1
|
JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation of murine erythroleukemia cells. Proc Natl Acad Sci U S A 2009; 107:52-7. [PMID: 19966288 DOI: 10.1073/pnas.0909153107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the homeostatic concentrations of specific sets of transcription factors is essential for correct programming of cell proliferation and differentiation. We have characterized the signal transduction pathways regulating the catabolisis of p45/NF-E2, a bZIP factor activating the erythroid and megakaryocytic gene transcription. Through use of different approaches including nano-scale proteomics, we show that activated-JNK, or Phospho-JNK (P-JNK), physically interacts with p45/NF-E2 and phosphorylates its Ser157 residue. This reaction leads to the poly-ubiquitination of p45/NF-E2 at one or more of six Lys residues, one of which being also a sumoylation site, and its degradation through the proteasome pathway. Significantly, this regulatory pathway of p45/NF-E2 by P-JNK exists only in uninduced murine erythroleukemia (MEL) cells but not in differentiated MEL cells in which JNK is inactivated on DMSO induction. Based on the above data and analysis of the chromatin-binding kinetics of p45/NF-E2 and the erythroid gene repressor Bach1 during the early phase of MEL differentiation, we suggest a model for the regulation of erythroid maturation. In the model, the posttranslational modifications and turnover of p45/NF-E2, as mediated by P-JNK, contribute to the control of its homeostatic concentration and consequently, its regulatory functions in the progression of erythroid differentiation and erythroid gene expression.
Collapse
|
2
|
Bose C, Udupa KB. Erythropoietin enhancement of rat pancreatic tumor cell proliferation requires the activation of ERK and JNK signals. Am J Physiol Cell Physiol 2008; 295:C394-405. [DOI: 10.1152/ajpcell.00423.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells by binding to its specific transmembrane receptor EPOR. Recent studies, however, have shown that the EPOR is additionally present in various cancer cells and EPO induces the proliferation of these cells, suggesting a different function for EPO other than erythropoiesis. Therefore, the purpose of the present study was to examine EPOR expression and the role of EPO in the proliferation and signaling cascades involved in this process, using the rat pancreatic tumor cell line AR42J. Our results showed that AR42J cells expressed EPOR, and EPO significantly enhanced their proliferation. Cell cycle analysis of EPO-treated cells indicated an increased percentage of cells in the S phase, whereas cell numbers in G0/G1 phase were significantly reduced. Phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2) and c-Jun NH2terminal kinase 1/2 (JNK1/2) was rapidly stimulated and sustained after EPO addition. Treatment of cells with mitogen-activated protein/ERK kinase (MEK) inhibitor PD98059 or JNK inhibitor SP600125 significantly inhibited EPO-enhanced proliferation and also increased the fraction of cells in G0/G1 phase. Furthermore, the inhibition of JNK using small interference RNA (siRNA) suppressed EPO-enhanced proliferation of AR42J cells. Taken together, our results indicate that AR42J cells express EPOR and that the activation of both ERK1/2 and JNK1/2 by EPO is essential in regulating proliferation and the cell cycle. Thus both appear to play a key role in EPO-enhanced proliferation and suggest that the presence of both is required for EPO-mediated proliferation of AR42J cells.
Collapse
|
3
|
Ahuja P, Sdek P, Maclellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007; 87:521-44. [PMID: 17429040 PMCID: PMC2708177 DOI: 10.1152/physrev.00032.2006] [Citation(s) in RCA: 418] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interest in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period, and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration.
Collapse
Affiliation(s)
| | | | - W. Robb Maclellan
- Corresponding author: W. Robb MacLellan, Cardiovascular Research Laboratories, David Geffen school of Medicine at UCLA, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California, 90095-1760; Phone: (310) 825-2556; Fax: (310) 206-5777; e-mail:
| |
Collapse
|
4
|
Kim HP, Wang X, Nakao A, Kim SI, Murase N, Choi ME, Ryter SW, Choi AMK. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A 2005; 102:11319-24. [PMID: 16051704 PMCID: PMC1183544 DOI: 10.1073/pnas.0501345102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During vascular injury, the proliferation and migration of smooth muscle cells leads to characteristic neointima formation, which can be exacerbated by genetic depletion of caveolin-1 or heme oxygenase 1 (HO-1), and inhibited by carbon monoxide (CO), a by-product of heme oxygenase 1 activity. CO inhibited smooth muscle cell proliferation by activating p38 mitogen-activated protein kinase (MAPK) and p21(Waf1/Cip1). Exposure to CO increased caveolin-1 expression in neointimal lesions of injured aorta and in vitro by activating guanylyl cyclase and p38 MAPK. p38beta-/- fibroblasts did not induce caveolin-1 in response to CO, and exhibited a diminished basal caveolin-1 expression, which was restored by p38beta gene transfer. p38beta MAPK down-regulated extracellular signal-regulated protein kinase 1/2 (ERK-1/2), which can repress caveolin-1 transcription. Genetic depletion of caveolin-1 abolished the antiproliferative effect of CO. Thus, we demonstrate that CO, by activating p38beta MAPK, up-regulates caveolin-1, which acts as a tumor suppressor protein that mediates the growth inhibitory properties of this gas.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Uddin S, Ah-Kang J, Ulaszek J, Mahmud D, Wickrema A. Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc Natl Acad Sci U S A 2004; 101:147-52. [PMID: 14694199 PMCID: PMC314153 DOI: 10.1073/pnas.0307075101] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Indexed: 11/18/2022] Open
Abstract
p38alpha, p38beta, p38gamma, and p38delta are four isoforms of p38 mitogen-activated protein (MAP) kinase (MAPK) involved in multiple cellular functions such as cell proliferation, differentiation, apoptosis, and inflammation response. In the present study, we examined the mRNA expression pattern of each of the four isoforms during erythroid differentiation of primary erythroid progenitors. We show that p38alpha and p38gamma transcripts are expressed in early hematopoietic progenitors as well as in late differentiating erythroblasts, whereas p38delta mRNA is only expressed and active during the terminal phase of erythroid differentiation. On the other hand, p38beta is minimally expressed in early CD34(+) hematopoietic progenitors but not expressed in lineage-committed erythroid progenitors. We also determined the phosphorylation/activation of p38alpha, MAPK kinase 3/6, and MAPKAP-2 in response to erythropoietin and stem cell factor. We found that phosphorylation of p38alpha, MAPK kinase kinase 3/6 and MAPKAP-2 occurs only upon growth factor withdrawal in primary erythroid progenitors. Moreover, our data indicate that activation of p38alpha does not induce apoptosis or promote proliferation of erythroid progenitors. On the other hand, under steady-state culture conditions, both p38alpha and p38delta isoforms are increasingly phosphorylated activated in the terminal phase of differentiation. This increased phosphorylation/activity was accompanied by up-regulation of heat shock protein 27 phosphorylation. Finally, we demonstrate that tumor necrosis factor alpha, an inflammatory cytokine that is modulated by p38alpha, is expressed by differentiating erythroblasts and inhibition of p38alpha or tumor necrosis factor alpha results in reduction in differentiation. Taken together, our data demonstrate that both p38alpha and delta isoforms function to promote the late-stage differentiation of primary erythroid progenitors and are likely to be involved in functions related to erythrocyte membrane remodeling and enucleation.
Collapse
Affiliation(s)
- Shahab Uddin
- Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
6
|
Dazy S, Damiola F, Parisey N, Beug H, Gandrillon O. The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene 2003; 22:9205-16. [PMID: 14681680 DOI: 10.1038/sj.onc.1207049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Making decisions between self-renewal and differentiation is a central ability of stem cells. Elucidation of molecular networks governing this decision is therefore of prime importance. A model of choice to explore this question is represented by chicken erythroid progenitors, in which self-renewal versus differentiation as well as progenitor maturation are regulated by external factor combinations. We used this system to study whether similar or different signalling pathways were involved in the self-renewal of early, immature or more mature erythroid progenitors. We show that a transforming growth factor (TGF)-alpha-activated Ras/MEK-1/ERK1/2 pathway is strictly required for immature self-renewing cells but becomes fully dispensable when those cells are induced to differentiate. Consequently, pharmacological inhibition of this pathway led to spontaneous differentiation, only dependent on the presence of survival signals. Conversely, ectopic expression of a constitutive form of MEK-1 stimulates renewal and arrests differentiation process. Finally, we demonstrate that the ERK/MAPK signalling pathway is required in early but not in late primary erythroid progenitors, which can be turned into each other by different growth factor combinations specifically driving their renewal. To the best of our knowledge, this is the first description of a central role of ERK/MAPK signalling in regulating progenitor plasticity in the same cell type under different environmental conditions.
Collapse
Affiliation(s)
- Sébastien Dazy
- Laboratoire Signalisations et identités cellulaires, Centre de Génétique Moléculaire et Cellulaire CNRS UMR 5534, Université Claude Bernard Lyon 1, bât Grégoire Mendel, 16 rue Dubois, 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
7
|
Abstract
Mitogen-activated protein (Map) kinases are widely expressed serine-threonine kinases that mediate important regulatory signals in the cell. Three major groups of Map kinases exist: the p38 Map kinase family, the extracellular signal-regulated kinase (Erk) family, and the c-Jun NH2-terminal kinase (JNK) family. The members of the different Map kinase groups participate in the generation of various cellular responses, including gene transcription, induction of cell death or maintenance of cell survival, malignant transformation, and regulation of cell-cycle progression. Depending on the specific family isoform involved and the cellular context, Map kinase pathways can mediate signals that either promote or suppress the growth of malignant hematopoietic cells. Over the last few years, extensive work by several groups has established that Map kinase pathways play critical roles in the pathogenesis of various hematologic malignancies, providing new molecular targets for future therapeutic approaches. In this review, the involvement of various Map kinase pathways in the pathophysiology of hematologic malignances is summarized and the clinical implications of the recent advances in the field are discussed.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago IL 60611, USA.
| |
Collapse
|
8
|
Matsuzaki T, Aisaki KI, Yamamura Y, Noda M, Ikawa Y. Induction of erythroid differentiation by inhibition of Ras/ERK pathway in a friend murine leukemia cell line. Oncogene 2000; 19:1500-8. [PMID: 10734309 DOI: 10.1038/sj.onc.1203461] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of Ras and MAP kinases (MAPKs) in the regulation of erythroid differentiation was studied using a cell line (SKT6) derived from Friend virus (Anemic strain)-induced murine erythroleukemia. This cell line undergoes differentiation in vitro in response to erythropoietin (EPO) or other chemical inducers such as dimethylsulfoxide (DMSO). When a constitutively active ras mutant (ras12V) was expressed in SKT6 cells, EPO-induced differentiation was inhibited. Conversely, a dominant negative ras mutant (ras17N) induced differentiation even in the absence of EPO, suggesting that the basal Ras activity is essential for the maintenance of the undifferentiated phenotype and proliferative potential in this cell line. Rapid inactivation of ERK was observed after expression of ras17N. Slow but significant inactivation of ERK was also observed during EPO-induced differentiation. Furthermore, overexpression of a constitutively active mutant of ERK-activating kinase (MAPKK) was found to suppress erythroid differentiation, while pharmacological inhibition of MAPKK induced differentiation. These findings suggest that down-regulation of Ras/ERK signaling pathway may be an essential event in EPO-induced erythroid differentiation in this system.
Collapse
Affiliation(s)
- T Matsuzaki
- Department of Retroviral Regulation, Tokyo Medical and Dental University, Medical Research Division, 1-5-45 Yushima, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
9
|
Novel murine myeloid cell lines that exhibit a differentiation switch in response to IL-3 or GM-CSF, or to different constitutively active mutants of the GM-CSF receptor β subunit. Blood 2000. [DOI: 10.1182/blood.v95.1.120.001k08_120_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several activating mutations have recently been described in the common β subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (hβc). Two of these, FIΔ and I374N, result, respectively, in a 37–amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to–glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hβc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF. We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hβc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated hβc mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated hβc mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (Blood. 2000;95:120-127)
Collapse
|
10
|
Distinct Roles of JNKs/p38 MAP Kinase and ERKs in Apoptosis and Survival of HCD-57 Cells Induced by Withdrawal or Addition of Erythropoietin. Blood 1999. [DOI: 10.1182/blood.v94.12.4067.424k12_4067_4076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO), a major regulator of erythroid progenitor cells, is essential for the survival, proliferation, and differentiation of immature erythroid cells. To gain insight into the molecular mechanism by which EPO functions, we analyzed the activation of Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs) in HCD-57 cells, a murine erythroid progenitor cell line that requires EPO for survival and proliferation. Withdrawal of EPO from the cell culture medium resulted in sustained activation of JNKs plus p38 MAP kinase, and inactivation of ERKs, preceding apoptosis of the cells. Addition of EPO to the EPO-deprived cells caused activation of ERKs accompanied by inactivation of JNKs and p38 MAP kinase and rescued the cells from apoptosis. Phorbol 12-myristate 13-acetate, which activated ERKs by a different mechanism, also suppressed the activation of JNKs and significantly retarded apoptosis of the cells caused by withdrawal of EPO. Furthermore, MEK inhibitor PD98059, which inhibited activation of ERKs, caused activation of JNKs, whereas suppression of JNK expression by antisense oligonucleotides and inhibition of p38 MAP kinase by SB203580 caused attenuation of the apoptosis that occurs upon withdrawal of EPO. Finally, the activation of JNKs and p38 MAP kinase and concurrent inactivation of ERKs upon withdrawal of EPO were also observed in primary human erythroid colony-forming cells. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to apoptosis and EPO functions by controlling the dynamic balance between ERKs and JNKs.
Collapse
|
11
|
Nath N, Bian H, Reed EF, Chellappan SP. HLA Class I-Mediated Induction of Cell Proliferation Involves Cyclin E-Mediated Inactivation of Rb Function and Induction of E2F Activity. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Chronic rejection of transplanted organs is manifested as atherosclerosis of the blood vessels of the allograft. HLA class I Ags have been implicated to play a major role in this process, since signaling via HLA class I molecules can induce the proliferation of aortic endothelial as well as smooth muscle cells. In this study, we show that HLA class I-mediated induction of cell proliferation correlates with inactivation of the Rb protein in the T cell line Jurkat as well as human aortic endothelial cells. HLA class I-mediated inactivation of Rb can be inhibited specifically by neutralizing Abs to basic fibroblast growth factor (bFGF), suggesting a role for FGF receptors in the signaling process. Signaling through HLA class I molecules induced cyclin E-associated kinase activity within 4 h in quiescent endothelial cells, and appeared to mediate the inactivation of Rb. A cdk2 inhibitor, Olomoucine, as well as a dominant-negative cdk2 construct prevented HLA class I-mediated inactivation of Rb; in contrast, dominant-negative cdk4 and cdk6 constructs had no effect. Furthermore, there was no increase in cyclin D-associated kinase activity upon HLA class I ligation, suggesting that cyclin E-dependent kinase activity mediates Rb inactivation, leading to E2F activation and cell proliferation.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Hong Bian
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Elaine F. Reed
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Srikumar P. Chellappan
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|