation (ChIP), we demonstrated that C/EBPalpha binds to the SGP gene promoters lactoferrin and HNC in nonexpressing cells. Upon induction of maturation, C/EBPalpha binds to these promoters and this binding correlates with the expression of both SGP genes. CONCLUSION We conclude that in the later stages of myeloid development, SGP genes are coordinately upregulated, and that members of the C/EBP family of transcription factors, in particular C/EBPalpha and C/EBPepsilon, play specific and unique roles in upregulating their expression.
Collapse
Affiliation(s)
- Arati Khanna-Gupta
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gaines P, Chi J, Berliner N. Heterogeneity of functional responses in differentiated myeloid cell lines reveals EPRO cells as a valid model of murine neutrophil functional activation. J Leukoc Biol 2005; 77:669-79. [PMID: 15673544 DOI: 10.1189/jlb.1004567] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mature neutrophils display multiple functional responses upon activation that include chemotaxis, adhesion to and transmigration across endothelial cells, phagocytosis, and pathogen destruction via potent microbicidal enzymes and reactive oxygen species. We are using myeloid cell line models to investigate the signaling pathways that govern neutrophil functional activation. To facilitate these studies, we have performed a direct comparison of functional responses of human and murine myeloid cell line models upon neutrophil differentiation. Our results show that EPRO cells, promyelocytes that undergo complete neutrophil maturation, demonstrate a full spectrum of functional responses, including respiratory burst, chemotaxis toward two murine chemokines, and phagocytosis. We also extend previous studies of granulocyte-colony stimulating factor-induced 32Dcl3 cells, showing they demonstrate chemotaxis and phogocytosis but completely lack a respiratory burst as a result of the absent expression of a critical oxidase subunit, gp91(phox). Induced human leukemic NB4 and HL-60 cells display a respiratory burst and phagocytosis but have defective chemotaxis to multiple chemoattractants. We also tested each cell line for the ability to up-regulate cell-surface membrane-activated complex-1 (Mac-1) expression upon activation, a response mediating neutrophil adhesion and a surrogate marker for degranulation. We show that EPRO cells, but not 32Dcl3 or NB4, significantly increase Mac-1 surface expression upon functional activation. Together, these data show that EPRO and MPRO cells demonstrate complete, functional activation upon neutrophil differentiation, suggesting these promyelocytic models accurately reflect the functional capacity of mature murine neutrophils.
Collapse
Affiliation(s)
- Peter Gaines
- Section of Hematology, WWW 428, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
15
|
Maun NA, Gaines P, Khanna-Gupta A, Zibello T, Enriquez L, Goldberg L, Berliner N. G-CSF signaling can differentiate promyelocytes expressing a defective retinoic acid receptor: evidence for divergent pathways regulating neutrophil differentiation. Blood 2003; 103:1693-701. [PMID: 14604978 DOI: 10.1182/blood-2002-10-3247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several lines of investigation suggest that granulocyte colony-stimulating factor (G-CSF) augments all-trans retinoic acid (ATRA)-induced neutrophil differentiation in acute promyelocytic leukemia (APL). We sought to characterize the relationship between G-CSF- and ATRA-mediated neutrophil differentiation. We established a G-CSF receptor-transduced promyelocytic cell line, EPRO-Gr, derived from the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent EPRO cell line harboring a dominant-negative retinoic acid receptor alpha (RARalpha). In EPRO-Gr, neutrophil differentiation occurs either in GM-CSF upon addition of ATRA or upon induction with G-CSF alone. Transient transfection of EPRO-Gr cells with a RARE-containing reporter plasmid demonstrates increased activity in the presence of ATRA, but not G-CSF, while STAT3 phosphorylation occurs only in response to G-CSF. This suggests that ATRA-mediated differentiation of EPRO-Gr cells occurs via a RARE-dependent, STAT3-independent pathway, while G-CSF-mediated differentiation occurs via a RARE-independent, STAT3-dependent pathway. ATRA and G-CSF thus regulate differentiation by divergent pathways. We characterized these pathways in the APL cell line, NB4. ATRA induction of NB4 cells resulted in morphologic differentiation and up-regulation of C/EBPepsilon and G-CSFR, but not in STAT3 phosphorylation. The addition of G-CSF with ATRA during NB4 induction resulted in STAT3 phosphorylation but did not enhance differentiation. These results may elucidate how G-CSF and ATRA affect the differentiation of primary and ATRA-resistant APL cells.
Collapse
Affiliation(s)
- Noel A Maun
- Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sykes DB, Kamps MP. Estrogen-regulated conditional oncoproteins: tools to address open questions in normal myeloid cell function, normal myeloid differentiation, and the genetic basis of differentiation arrest in myeloid leukemia. Leuk Lymphoma 2003; 44:1131-9. [PMID: 12916864 DOI: 10.1080/1042819031000063444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neutrophils, monocytes and dendritic cells are effectors of innate immunity and essential coactivators in the acquired immune response. Understanding the biochemical basis of their mature cell functions, their differentiation from hematopoietic progenitors, and the mechanisms by which myeloid leukemia oncogenes block their differentiation programs, continue to be areas of active research. Four major problems limit progress in these fields. First, the biochemical analysis of mature cells is limited by the time and cost of purifying neutrophils, monocytes, or dendritic cells from wild-type and genetically modified mouse strains. Second, while immortal myeloid cell lines are used to understand the transcriptional basis of normal terminal differentiation following their treatment with differentiationpromoting agents (e.g. G-CSF, IL-6, RA, TPA), these cells contain stable defects responsible for their immortalization, and the degree to which they model normal differentiation is often incomplete. Third, these same inducible cell lines are used as model systems to determine how myeloid oncoproteins prevent differentiation; however, oncoproteins that block differentiation of marrow progenitors cultured in GM-CSF or IL-3 but permit their differentiation in response to G-CSF or RA, do not score effectively in these assays (e.g. Hoxa9, Mll-Enl). Fourth, there is no reproducible method to derive myeloid progenitor lines that execute predictable terminal differentiation to neutrophils, monocytes, or dendritic cells. Developing this type of system is needed to evaluate how myeloid gene inactivation by knockout technologies alters lineage-specific differentiation and mature cell function. Conditional myeloid oncoproteins provide a tool to solve these research problems by providing a predictable and inexpensive means of expanding, in culture, GM-CSF- or IL-3-dependent myeloid progenitors from any genotype, and by permitting their synchronous differentiation to neutrophils, monocytes, or dendritic cells under defined culture conditions following inactivation of the conditional oncoprotein. This system of conditionally immortalizing normal bone marrow precursors provides the large numbers of normal cells required for analysis of cell biology and protein biochemistry, and further provides a model system in which to study the genetic mechanisms controlling terminal differentiation and how specific oncoproteins expressed in the cell lines prevent this differentiation program. The ability to derive conditionally-immortalized progenitor lines from knock-out mice provides cell lines for the reconstitution of knockout gene function and subsequent dissection of knockout protein function by mutational analysis. Finally, conditional myeloid cell lines can be established from both ES cells and from d10 fetal liver cells, allowing for the analysis of embryonic lethal mutants on both the maturation and terminal differentiation of mature myeloid cells. In this review,we summarize the importance and limitations of current approaches in myeloid cell research, and how estrogen-regulated conditional oncoproteins help to solve these problems.
Collapse
Affiliation(s)
- David B Sykes
- Department of Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0663, USA
| | | |
Collapse
|
17
|
Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PVN, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003; 18:960-74. [PMID: 12817748 DOI: 10.1359/jbmr.2003.18.6.960] [Citation(s) in RCA: 440] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique mutation in LRP5 is associated with high bone mass in man. Transgenic mice expressing this LRP5 mutation have a similar phenotype with high bone mass and enhanced strength. These results underscore the importance of LRP5 in skeletal regulation and suggest targets for therapies for bone disease. A mutation (G171V) in the low-density lipoprotein receptor related protein 5 (LRP5) has been associated with high bone mass (HBM) in two independent human kindreds. To validate the role of the mutation, several lines of transgenic mice were created expressing either the human LRP5 G171V substitution or the wildtype LRP5 gene in bone. Volumetric bone mineral density (vBMD) analysis by pQCT showed dramatic increases in both total vBMD (30-55%) and trabecular vBMD (103-250%) of the distal femoral metaphysis and increased cortical size of the femoral diaphysis in mutant G171V transgenics at 5, 9, 17, 26, and 52 weeks of age (p < 0.01 for all). In addition, high-resolution microcomputed tomography (microCT) analysis of the distal femorae and lumbar vertebrae revealed an increase (110-232%) in trabecular bone volume fraction caused by both increased trabecular number (41-74%) and increased trabecular thickness (34-46%; p < 0.01 for all) in the mutant G171V mice. The increased bone mass was associated with significant increases in vertebral compressive strength (80-140%) and the increased cortical size with significant increases in femoral bending strength (50-130%). There were no differences in osteoclast number at 17 weeks of age. However, compared with littermate controls, the mutant G171V transgenic mice showed an increase in actively mineralizing bone surface, enhanced alkaline phosphatase staining in osteoblasts, and a significant reduction in the number of TUNEL-positive osteoblasts and osteocytes. These results suggest that the increased bone mineral density in mutant G171V mice was caused by increased numbers of active osteoblasts, which could in part be because of their increased functional lifespan. While slight bone anabolic activity was observed from overexpression of the wildtype LRP5 gene, it is clear that the G171V mutation, rather than overexpression of the receptor itself, is primarily responsible for the dramatic HBM bone effects. Together, these findings establish the importance of this novel and unexpected role of a lipoprotein receptor in regulating bone mass and afford a new model to explore LRP5 and its recent association with Wnt signaling in bone biology.
Collapse
Affiliation(s)
- Philip Babij
- Genomics, Wyeth Research, Andover, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bjerregaard MD, Jurlander J, Klausen P, Borregaard N, Cowland JB. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 2003; 101:4322-32. [PMID: 12560239 DOI: 10.1182/blood-2002-03-0835] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In vivo distribution of myeloid transcription factors during granulopoiesis was investigated by Northern and Western blotting in 3 neutrophil precursor populations from human bone marrow: immature (myeloblasts [MBs] and promyelocytes [PMs]); intermediate mature (myelocytes [MCs] and metamyelocytes [MMs]); and mature neutrophil cells (band cells [BCs] and segmented neutrophil cells [SCs]). Nonneutrophil cells were removed with magnetic-bead-coupled antibodies against CD2, CD3, CD14, CD19, CD56, CD61, glycophorin-A, and CD49d (BCs/SCs) before RNA and protein extraction. Polymorphonuclear neutrophils (PMNs) from peripheral blood depleted with anti-CD49d antibodies were also included. Expression of acute myeloid leukemia 1b (AML-1b), c-myb, GATA-1, and CCAAT/enhancer binding protein gamma (C/EBP-gamma) was seen primarily in MBs/PMs, and little expression was found in more mature cells. The level of C/EBP-alpha was constant in the bone marrow-derived cells and decreased in PMNs. C/EBP-epsilon was found primarily in MCs/MMs and was almost absent in more mature cells. Expression of C/EBP-beta, C/EBP-delta, and C/EBP-zeta was observed from the MC/MM stage onward, with peak levels in the most mature cells. The amount of PU.1 increased throughout maturation whereas the level of Elf-1 reached a nadir in MCs/MMs The PU.1 coactivator c-jun and c-jun's dimerization partner c-fos were both detectable in MCs/MMs and increased in amount with maturity. CCAAT displacement protein (CDP) was found at comparable levels at all stages of differentiation. This demonstrates a highly individualized expression of the transcription factors, which can form the basis for the heterogeneous expression of granule proteins during granulopoiesis and cell cycle arrest in metamyelocytes.
Collapse
|
19
|
Khanna-Gupta A, Zibello T, Sun H, Gaines P, Berliner N. Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha and C/EBP epsilon ) and CDP/cut in myeloid maturation-induced lactoferrin gene expression. Blood 2003; 101:3460-8. [PMID: 12522000 DOI: 10.1182/blood-2002-09-2767] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In vitro models of granulopoiesis involving the inducible expression of either CCAAT enhancer binding protein alpha (C/EBP alpha) or C/EBP epsilon in myeloid cells have been shown to lead to the induction of a granulocytic maturation program accompanied by the expression of myeloid-specific genes. Since members of the C/EBP family of transcription factors recognize and bind to similar DNA-binding motifs, it has been difficult to elucidate the specific role of each of the C/EBP family members in eliciting myeloid gene expression. In order to address this issue, we focused on the expression of the lactoferrin (LF) gene. LF expression is transcriptionally regulated in a C/EBP-dependent manner in myeloid cells. Using chromatin immunoprecipitation (ChIP) analysis we demonstrate that C/EBP alpha binds to the LF promoter in nonexpressing cells. Upon induction of maturation, C/EBP epsilon binds to the LF promoter, which correlates with LF expression. Lack of LF expression in the acute promyelocytic leukemia cell line NB4, which harbors the t(15;17) translocation, cannot be correlated with aberrant binding at the C/EBP site in the LF promoter. It is, however, associated with the persistent binding of the silencer CCAAT displacement protein (CDP/cut) to the LF promoter in these cells. We conclude that C/EBP alpha, C/EBP epsilon, and CDP/cut all play definitive roles in regulating late gene expression during normal myeloid development.
Collapse
Affiliation(s)
- Arati Khanna-Gupta
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
20
|
Truscott M, Raynal L, Premdas P, Goulet B, Leduy L, Bérubé G, Nepveu A. CDP/Cux stimulates transcription from the DNA polymerase alpha gene promoter. Mol Cell Biol 2003; 23:3013-28. [PMID: 12665598 PMCID: PMC152546 DOI: 10.1128/mcb.23.8.3013-3028.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDP/Cux (CCAAT-displacement protein/cut homeobox) contains four DNA binding domains, namely, three Cut repeats (CR1, CR2, and CR3) and a Cut homeodomain. CCAAT-displacement activity involves rapid but transient interaction with DNA. More stable DNA binding activity is up-regulated at the G(1)/S transition and was previously shown to involve an N-terminally truncated isoform, CDP/Cux p110, that is generated by proteolytic processing. CDP/Cux has been previously characterized as a transcriptional repressor. However, here we show that expression of reporter plasmids containing promoter sequences from the human DNA polymerase alpha (pol alpha), CAD, and cyclin A genes is stimulated in cotransfections with N-terminally truncated CDP/Cux proteins but not with full-length CDP/Cux. Moreover, expression of the endogenous DNA pol alpha gene was stimulated following the infection of cells with a retrovirus expressing a truncated CDP/Cux protein. Chromatin immunoprecipitation (ChIP) assays revealed that CDP/Cux was associated with the DNA pol alpha gene promoter specifically in the S phase. Using linker scanning analyses, in vitro DNA binding, and ChIP assays, we established a correlation between binding of CDP/Cux to the DNA pol alpha promoter and the stimulation of gene expression. Although we cannot exclude the possibility that stimulation of gene expression by CDP/Cux involved the repression of a repressor, our data support the notion that CDP/Cux participates in transcriptional activation. Notwithstanding its mechanism of action, these results establish CDP/Cux as an important transcriptional regulator in the S phase.
Collapse
Affiliation(s)
- Mary Truscott
- Molecular Oncology Group, McGill University Health Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
21
|
Agarwal D, Goodison S, Nicholson B, Tarin D, Urquidi V. Expression of matrix metalloproteinase 8 (MMP-8) and tyrosinase-related protein-1 (TYRP-1) correlates with the absence of metastasis in an isogenic human breast cancer model. Differentiation 2003; 71:114-25. [PMID: 12641565 DOI: 10.1046/j.1432-0436.2003.710202.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multi-step nature of metastasis poses difficulties in both design and interpretation of experiments to unveil the mechanisms causing the process. In order to facilitate such studies, we have previously derived a pair of breast tumor cell lines that originate from the same breast tumor but which have diametrically opposite metastatic capabilities. In this system, the monoclonal cell line M-4A4 is metastatic to the lungs of athymic mice, whereas clone NM-2C5 is equally tumorigenic but non-metastatic. Here, we report that representational difference analysis (RDA) of cDNA obtained from the two clonal populations revealed an increased expression of tyrosinase-related protein-1 (TYRP-1) and the matrix metalloproteinase-8 (MMP-8) genes in the non-metastatic cell line. RNA and protein analyses in cultured cells and in primary xenograft tissues confirmed that the non-metastatic cell line expresses TYRP-1 and MMP-8 at levels that are at least 20-fold higher than the metastatic counterpart. Other members of the MMP family (MMP-9 and MMP-2) and the tissue inhibitor of metalloproteinase-2 (TIMP-2) were found to be expressed at similar levels in both populations. The effects of MMP-8 and TYRP-1 on in vitro invasion and migration were assessed in cells whose expression of these genes was altered by stable transduction with sense and antisense constructs. Specific down-regulation of MMP-8 in non-metastatic NM-2C5 cells resulted in a 2.5-fold increased capacity to invade through Matrigel. Unlike other members of the matrix metalloproteinase family, MMP-8 has not previously been implicated in the processes of tumorigenesis or metastasis. The successful identification of two proteins that are differentially expressed in these matched clonal cell lines and the tumors that they produce demonstrates the feasibility of using this approach to search for genes that are associated with aberrant differentiation toward metastatic behavior.
Collapse
Affiliation(s)
- Dianne Agarwal
- University of California San Diego, Cancer Center and Department of Pathology, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
A common myeloid progenitor gives rise to both granulocytes and monocytes. The early stages of granulopoiesis are mediated by the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and the later stages require C/EBPepsilon, PU.1, and CDP. Monocyte development requires PU.1 and interferon consensus sequence binding protein and can be induced by Maf-B, c-Jun, or Egr-1. Cytokine receptor signals modulate transcription factor activities but do not determine cell fates. Several mechanisms orchestrate the myeloid developmental program, including cooperative gene regulation, protein:protein interactions, regulation of factor levels, and induction of cell cycle arrest.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
23
|
Abstract
Granulocytes and monocytes develop from a common myeloid progenitor. Early granulopoiesis requires the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and terminal neutrophil differentiation is dependent upon C/EBPepsilon, PU.1, Sp1, CDP, and HoxA10. Monopoiesis can be induced by Maf-B, c-Jun, or Egr-1 and is dependent upon PU.1, Sp1, and ICSBP. Signals eminating from cytokine receptors modulate factor activities but do not determine cell fates. Orchestration of the myeloid developmental program is achieved via cooperative gene regulation, via synergistic and inhibitory protein-protein interactions, via promoter auto-regulation and cross-regulation, via regulation of factor levels, and via induction of cell cycle arrest: For example, c-Myb and C/EBPalpha cooperate to activate the mim-1 and NE promoters, PU.1, C/EBPalpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes. PU.1:GATA-1 interaction and C/EBP suppression of FOG transcription inhibits erythroid and megakaryocyte gene expression. c-Jun:PU.1, ICSBP:PU.1, and perhaps Maf:Jun complexes induce monocytic genes. PU.1 and C/EBPalpha activate their own promoters, C/EBPalpha rapidly induces PU.1 and C/EBPepsilon RNA expression, and RARalpha activates the C/EBPepsilon promoter. Higher levels of PU.1 are required for monopoiesis than for B-lymphopoiesis, and higher C/EBP levels may favor granulopoiesis over monopoiesis. CBF and c-Myb stimulate proliferation whereas C/EBPalpha induces a G1/S arrest; cell cycle arrest is required for terminal myelopoiesis, perhaps due to expression of p53 or hypo-phosphorylated Rb.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA.
| |
Collapse
|
24
|
Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van Wart HE, Poole AR. Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 2002; 17:639-51. [PMID: 11918221 DOI: 10.1359/jbmr.2002.17.4.639] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Collagenases are involved in cartilage matrix resorption. Using bovine fetal chondrocytes isolated from physeal cartilages and separated into a distinct prehypertrophic subpopulation, we show that in serum-free culture they elaborate an extracellular matrix and differentiate into hypertrophic chondrocytes. This is characterized by expression of type X collagen and the transcription factor Cbfal and increased incorporation of 45Ca2+ in the extracellular matrix, which is associated with matrix calcification. Collagenase activity, attributable only to matrix metalloproteinase (MMP) 13 (collagenase-3), is up-regulated on differentiation. A nontoxic carboxylate inhibitor of MMP-13 prevents this differentiation; it suppresses expression of type X collagen, Cbfal, and MMP-13 and inhibits increased calcium incorporation in addition to inhibiting degradation of type II collagen in the extracellular matrix. General synthesis of matrix proteins is unaffected. These results suggest that proteolysis involving MMP-13 is required for chondrocyte differentiation that occurs as part of growth plate development and which is associated with matrix mineralization.
Collapse
Affiliation(s)
- C William Wu
- Joint Diseases Laboratory, Shriners Hospitals for Children, Canadian Hospital, Montreal, Quebec
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Wall SJ, Edwards DR. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): a comparison of primer-dropping, competitive, and real-time RT-PCRs. Anal Biochem 2002; 300:269-73. [PMID: 11779121 DOI: 10.1006/abio.2001.5458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Steven J Wall
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | |
Collapse
|
27
|
Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, Tucker PW, Neufeld EJ, Scheuermann RH. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 2001; 98:3658-67. [PMID: 11739170 DOI: 10.1182/blood.v98.13.3658] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CCAAT displacement protein (cux/CDP) is an atypical homeodomain protein that represses expression of several developmentally regulated lymphoid and myeloid genes in vitro, including gp91-phox, immunoglobulin heavy chain, the T-cell receptor beta and gamma chains, and CD8. To determine how this activity affects cell development in vivo, a hypomorphic allele of cux/CDP was created by gene targeting. Homozygous mutant mice (cux/CDP(Delta HD/Delta HD)) demonstrated a partial neonatal lethality phenotype. Surviving animals suffered from a wasting disease, which usually resulted in death between 2 and 3 weeks of age. Analysis of T lymphopoiesis demonstrated that cux/CDP(Delta HD/Delta HD) mice had dramatically reduced thymic cellularity due to enhanced apoptosis, with a preferential loss of CD4(+)CD8(+) thymocytes. Ectopic CD25 expression was also observed in maturing thymocytes. B lymphopoiesis was also perturbed, with a 2- to 3-fold reduction in total bone marrow B-lineage cells and a preferential loss of cells in transition from pro-B/pre-BI to pre-BII stages due to enhanced apoptosis. These lymphoid abnormalities were independent of effects related to antigen receptor rearrangement. In contrast to the lymphoid demise, cux/CDP(Delta HD/Delta HD) mice demonstrated myeloid hyperplasia. Bone marrow reconstitution experiments identified that many of the hematopoietic defects were linked to microenvironmental effects, suggesting that underexpression of survival factors or overexpression of death-inducing factors accounted for the phenotypes observed. Tumor necrosis factor (TNF) levels were elevated in several tissues, especially thymus, suggesting that TNF may be a target gene for cux/CDP-mediated repression. These data suggest that cux/CDP regulates normal hematopoiesis, in part, by modulating the levels of survival and/or apoptosis factors expressed by the microenvironment.
Collapse
Affiliation(s)
- A M Sinclair
- Department of Pathology and Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, 75390-9072, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hawkins SM, Kohwi-Shigematsu T, Skalnik DG. The matrix attachment region-binding protein SATB1 interacts with multiple elements within the gp91phox promoter and is down-regulated during myeloid differentiation. J Biol Chem 2001; 276:44472-80. [PMID: 11577075 DOI: 10.1074/jbc.m104193200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The gp91(phox) gene encodes a component of the respiratory burst NADPH oxidase complex and is highly expressed in mature myeloid cells. The transcriptional repressor CCAAT displacement protein binds to at least five sites within the proximal gp91(phox) promoter and represses expression prior to terminal phagocyte differentiation. The DNA binding activity of CCAAT displacement protein decreases during terminal phagocyte differentiation, thus permitting the binding of transcriptional activators and induction of gp91(phox) expression. We report here that the matrix attachment region-binding protein SATB1 interacts with at least seven sites within the -1542 to +12-base pair gp91(phox) promoter. Four additional binding sites for CCAAT displacement protein were also identified. Furthermore, the most proximal SATB1-binding site within the gp91(phox) promoter binds specifically to the nuclear matrix fraction in vitro. SATB1 expression is down-regulated during terminal myeloid cell differentiation, coincident with induction of gp91(phox) expression. Transient transfection assays demonstrate that a SATB1-binding site derived from the gp91(phox) promoter represses promoter activity in cells expressing SATB1. These findings underscore the importance of transcriptional repression in the regulation of gp91(phox) expression and reveal a candidate myeloid cell target gene for SATB1, a factor previously found to be essential for T cell development.
Collapse
Affiliation(s)
- S M Hawkins
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
29
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
30
|
Khanna-Gupta A, Zibello T, Sun H, Lekstrom-Himes J, Berliner N. C/EBP epsilon mediates myeloid differentiation and is regulated by the CCAAT displacement protein (CDP/cut). Proc Natl Acad Sci U S A 2001; 98:8000-5. [PMID: 11438745 PMCID: PMC35457 DOI: 10.1073/pnas.141229598] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Accepted: 05/09/2001] [Indexed: 01/19/2023] Open
Abstract
Neutrophils from CCAAT enhancer binding protein epsilon (C/EBP epsilon) knockout mice have morphological and biochemical features similar to those observed in patients with an extremely rare congenital disorder called neutrophil-specific secondary granule deficiency (SGD). SGD is characterized by frequent bacterial infections attributed, in part, to the lack of neutrophil secondary granule proteins (SGP). A mutation that results in loss of functional C/EBP epsilon activity has recently been described in an SGD patient, and has been postulated to be the cause of the disease in this patient. We have previously demonstrated that overexpression of CCAAT displacement protein (CDP/cut), a highly conserved transcriptional repressor of developmentally regulated genes, suppresses expression of SGP genes in 32Dcl3 cells. This phenotype resembles that observed in both C/EBP epsilon(-/-) mice and in SGD patients. Based on these observations we investigated potential interactions between C/EBP epsilon and CDP/cut during neutrophil maturation. In this study, we demonstrate that inducible expression of C/EBP epsilon in 32Dcl3/tet cells results in granulocytic differentiation. Furthermore, Northern blot analysis of G-CSF-induced CDP/cut overexpressing 32Dcl3 cells revealed absence of C/EBP epsilon mRNA. We therefore hypothesize that C/EBP epsilon positively regulates SGP gene expression, and that C/EBP epsilon is itself negatively regulated by CDP/cut during neutrophil maturation. We further demonstrate that the C/EBP epsilon promoter is regulated by CDP/cut during myeloid differentiation.
Collapse
Affiliation(s)
- A Khanna-Gupta
- Section of Hematology WWW 428, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
As a consequence of its characterization using both in vitro and knockout mouse models, the myeloid-specific transcription factor, CCAAT/enhancer binding protein (C/EBP)epsilon, has been identified as a critical regulator of terminal granulopoiesis and one of the causative mutations in the human disease, neutrophil-specific granule deficiency. C/EBPs are a family of transcription factors sharing numerous structural and functional features and to date include C/EBPalpha, -beta, -gamma, -delta, -epsilon, and -zeta. C/EBPalpha was the first family member isolated and characterized, its essential role in hepatocyte and adipocyte differentiation demonstrated in knockout mouse models. Subsequent analysis of the hematopoietic elements in fetal mouse liver revealed its critical role in myelopoiesis. Understanding the role of C/EBPepsilon in terminal granulopoiesis in the context of other known transcription factors is ongoing with analysis of deficient and conditionally expressing cell lines and knockout models. Mouse models with targeted gene disruptions have contributed greatly to our understanding of the transcriptional regulation of granulopoiesis. Further manipulation of these models and other conditional expression systems have bypassed some of the limitations of knockout models and helped delineate the interactions of different transcription factors in affecting granulocyte development. Phenotypic expression of the loss of C/EBPepsilon in mice is extreme, resembling absolute neutropenia with systemic infection with P. aeruginosa. Future work will need to explore the regulation of C/EBPepsilon expression, its functional interactions with other transcriptional regulators such as PU.1, and its role in monocyte differentiation and function in the mouse.
Collapse
Affiliation(s)
- J A Lekstrom-Himes
- The Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
32
|
Nepveu A. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 2001; 270:1-15. [PMID: 11403998 DOI: 10.1016/s0378-1119(01)00485-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CDP/Cux/Cut proteins are an evolutionarily conserved family of proteins containing several DNA binding domains: one Cut homeodomain and one, two or three Cut repeats. In Drosophila melanogaster, genetic studies indicated that Cut functions as a determinant of cell-type specification in several tissues, notably in the peripheral nervous system, the wing margin and the Malpighian tubule. Moreover, Cut was found to be a target and an effector of the Notch signaling pathway. In vertebrates, the same functions appear to be fulfilled by two cut-related genes with distinct patterns of expression. Cloning of the cDNA for the CCAAT-displacement protein (CDP) revealed that it was the human homologue of Drosophila Cut. CDP was later found be the DNA binding protein of the previously characterized histone nuclear factor D (HiNF-D). CDP and its mouse counterpart, Cux, were also reported to interact with regulatory elements from a large number of genes, including matrix attachment regions (MARs). CDP/Cut proteins were found generally to function as transcriptional repressors, although a participation in transcriptional activation is suggested by some data. Repression by CDP/Cut involves competition for binding site occupancy and active repression via the recruitment of a histone deacetylase activity. Various combinations of Cut repeats and the Cut homeodomains can generate distinct DNA binding activities. These activities are elevated in proliferating cells and decrease during terminal differentiation. One activity, involving the Cut homeodomain, is upregulated in S phase. CDP/Cut function is regulated by several post-translational modification events including phosphorylation, dephosphorylation, and acetylation. The CUTL1 gene in human was mapped to 7q22, a chromosomal region that is frequently rearranged in various cancers.
Collapse
Affiliation(s)
- A Nepveu
- Molecular Oncology Group, McGill University Health Center, 687 Pine Ave West, Quebec, H3A 1A1, Montreal, Canada.
| |
Collapse
|
33
|
Paul CC, Aly E, Lehman JA, Page SM, Gomez-Cambronero J, Ackerman SJ, Baumann MA. Human cell line that differentiates to all myeloid lineages and expresses neutrophil secondary granule genes. Exp Hematol 2000; 28:1373-80. [PMID: 11146159 DOI: 10.1016/s0301-472x(00)00552-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to characterize a human leukemic cell line that appears capable of spontaneous differentiation to all myeloid lineages. The MPD cell line was derived using standard tissue culture techniques from the peripheral blood of a patient with an aggressive nonchronic myelogenous leukemia myeloproliferative disorder. Immunophenotyping, cytogenetic analysis, reverse transcriptase polymerase chain reaction, Northern blotting, immunoblotting, and colony assays were used to characterize the line and to assess its ability to express lineage-specific genes representative of advanced differentiation.Light microscopic morphologic analysis of the MPD cell line suggests that it has the unique property of spontaneous differentiation to mature-appearing neutrophils, macrophages, eosinophils, and basophils in proportions that approximate those found in normal bone marrow or peripheral blood. It was demonstrated that this cell line is capable of producing lineage-specific mRNA and granule proteins of at least two myeloid lineages, neutrophil and eosinophil, including neutrophil secondary granule proteins, which are not expressed in other available human cell lines. MPD cells were found to be capable of producing differentiated myeloid colonies (neutrophil, eosinophil, macrophge, mixed) in semisolid medium. The ability of MPD cells to express genetic programs associated with advanced differentiation of multiple myeloid lineages will make it a valuable tool for the study of the processes underlying lineage commitment and the regulation of expression of lineage-specific genes.
Collapse
Affiliation(s)
- C C Paul
- Research Service, Department of Veterans Affairs, Department of Medicine, Wright State University, Dayton, OH, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Sp1 and C/EBP are necessary to activate the lactoferrin gene promoter during myeloid differentiation. Blood 2000. [DOI: 10.1182/blood.v95.12.3734] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractIn this study, we sought to identify factors responsible for the positive modulation of lactoferrin (LF), a neutrophil-specific, secondary-granule protein gene. Initial reporter gene transfection assays indicated that the first 89 base pairs of the LF promoter are capable of directing myeloid-specific LF gene expression. The presence of a C/EBP site flanked by 2 Sp1 sites within this segment of the LF promoter prompted us to investigate the possible role of these sites in LF expression. Cotransfection studies of LF-89luc plasmid with increasing concentrations of a C/EBP expression vector in myeloid cells resulted in a linear transactivation of luciferase reporter activity. Electrophoretic mobility shift assays found that the C/EBP site is recognized by C/EBP and that both LF Sp1 binding sites bind the Sp1 transcription factor specifically in myeloid cells. Mutation of either Sp1 site markedly reduced activity of the LF-89luc plasmid in myeloid cells, and neither Sp1 mutant plasmid was transactivated by a C/EBP expression plasmid to the same extent as wild-type LF-89luc. We also transfected LF-89luc into Drosophila Schneider cells, which do not express endogenous Sp1, and demonstrated up-regulation of luciferase activity in response to a cotransfected Sp1 expression plasmid, as well as to a C/EBP expression plasmid. Furthermore, cotransfection of LF-89luc plasmid simultaneously with C/EBP and Sp1 expression plasmids resulted in an increase in luciferase activity greater than that induced by either factor alone. Taken together, these observations indicate a functional interaction between C/EBP and Sp1 in mediating LF expression.
Collapse
|
35
|
Calvo KR, Sykes DB, Pasillas M, Kamps MP. Hoxa9 immortalizes a granulocyte-macrophage colony-stimulating factor-dependent promyelocyte capable of biphenotypic differentiation to neutrophils or macrophages, independent of enforced meis expression. Mol Cell Biol 2000; 20:3274-85. [PMID: 10757811 PMCID: PMC85621 DOI: 10.1128/mcb.20.9.3274-3285.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genes encoding Hoxa9 and Meis1 are transcriptionally coactivated in a subset of acute myeloid leukemia (AML) in mice. In marrow reconstitution experiments, coexpression of both genes produces rapid AML, while neither gene alone generates overt leukemia. Although Hoxa9 and Meis1 can bind DNA as heterodimers, both can also heterodimerize with Pbx proteins. Thus, while their coactivation may result from the necessity to bind promoters as heterodimers, it may also result from the necessity of altering independent biochemical pathways that cooperate to generate AML, either as monomers or as heterodimers with Pbx proteins. Here we demonstrate that constitutive expression of Hoxa9 in primary murine marrow immortalizes a late myelomonocytic progenitor, preventing it from executing terminal differentiation to granulocytes or monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3. This immortalized phenotype is achieved in the absence of endogenous or exogenous Meis gene expression. The Hoxa9-immortalized progenitor exhibited a promyelocytic transcriptional profile, expressing PU.1, AML1, c-Myb, C/EBP alpha, and C/EBP epsilon as well as their target genes, the receptors for GM-CSF, G-CSF, and M-CSF and the primary granule proteins myeloperoxidase and neutrophil elastase. G-CSF obviated the differentiation block of Hoxa9, inducing neutrophilic differentiation with accompanying expression of neutrophil gelatinase B and upregulation of gp91phox. M-CSF also obviated the differentiation block, inducing monocytic differentiation with accompanying expression of the macrophage acetyl-low-density lipoprotein scavenger receptor and F4/80 antigen. Versions of Hoxa9 lacking the ANWL Pbx interaction motif (PIM) also immortalized a promyelocytic progenitor with intrinsic biphenotypic differentiation potential. Therefore, Hoxa9 evokes a cytokine-selective block in differentiation by a mechanism that does not require Meis gene expression or interaction with Pbx through the PIM.
Collapse
Affiliation(s)
- K R Calvo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California 92093-0612, USA.
| | | | | | | |
Collapse
|
36
|
Overexpression of CCAAT Displacement Protein Represses the Promiscuously Active Proximal gp91phox Promoter. Blood 1999. [DOI: 10.1182/blood.v94.9.3151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractCCAAT displacement protein (CDP) is a transcriptional repressor that restricts expression of the gp91phox gene to mature myeloid cells. CDP interacts with multiple sites within the −450 to +12 bp human gp91phox promoter, and down-regulation of CDP DNA-binding activity is required for induction of gp91phox transcription in mature phagocytes. Truncation of the gp91phox promoter to −102 to +12 bp removes 4 CDP-binding sites and reveals a promiscuous promoter activity that is active in some nonphagocytic cells. A cis-element at −90 bp is required for derepressed transcription and serves as a binding site for multiple transcriptional activators. We now report that this element also serves as a binding site for CDP. The affinity of CDP for this element is relatively weak compared with upstream CDP-binding sites within the promoter, consistent with the promiscuous transcriptional activity exhibited by the −102 to +12 bp gp91phox promoter fragment. Further analysis of the proximal promoter reveals an additional weak-affinity CDP-binding site centered at approximately −20 bp. Overexpression of cloned CDP represses the −102 to +12 bp gp91phox promoter, indicating that these proximal CDP-binding sites are functionally significant. The constellation of transcriptional activators and a repressor that interacts with the −90 bp cis-element is identical to that observed for a promoter element at −220 bp, reflecting the highly modular organization of the gp91phoxpromoter. These studies illustrate the complex interplay between transcriptional activators and a repressor that contribute to the myeloid-restricted expression of the gp91phox gene.
Collapse
|
37
|
Myeloid Transcription Factor C/EBPɛ Is Involved in the Positive Regulation of Lactoferrin Gene Expression in Neutrophils. Blood 1999. [DOI: 10.1182/blood.v94.9.3141] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractTargeted mutation of the myeloid transcription factor C/EBPɛ in mice results in gram-negative septic death at 3 to 5 months of age. This study defines the underlying molecular defects in their terminal granulocytic differentiation. The mRNA for the precursor protein of the cathelin-related antimicrobial peptides was almost completely absent in the bone marrow cells of C/EBPɛ−/− mice. This finding may help explain their susceptibility to gram-negative sepsis, because both are bacteriocidal peptides with potent activity against gram-negative bacteria. Superoxide production was found to be reduced in both granulocytes and monocytes of C/EBPɛ−/− mice. While gp91 phox protein levels were normal, p47phox protein levels were considerably reduced in C/EBPɛ −/− granulocytes/monocytes, possibly limiting the assembly of the NADPH oxidase. In addition, expression of mRNA of the secondary and tertiary granule proteins, lactoferrin and gelatinase, were not detected, and levels of neutrophil collagenase mRNA were reduced in bone marrow cells of the knock-out mice. The murine lactoferrin promoter has a putative C/EBP site close to the transcription start site. C/EBPɛ bound to this site in electromobility shift assay studies and mutation of this site abrogated binding to it. A mutation in the C/EBP site reduced the activity of the promoter by 35%. Furthermore, overexpression of C/EBPɛ in U937 cells increased the activity of the wild-type lactoferrin promoter by 3-fold. In summary, our data implicate C/EBPɛ as a critical factor of host antimicrobial defense and suggests that it has a direct role as a positive regulator of expression of lactoferrin in vivo.
Collapse
|
38
|
Myeloid Transcription Factor C/EBPɛ Is Involved in the Positive Regulation of Lactoferrin Gene Expression in Neutrophils. Blood 1999. [DOI: 10.1182/blood.v94.9.3141.421k41_3141_3150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Targeted mutation of the myeloid transcription factor C/EBPɛ in mice results in gram-negative septic death at 3 to 5 months of age. This study defines the underlying molecular defects in their terminal granulocytic differentiation. The mRNA for the precursor protein of the cathelin-related antimicrobial peptides was almost completely absent in the bone marrow cells of C/EBPɛ−/− mice. This finding may help explain their susceptibility to gram-negative sepsis, because both are bacteriocidal peptides with potent activity against gram-negative bacteria. Superoxide production was found to be reduced in both granulocytes and monocytes of C/EBPɛ−/− mice. While gp91 phox protein levels were normal, p47phox protein levels were considerably reduced in C/EBPɛ −/− granulocytes/monocytes, possibly limiting the assembly of the NADPH oxidase. In addition, expression of mRNA of the secondary and tertiary granule proteins, lactoferrin and gelatinase, were not detected, and levels of neutrophil collagenase mRNA were reduced in bone marrow cells of the knock-out mice. The murine lactoferrin promoter has a putative C/EBP site close to the transcription start site. C/EBPɛ bound to this site in electromobility shift assay studies and mutation of this site abrogated binding to it. A mutation in the C/EBP site reduced the activity of the promoter by 35%. Furthermore, overexpression of C/EBPɛ in U937 cells increased the activity of the wild-type lactoferrin promoter by 3-fold. In summary, our data implicate C/EBPɛ as a critical factor of host antimicrobial defense and suggests that it has a direct role as a positive regulator of expression of lactoferrin in vivo.
Collapse
|
39
|
Abstract
CCAAT displacement protein (CDP) is a transcriptional repressor that restricts expression of the gp91phox gene to mature myeloid cells. CDP interacts with multiple sites within the −450 to +12 bp human gp91phox promoter, and down-regulation of CDP DNA-binding activity is required for induction of gp91phox transcription in mature phagocytes. Truncation of the gp91phox promoter to −102 to +12 bp removes 4 CDP-binding sites and reveals a promiscuous promoter activity that is active in some nonphagocytic cells. A cis-element at −90 bp is required for derepressed transcription and serves as a binding site for multiple transcriptional activators. We now report that this element also serves as a binding site for CDP. The affinity of CDP for this element is relatively weak compared with upstream CDP-binding sites within the promoter, consistent with the promiscuous transcriptional activity exhibited by the −102 to +12 bp gp91phox promoter fragment. Further analysis of the proximal promoter reveals an additional weak-affinity CDP-binding site centered at approximately −20 bp. Overexpression of cloned CDP represses the −102 to +12 bp gp91phox promoter, indicating that these proximal CDP-binding sites are functionally significant. The constellation of transcriptional activators and a repressor that interacts with the −90 bp cis-element is identical to that observed for a promoter element at −220 bp, reflecting the highly modular organization of the gp91phoxpromoter. These studies illustrate the complex interplay between transcriptional activators and a repressor that contribute to the myeloid-restricted expression of the gp91phox gene.
Collapse
|
40
|
Jacobsen BM, Skalnik DG. YY1 binds five cis-elements and trans-activates the myeloid cell-restricted gp91(phox) promoter. J Biol Chem 1999; 274:29984-93. [PMID: 10514482 DOI: 10.1074/jbc.274.42.29984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Four transcriptional activating cis-elements within the gp91(phox) promoter bind a protein complex of similar mobility and binding specificity, denoted BID (binding increased during differentiation). The intensity of BID complexes increases upon myeloid cell differentiation, coincident with induction of gp91(phox) expression, and BID competes with the transcriptional repressor CDP for binding to each of these promoter elements. To determine the identity of BID, an expression library was ligand screened with the BID-binding site that surrounds the -145-base pair (bp) region of the gp91(phox) promoter. One recovered factor that exhibits the expected binding specificity is YY1, a ubiquitous multifunctional transcription factor. BID complexes that form with the four binding sites within the gp91(phox) promoter are disrupted by YY1 antiserum, and a fifth YY1-binding site was detected in the -412-bp promoter region. Overexpression of YY1 in transient co-transfection assays trans-activates a minimal promoter containing two copies of the -145-bp binding site from the gp91(phox) promoter. Neither the level of YY1 protein nor DNA binding activity increases during myeloid cell differentiation. These studies identify a target gene of YY1 function in mature myeloid cells, and demonstrate that YY1 function can be controlled during myeloid development by the modulation of a competing DNA-binding factor.
Collapse
Affiliation(s)
- B M Jacobsen
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
41
|
PU.1 and the Granulocyte- and Macrophage Colony-Stimulating Factor Receptors Play Distinct Roles in Late-Stage Myeloid Cell Differentiation. Blood 1999. [DOI: 10.1182/blood.v94.7.2310.419k34_2310_2318] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PU.1 is a hematopoietic cell–specific ets family transcription factor. Gene disruption of PU.1 results in a cell autonomous defect in hematopoietic progenitor cells that manifests as abnormal myeloid and B-lymphoid development. Of the myeloid lineages, no mature macrophages develop, and the neutrophils that develop are aberrantly and incompletely matured. One of the documented abnormalities of PU.1 null (deficient) hematopoietic cells is a failure to express receptors for granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage (GM)-CSF, and M-CSF. To elucidate the roles of the myeloid growth factor receptors in myeloid cell differentiation, and to distinguish their role from that of PU.1, we have restored expression of the G- and M-CSF receptors in PU.1-deficient cells using retroviral vectors. We have similarly expressed PU.1 in these cells. Whereas expression of growth factor receptors merely allows a PU.1-deficient cell line to survive and grow in the relevant growth factor, expression of PU.1 enables the development of F4/80+, Mac-1+/CD11b+ macrophages, expression of gp91phox and generation of superoxide, and expression of secondary granule genes for neutrophil collagenase and gelatinase. These studies reinforce the idea that availability of PU.1 is crucial for normal myeloid development and clarify some of the molecular events in developing neutrophils and macrophages that are critically dependent on PU.1.
Collapse
|
42
|
Abstract
Neutrophil maturation occurs in well defined morphological stages that correlate with the acquisition of molecular markers associated with neutrophil function. A variety of factors are known to play a role in terminal neutrophil maturation, including the vitamin A derivative, retinoic acid. Retinoic acid can directly modulate gene expression via binding to its nuclear receptors, which can, in turn, activate transcription of target genes. A role for retinoic acid during neutrophil maturation has been suggested from a variety of sources. Here we present a review of the mechanism of retinoic acid receptor action and the major evidence showing that normal retinoid signaling is required for neutrophil maturation.
Collapse
MESH Headings
- Animals
- Biological Transport
- Cell Differentiation/drug effects
- Cell Nucleus/metabolism
- DNA-Binding Proteins/physiology
- Dimerization
- Gene Expression Regulation
- HL-60 Cells/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neutrophils/cytology
- Neutrophils/drug effects
- Nuclear Proteins/physiology
- Nuclear Receptor Co-Repressor 1
- Nuclear Receptor Co-Repressor 2
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/physiology
- Retinol-Binding Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors/physiology
- Tretinoin/pharmacology
- Tretinoin/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N D Lawson
- Department of Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
43
|
Noya M, Qian Y, Ainsworth AJ. Molecular and functional characterization of channel catfish (Ictalurus punctatus) neutrophil collagenase. Vet Immunol Immunopathol 1999; 67:303-16. [PMID: 10206199 DOI: 10.1016/s0165-2427(98)00226-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Channel catfish (Ictalurus punctatus) neutrophils, like mammalian neutrophils, contain a variety of enzymes and lytic peptides that participate in pathogen destruction. We have identified and characterized from a channel catfish anterior kidney cDNA library a 1.6 kb cDNA that encodes for channel catfish neutrophil collagenase. The deduced amino acid sequence has a predicted molecular mass of 53 kDa. The putative catfish collagenase has nucleotide and amino acid homology of 51.4% and 45.1%, respectively, with human neutrophil collagenase and 50.4% and 47.1%, respectively, with mouse neutrophil collagenase. Certain regions of the molecule, including the cysteine switch and the putative zinc binding sites, were identical to those in the human and mouse genes. Polyclonal antiserum, prepared to the fusion protein, recognizes proteins from channel catfish neutrophil supernatants with molecular masses of approximately 63, 53 and 28 kDa. Supernatants from phorbol dibutyrate stimulated neutrophils were capable of degrading type I collagen. In addition, the polyclonal antiserum prevented the collagenase activity of the supernatants from stimulated catfish neutrophils; whereas, preimmune serum had no effect on collagenase activity of supernatants. Supernatants from unstimulated cells or the fusion protein did not possess the ability of degrading type I collagen. These results indicate that channel catfish neutrophil collagenases share molecular and functional features with mammalian neutrophil collagenase.
Collapse
Affiliation(s)
- M Noya
- University of Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
44
|
Zhao W, Byrne MH, Boyce BF, Krane SM. Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. J Clin Invest 1999; 103:517-24. [PMID: 10021460 PMCID: PMC408105 DOI: 10.1172/jci5481] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates bone resorption by acting directly on osteoblasts/stromal cells and then indirectly to increase differentiation and function of osteoclasts. PTH acting on osteoblasts/stromal cells increases collagenase gene transcription and synthesis. To assess the role of collagenase in the bone resorptive actions of PTH, we used mice homozygous (r/r) for a targeted mutation (r) in Col1a1 that are resistant to collagenase cleavage of type I collagen. Human PTH(1-34) was injected subcutaneously over the hemicalvariae in wild-type (+/+) or r/r mice four times daily for three days. Osteoclast numbers, the size of the bone marrow spaces and periosteal proliferation were increased in calvariae from PTH-treated +/+ mice, whereas in r/r mice, PTH-induced bone resorption responses were minimal. The r/r mice were not resistant to other skeletal effects of PTH because abundant interstitial collagenase mRNA was detected in the calvarial periosteum of PTH-treated, but not vehicle-treated, r/r and +/+ mice. Calcemic responses, 0.5-10 hours after intraperitoneal injection of PTH, were blunted in r/r mice versus +/+ mice. Thus, collagenase cleavage of type I collagen is necessary for PTH induction of osteoclastic bone resorption.
Collapse
Affiliation(s)
- W Zhao
- Department of Medicine, Harvard Medical School, Medical Services (Arthritis Unit), Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
45
|
Balbín M, Fueyo A, Knäuper V, Pendás AM, López JM, Jiménez MG, Murphy G, López-Otín C. Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J Biol Chem 1998; 273:23959-68. [PMID: 9727011 DOI: 10.1074/jbc.273.37.23959] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neutrophil collagenase or collagenase 2 (MMP-8) is unique among the family of matrix metalloproteinases (MMPs) because of its exclusive pattern of expression in inflammatory conditions. At present, no evidence of the occurrence of this enzyme in tissues other than human has been reported. In this work, we have cloned the murine homologue of human collagenase 2. The isolated cDNA contains an open reading frame coding for a polypeptide of 465 amino acids, which is 74% identical to its human counterpart. The mouse collagenase 2 exhibits the domain structure characteristic of several MMPs, including a signal sequence, a prodomain with the cysteine residue essential for enzyme latency, an activation locus with the Zinc-binding site, and a COOH-terminal fragment with sequence similarity to hemopexin. It also contains the three conserved residues (Tyr-209, Asp-230, and Gly-232) located around the Zinc-binding site and are distinctive of the collagenase subfamily. Northern blot analysis of RNAs isolated from a variety of mouse tissues revealed that collagenase 2 is expressed at late stages during mouse embryogenesis, coinciding with the appearance of hematopoietic cells. In addition, collagenase 2 was highly expressed in the postpartum uterus starting at 1 day postpartum and extending up to 5 days. Enzymatic analysis revealed that matrilysin, another MMP overexpressed in uterine tissue, is able to activate murine procollagenase 2. These data suggest that both enzymes could form an activation cascade resulting in the generation of the collagenolytic activity required during the process of massive connective tissue resumption occurring in the involuting uterus.
Collapse
Affiliation(s)
- M Balbín
- Departamento, Facultad de Medicina, Universidad de Oviedo, Oviedo 33006, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lawson ND, Berliner N. Representational difference analysis of a committed myeloid progenitor cell line reveals evidence for bilineage potential. Proc Natl Acad Sci U S A 1998; 95:10129-33. [PMID: 9707612 PMCID: PMC21473 DOI: 10.1073/pnas.95.17.10129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we have sought to characterize a committed myeloid progenitor cell line in an attempt to isolate general factors that may promote differentiation. We used cDNA representational difference analysis (RDA), which allows analysis of differential gene expression, to compare EML and EPRO cells. We have isolated nine differentially expressed cDNA fragments as confirmed by slot blot, Northern, and PCR analysis. Three of nine sequences appear to be novel whereas the identity of the remaining fragments suggested that the EPRO cell line is multipotent. Among the isolated sequences were eosinophilic, monocytic, and neutrophilic specific genes. Therefore, we tested the ability of EPRO cells to differentiate along multiple myeloid lineages and found that EPRO cells exhibited morphologic maturation into either monocyte/macrophages or neutrophils, but not eosinophils. Furthermore, when EPRO cells were exposed to ATRA, neutrophil specific genes were induced, whereas monocytic markers were induced by phorbol ester treatment. This study highlights the use of cDNA RDA in conjunction with the EML/EPRO cell line to isolate markers associated with macrophage and neutrophil differentiation and establishes the usefulness of this system in the search for factors involved in myeloid commitment.
Collapse
Affiliation(s)
- N D Lawson
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|