1
|
Ficara F, Crisafulli L, Lin C, Iwasaki M, Smith KS, Zammataro L, Cleary ML. Pbx1 restrains myeloid maturation while preserving lymphoid potential in hematopoietic progenitors. J Cell Sci 2013; 126:3181-91. [PMID: 23660001 DOI: 10.1242/jcs.125435] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. Conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineage-restricted progenitors in addition to a profound defect in hematopoietic stem cell (HSC) self-renewal. Through analysis of purified progenitor proliferation, differentiation capacity and transcriptional profiling, we demonstrate that Pbx1 regulates the lineage-specific output of multipotent and oligopotent progenitors. In the absence of Pbx1 multipotent progenitor (MPP) and common myeloid progenitor (CMP) pools are reduced due to aberrantly rapid myeloid maturation. This is associated with premature expression of myeloid differentiation genes and decreased maintenance of proto-oncogene transcriptional pathways, including reduced expression of Meis1, a Pbx1 dimerization partner, and its subordinate transcriptional program. Conversely, Pbx1 maintains the lymphoid differentiation potential of lymphoid-primed MPPs (LMPPs) and common lymphoid progenitors (CLPs), whose reduction in the absence of Pbx1 is associated with a defect in lymphoid priming that is also present in CMPs, which persistently express lymphoid and HSC genes underlying a previously unappreciated lineage promiscuity that is maintained by Pbx1. These results demonstrate a role for Pbx1 in restraining myeloid maturation while maintaining lymphoid potential to appropriately regulate progenitor reservoirs.
Collapse
Affiliation(s)
- Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Kutlesa S, Zayas J, Valle A, Levy RB, Jurecic R. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system. Exp Hematol 2009; 37:909-23. [PMID: 19447159 DOI: 10.1016/j.exphem.2009.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. MATERIALS AND METHODS EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. RESULTS The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. CONCLUSIONS These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.
Collapse
Affiliation(s)
- Snjezana Kutlesa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Fla. 33136, USA
| | | | | | | | | |
Collapse
|
3
|
Sekine R, Kitamura T, Tsuji T, Tojo A. Efficient retroviral transduction of human B-lymphoid and myeloid progenitors: marked inhibition of their growth by the Pax5 transgene. Int J Hematol 2009; 87:351-362. [PMID: 18415655 PMCID: PMC2668641 DOI: 10.1007/s12185-008-0082-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/07/2022]
Abstract
We applied a coculture system for the genetic manipulation of human B-lymphoid and myeloid progenitor cells using murine bone marrow stromal cell support, and investigated the effects of forced Pax5 expression in both cell types. Cytokine-stimulated cord blood CD34+ cells could be transduced at 85% efficiency and 95% cell viability by a single 24-h infection with RD114-pseudotyped retroviral vectors, produced by the packaging cell line Plat-F and bicistronic vector plasmids pMXs-Ig, pMYs-Ig, or pMCs-Ig, encoding EGFP. Infected CD34+ cells were seeded onto HESS-5 cells in the presence of stem cell factor and granulocyte colony-stimulating factor, allowing the extensive production of B progenitors and granulocytic cells. We examined the cell number and CD34, CD33, CD19, and CD20 lambda and kappa expressions by flow cytometry. Ectopic expression of Pax5 in CD34+ cells resulted in small myeloid progenitors coexpressing CD33 and CD19 and inhibited myeloid differentiation. After 6 weeks, the number of Pax5-transduced CD19+ cells was 40-fold lower than that of control cells. However, the expression of CD20 and the κ/λ chain on Pax5-transduced CD19+ cells suggests that the Pax5 transgene may not interfere with their differentiation. This report is the first to describe the effects of forced Pax5 expression in human hematopoietic progenitors.
Collapse
Affiliation(s)
- Rieko Sekine
- Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Tsuji
- Department of Industrial Science and Technology, Science University of Tokyo, Noda, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
4
|
Jing X, Infante J, Nachtman RG, Jurecic R. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors. Exp Hematol 2008; 36:1110-20. [PMID: 18495327 DOI: 10.1016/j.exphem.2008.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/27/2022]
Abstract
OBJECTIVE FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3 and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. MATERIALS AND METHODS FLRF was overexpressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF overexpression on EML cell differentiation into myeloerythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells overexpressing FLRF were examined with Western and immunoprecipitation. RESULTS Remarkably, overexpression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines erythropoietin (EPO) and interleukin-3 (IL-3), and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, EPO, and RA receptor-alpha (RARalpha) in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, EPO, and RARalpha receptors in EML and BaF3 cells, and that FLRF-mediated downregulation of these receptors is ligand binding-independent. CONCLUSIONS The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myeloerythroid lineages.
Collapse
Affiliation(s)
- Xin Jing
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
5
|
Fock EL, Yan F, Pan S, Chong BH. NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo. Exp Hematol 2007; 36:78-92. [PMID: 17923245 DOI: 10.1016/j.exphem.2007.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/07/2007] [Accepted: 08/09/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVE NF-E2 is a prime regulator of megakaryocyte (MK) terminal differentiation and platelet release. By overexpressing the p45 subunit of NF-E2, we aim to increase the proportion of mature MKs and the potential for platelet production in vitro and in vivo. METHODS Retroviral vectors expressing p45-NF-E2 together with the enhanced green fluorescent protein (eGFP) were used to transduce murine bone marrow cells (BMCs). Aspects of MK differentiation, proliferation, proplatelet, and platelet production were evaluated. RESULTS Compared to controls, a higher proportion of BMCs overexpressing p45-NF-E2 were found to express the MK markers CD41, CD42a, and CD42b, with some effect on cell proliferation. Early MK differentiation, characterized by colony-forming unit (CFU)-MK formation, was enhanced by p45-NF-E2 overexpression at the expense of CFU-granulocyte macrophage development. An increased number of acetylcholinesterase(+) MKs was also observed in NF-E2(++) cultures. Although endomitosis was found not to be affected, the resultant upregulation of NF-E2 target genes was also followed by significant increases in proplatelet and functional platelet production. Transplantation of enriched MK progenitor cells overexpressing p45-NF-E2 into lethally irradiated mice resulted in a threefold increase in eGFP(+)/NF-E2(++) platelet production in vivo over 10 days, although no appreciable expansion in their number was observed over 32 days. CONCLUSION These results suggest that enforced expression of p45-NF-E2 selectively enhances many aspects of MK differentiation, including MK maturation, proplatelet formation, and platelet release. In addition, p45 overexpression increases MK commitment during early megakaryopoiesis, while inhibiting white blood cell differentiation.
Collapse
Affiliation(s)
- Ee-ling Fock
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
6
|
Sekine R, Kitamura T, Tsuji T, Tojo A. Identification and comparative analysis of Pax5 C-terminal isoforms expressed in human cord blood-derived B cell progenitors. Immunol Lett 2007; 111:21-5. [PMID: 17559946 DOI: 10.1016/j.imlet.2007.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/06/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
We identified three Pax5 isoforms due to alternative splicing of the C-terminal exons of its gene in cord blood (CB)-derived B cell progenitors cultivated on the murine bone marrow stromal (HESS-5) cells. Apart from wild type (wt), one isoform skips exon 9 without subsequent frameshift (del9), while the other has a frameshift insert between exons 8 and 9, resulting in novel C-terminal sequences (ins8'). Quantitative reverse transcription-polymerase chain reaction analysis revealed that wt mRNA could be detected in CB CD34(+) cells, but that del9 and ins8' isoforms only appeared after 1 or 3 weeks of co-culture, respectively. Expression of each isoform mRNA was markedly upregulated during B cell differentiation in vitro, and wild type continued to be the most abundant isoform. In a luciferase reporter assay using a synthetic CD19 enhancer, del9 isoform revealed slightly lower activity and ins8' isoform showed much lower activity, compared with Pax5-wt. Furthermore, retroviral expression of each Pax5 isoform in CB CD34(+) cells induced aberrant CD19 expression in a fraction of immature myeloid cells after 1 week of culture, although del9 and ins8' isoforms showed much less potent activity than Pax5-wt. These results suggest that Pax5-wt is quantitatively and qualitatively dominant over other C-terminal isoforms during human B cell differentiation.
Collapse
Affiliation(s)
- Rieko Sekine
- Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Abstract
In adult mammals, bone marrow pluripotent hematopoietic stem cells generate B lymphoid-specified progeny that progress through a series of well-characterized stages before generating B-cell receptor expressing B lymphocytes. These functionally immature B lymphocytes then migrate to the spleen wherein they differentiate through transitional stages into follicular or marginal zone B lymphocytes capable of responding to T-dependent and -independent antigens, respectively. During the terminal stages of B lymphocyte development in the bone marrow, as well as immediately following egress into the peripheral compartments, B lymphocytes are counterselected to eliminate B lymphocytes with potentially dangerous self-reactivity. These developmental and selection events in the bone marrow and periphery are dependent on the integration of intrinsic genetic programs with extrinsic microenvironmental signals that drive progenitors toward increasing B lineage commitment and maturation. This chapter provides a comprehensive overview of the various stages of primary and secondary B lymphocyte development with an emphasis on the selection processes that affect decisions at critical checkpoints. Our intent is to stress the concept that at many steps in the developmental process leading to a mature immunocompetent B lymphocyte, B lineage cells are integrating multiple and different signaling inputs that are translated into specific and appropriate cell fate decisions.
Collapse
MESH Headings
- Aging
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/physiology
- Cell Lineage
- Humans
- Lymphopoiesis/genetics
- Models, Immunological
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombination, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
8
|
Hodawadekar S, Yu D, Cozma D, Freedman B, Sunyer O, Atchison ML, Thomas-Tikhonenko A. B-Lymphoma cells with epigenetic silencing of Pax5 trans-differentiate into macrophages, but not other hematopoietic lineages. Exp Cell Res 2006; 313:331-40. [PMID: 17098231 PMCID: PMC1839943 DOI: 10.1016/j.yexcr.2006.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/07/2006] [Accepted: 10/16/2006] [Indexed: 01/08/2023]
Abstract
In mice, zygotic or pro-B-cell-specific knock-out of the Pax5 gene allows differentiation of pro-B-cells into all hematopoietic lineages. We previously generated and characterized a murine B-cell lymphoma, dubbed Myc5, whose cells spontaneously lose Pax5 expression when cultured in vitro, but regain it when re-injected into syngeneic mice. In cultured Myc5 cells, the loss of Pax5 correlates with the acquisition of myeloid markers, such as CD11b and F4/80. Here, we sought to determine whether these cells are truly B-macrophage-restricted or, like Pax5-null progenitors, can give rise to additional hematopoietic lineages. In vitro differentiation assays with various cytokines showed that Myc5 cells do not differentiate into NK cells, dendritic cells, neutrophils, or osteoclasts. At the same time, in the presence of macrophage colony-stimulating factor (M-CSF), they readily phagocytose latex beads and provide T-cell help. Both phenomena are indicative of the bona fide macrophage phenotype. Conversely, enforced Pax5 re-expression in macrophage-like Myc5 cells led to down-regulation of the M-CSF receptor and re-acquisition of some B-cell surface markers (e.g., CD79a) and lineage-specific transcription factors (e.g., IRF4 and Blimp). Retrovirally encoded Pax5 also restored expression of several master B-cell differentiation proteins, such as the IL-7 receptor and transcription factor E2A. In contrast, levels of EBF were unaffected by Pax5 suggesting that EBF acts exclusively upstream of Pax5 and might contribute to Pax5 expression. Indeed, transduction with an EBF-encoding retrovirus partly reactivated endogenous Pax5. Our data reveal the complex relationship between B-cell-specific transcription factors and suggest the existence of numerous feedback mechanisms.
Collapse
Affiliation(s)
- Suchita Hodawadekar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Duonan Yu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Diana Cozma
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Bruce Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Michael L. Atchison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Andrei Thomas-Tikhonenko
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
- * Corresponding Author: , Tel: (215) 573-5138, Fax: (215) 746-0380
| |
Collapse
|
9
|
Abstract
In recent years, investigators have made great progress in delineating developmental pathways of several lymphoid and myeloid lineages and in identifying transcription factors that establish and maintain their fate. However, the developmental branching points between these two large cell compartments are still controversial, and little is known about how their diversification is induced. Here, we give an overview of determinants that play a role at lymphoid-myeloid junctures, in particular transcription factors and cytokine receptors. Experiments showing that myeloid lineages can be reversibly reprogrammed into one another by transcription factor network perturbations are used to highlight key principles of lineage commitment. We also discuss experiments showing that lymphoid-to-myeloid but not myeloid-to-lymphoid conversions can be induced by the enforced expression of a single transcription factor. We close by proposing that this asymmetry is related to a higher complexity of transcription factor networks in lymphoid cells compared with myeloid cells, and we suggest that this feature must be considered when searching for mechanisms by which hematopoietic stem cells become committed to lymphoid lineages.
Collapse
Affiliation(s)
- Catherine V Laiosa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
10
|
Bai Y, Srinivasan L, Perkins L, Atchison ML. Protein acetylation regulates both PU.1 transactivation and Ig kappa 3' enhancer activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:5160-9. [PMID: 16210620 DOI: 10.4049/jimmunol.175.8.5160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Igkappa gene expression and chromatin structure change during B cell development. At the pre-B cell stage, the locus is relatively hypoacetylated on histone H3, whereas it is hyperacetylated at the plasma cell stage. We find in this study that the histone deacetylase inhibitor, trichostatin A (TSA) stimulated 3' enhancer activity through the PU.1 binding site. TSA also stimulated PU.1 transactivation potential. PU.1 activity was increased by the coactivator acetyltransferase protein, p300, and p300 physically interacted with PU.1 residues 7-30. PU.1 served as a substrate for p300 and was acetylated on lysine residues 170, 171, 206, and 208. Mutation of PU.1 lysines 170 and 171 did not affect PU.1 DNA binding, but did lower the ability of PU.1 to activate transcription in association with p300. Lysine 170 was acetylated in pre-B cells and plasmacytoma cells, but TSA treatment did not stimulate PU.1 acetylation at this residue arguing that a second mechanism can stimulate 3' enhancer activity. Using chromatin immunoprecipitation assays we found that TSA caused preferential acetylation of histone H3 at the 3' enhancer. The relevance of these studies for PU.1 function in transcription and hemopoietic development is discussed.
Collapse
Affiliation(s)
- Yuchen Bai
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
11
|
Traver D, Akashi K. Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol 2004; 83:1-54. [PMID: 15135627 DOI: 10.1016/s0065-2776(04)83001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David Traver
- Dana-Farber Cancer Institute, Boston Massachusetts 02115, USA
| | | |
Collapse
|
12
|
Papadaki T, Stamatopoulos K. Hodgkin disease immunopathogenesis: long-standing questions, recent answers, further directions. Trends Immunol 2003; 24:508-11. [PMID: 12967675 DOI: 10.1016/s1471-4906(03)00236-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Theodora Papadaki
- Hemopathology Department, Evangelismos Hospital, 10676 Athens, Greece
| | | |
Collapse
|
13
|
Cotta CV, Zhang Z, Kim HG, Klug CA. Pax5 determines B- versus T-cell fate and does not block early myeloid-lineage development. Blood 2003; 101:4342-6. [PMID: 12560221 DOI: 10.1182/blood-2002-10-3139] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in hematopoietic stem cells using a retroviral vector. Peripheral blood analysis of all animals reconstituted with Pax5-expressing cells indicated that more than 90% of Pax5-expressing cells were B220+ mature B cells that were not malignant. Further analysis showed that Pax5 completely blocked T-lineage development in the thymus but did not inhibit myelopoiesis or natural killer (NK) cell development in bone marrow. These results implicate Pax5 as a critical regulator of B- versus T-cell developmental fate and suggest that Pax5 may promote commitment to the B-cell lineage by mechanisms that are independent of myeloid gene repression.
Collapse
Affiliation(s)
- Claudiu V Cotta
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | | | |
Collapse
|
14
|
Iwasaki-Arai J, Iwasaki H, Miyamoto T, Watanabe S, Akashi K. Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion. J Exp Med 2003; 197:1311-22. [PMID: 12756267 PMCID: PMC2193786 DOI: 10.1084/jem.20021843] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We evaluated the effects of ectopic granulocyte/macrophage colony-stimulating factor (GM-CSF) signals on hematopoietic commitment and differentiation. Lineage-restricted progenitors purified from mice with the ubiquitous transgenic human GM-CSF receptor (hGM-CSFR) were used for the analysis. In cultures with hGM-CSF alone, hGM-CSFR-expressing (hGM-CSFR+) granulocyte/monocyte progenitors (GMPs) and megakaryocyte/erythrocyte progenitors (MEPs) exclusively gave rise to granulocyte/monocyte (GM) and megakaryocyte/erythroid (MegE) colonies, respectively, providing formal proof that GM-CSF signals support the GM and MegE lineage differentiation without affecting the physiological myeloid fate. hGM-CSFR transgenic mice were crossed with mice deficient in interleukin (IL)-7, an essential cytokine for T and B cell development. Administration of hGM-CSF in these mice could not restore T or B lymphopoiesis, indicating that enforced GM-CSF signals cannot substitute for IL-7 to promote lymphopoiesis. Strikingly, >50% hGM-CSFR+ common lymphoid progenitors (CLPs) and >20% hGM-CSFR+ pro-T cells gave rise to granulocyte, monocyte, and/or myeloid dendritic cells, but not MegE lineage cells in the presence of hGM-CSF. Injection of hGM-CSF into mice transplanted with hGM-CSFR+ CLPs blocked their lymphoid differentiation, but induced development of GM cells in vivo. Thus, hGM-CSF transduces permissive signals for myeloerythroid differentiation, whereas it transmits potent instructive signals for the GM differentiation to CLPs and early T cell progenitors. These data suggest that a majority of CLPs and a fraction of pro-T cells possess plasticity for myelomonocytic differentiation that can be activated by ectopic GM-CSF signals, supporting the hypothesis that the down-regulation of GM-CSFR is a critical event in producing cells with a lymphoid-restricted lineage potential.
Collapse
Affiliation(s)
- Junko Iwasaki-Arai
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG, Thomas-Tikhonenko A. Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 2003; 101:1950-5. [PMID: 12406913 PMCID: PMC4547547 DOI: 10.1182/blood-2002-06-1797] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphomagenesis is an uncontrolled expansion of immature precursors that fail to complete their differentiation program. This failure could be at least partly explained by inappropriate expression of several oncogenic transcription factors, such as Pax5 and Myc. Both Pax5 and c-Myc are implicated in the pathogenesis of non-Hodgkin lymphomas. To address their role in lymphomagenesis, we analyzed B-cell lymphomas derived from p53-null bone marrow progenitors infected in vivo by a Myc-encoding retrovirus. All Myc-induced lymphomas invariably maintained expression of Pax5, which is thought to be incompatible with terminal differentiation. However, upon culturing in vitro, several cell lines spontaneously down-regulated Pax5 and its target genes CD19, N-Myc, and MB1. Unexpectedly, other B-cell markers (eg, CD45R) were also down-regulated, and markers of myeloid lineage (CD11b and F4/80 antigen) were acquired instead. Moreover, cells assumed the morphology reminiscent of myeloid cells. A pool of F4/80-positive cells as well as several single-cell clones were obtained and reinjected into syngeneic mice. Remarkably, pooled cells rapidly re-expressed Pax5 and formed tumors of relatively mature lymphoid phenotype, with surface immunoglobulins being abundantly expressed. Approximately half of tumorigenic single-cell clones also abandoned myeloid differentiation and gave rise to B lymphomas. However, when secondary lymphoma cells were returned to in vitro conditions, they once again switched to myeloid differentiation. This process could be curbed via enforced expression of retrovirally encoded Pax5. Our data demonstrate that some Myc target cells are bipotent B-lymphoid/myeloid progenitors with the astonishing capacity to undergo successive rounds of lineage switching.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- CD11b Antigen/biosynthesis
- CD11b Antigen/genetics
- Cell Adhesion
- Cell Differentiation
- Cell Lineage/genetics
- Cell Size
- Cell Transformation, Neoplastic/genetics
- Clone Cells/transplantation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, myc
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/genetics
- Lymphocytes/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Myeloid Cells/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- PAX5 Transcription Factor
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Recombinant Fusion Proteins/physiology
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Duonan Yu
- Departments of Pathobiology, Pathology and Laboratory Medicine, and Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
T lymphocytes originate from pluripotent precursors and undergo lasting commitment to the T cell developmental fate during their processing in the thymus. Commitment includes both the acquisition of essential T cell characteristics and the foreclosing of other developmental options. Gain of T cell characteristics is probably mediated by separate mechanisms, at least in detail, from loss of alternative developmental potentials. Programmed shifts in survival requirements make changes irreversible. Here we review the current evidence identifying the regulatory components of this commitment pathway, and the first hints of how they work together. Roles for PU.1, GATA-3, and their target genes are highlighted.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Evans CA, Ariffin S, Pierce A, Whetton AD. Identification of primary structural features that define the differential actions of IL-3 and GM-CSF receptors. Blood 2002; 100:3164-74. [PMID: 12384414 DOI: 10.1182/blood-2001-12-0235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of human interleukin 3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors, ectopically expressed in FDCP-mix multipotent cells, stimulates self-renewal or myeloid differentiation, respectively. These receptors are composed of unique alpha subunits that interact with common beta(c) subunits. A chimeric receptor (hGM/beta(c)), comprising the extracellular domain of the hGM-CSF receptor alpha subunit (hGM Ralpha) fused to the intracellular domain of hbeta(c), was generated to determine whether hbeta(c) activation is alone sufficient to promote differentiation. hGM-CSF activation of hGM/beta(c), expressed in the presence and absence of the hbeta(c) subunit, promoted maintenance of primitive phenotype. This indicates that the cytosolic domain of the hGM Ralpha chain is required for differentiation mediated by activation of the hGM Ralpha, beta(c) receptor complex. We have previously demonstrated that the alpha cytosolic domain confers signal specificity for IL-3 and GM-CSF receptors. Bioinformatic analysis of the IL-3 Ralpha and GM Ralpha subunits identified a tripeptide sequence, adjacent to the conserved proline-rich domain, which was potentially a key difference between them. Cross-exchange of the equivalent tripeptides between the alpha subunits altered receptor function compared to the wild-type receptors. Both the mutant and the corresponding wild-type receptors promoted survival and proliferation in the short-term but had distinct effects on developmental outcome. The mutated hGM Ralpha promoted long-term proliferation and maintenance of primitive cell morphology, whereas cytokine activation of the corresponding hIL-3 Ralpha mutant promoted myeloid differentiation. We have thus identified a region of the alpha cytosolic domain that is of critical importance for defining receptor specificity.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Cell Differentiation/drug effects
- Cell Line
- Cell Survival/drug effects
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Granulocytes/cytology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Humans
- Interleukin-3/pharmacology
- Macrophages/cytology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phenotype
- Protein Structure, Tertiary
- Protein Subunits
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/drug effects
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/drug effects
- Receptors, Interleukin-3/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Substrate Specificity
- Transfection
Collapse
Affiliation(s)
- Caroline A Evans
- Leukaemia Research Fund Cellular Development Unit, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Sackville Street, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
18
|
Abstract
The earliest stages of intrathymic T-cell development include not only the acquisition of T-cell characteristics but also programmed loss of potentials for B, natural killer, and dendritic cell development. Evidence from genetics and cell-transfer studies suggests an order and some components of the mechanisms involved in loss of these options, but some of the interpretations conflict. The conflicts can be resolved by a view that postulates overlapping windows of developmental opportunity and individual mechanisms regulating progression along each pathway. This view is consistent with molecular evidence for the expression patterns of positive regulators of non-T developmental pathways, SCL, PU.1 and Id2, in early thymocytes. To some extent, overexpression of such regulators redirects thymocyte development in vitro. Specific commitment functions may normally terminate this developmental plasticity. Both PU.1 overexpression and stimulation of ectopically expressed growth factor receptors can perturb T- and myeloid/dendritic-cell divergence, but only in permissive stages. A cell-line system that approximates DN3-stage thymocytes reveals that PU.1 can alter specification even in a homogeneous population. However, the response of the population to PU.1 is sharply discontinuous. These studies show a critical role for regulatory context in restricting plasticity, which is probably maintained by interacting transcription factor networks.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
19
|
Du Y, Campbell JL, Nalbant D, Youn H, Bass ACH, Cobos E, Tsai S, Keller JR, Williams SC. Mapping gene expression patterns during myeloid differentiation using the EML hematopoietic progenitor cell line. Exp Hematol 2002; 30:649-58. [PMID: 12135661 DOI: 10.1016/s0301-472x(02)00817-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The detailed examination of the molecular events that control the early stages of myeloid differentiation has been hampered by the relative scarcity of hematopoietic stem cells and the lack of suitable cell line models. In this study, we examined the expression of several myeloid and nonmyeloid genes in the murine EML hematopoietic stem cell line. METHODS Expression patterns for 19 different genes were examined by Northern blotting and RT-PCR in RNA samples from EML, a variety of other immortalized cell lines, and purified murine hematopoietic stem cells. Representational difference analysis (RDA) was performed to identify differentially expressed genes in EML. RESULTS Expression patterns of genes encoding transcription factors (four members of the C/EBP family, GATA-1, GATA-2, PU.1, CBFbeta, SCL, and c-myb) in EML were examined and were consistent with the proposed functions of these proteins in hematopoietic differentiation. Expression levels of three markers of terminal myeloid differentiation (neutrophil elastase, proteinase 3, and Mac-1) were highest in EML cells at the later stages of differentiation. In a search for genes that were differentially expressed in EML cells during myeloid differentiation, six cDNAs were isolated. These included three known genes (lysozyme, histidine decarboxylase, and tryptophan hydroxylase) and three novel genes. CONCLUSION Expression patterns of known genes in differentiating EML cells accurately reflected their expected expression patterns based on previous studies. The identification of three novel genes, two of which encode proteins that may act as regulators of hematopoietic differentiation, suggests that EML is a useful model system for the molecular analysis of hematopoietic differentiation.
Collapse
Affiliation(s)
- Yang Du
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL, Akashi K. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002; 3:137-47. [PMID: 12110174 DOI: 10.1016/s1534-5807(02)00201-0] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate here that "promiscuous" expression of myeloid or lymphoid genes precedes lineage commitment in hematopoiesis. Prospectively purified single common myeloid progenitors (CMPs) coexpress myelo-erythroid but not lymphoid genes, whereas single common lymphoid progenitors (CLPs) coexpress T and B lymphoid but not myeloid genes. Genes unrelated to the adopted lineage are downregulated in bipotent and monopotent descendants of CMPs and CLPs. Promiscuous gene expression does not alter the biological potential of multipotent progenitors: CMPs with an activated endogenous M lysozyme locus yield normal proportions of myelo-erythroid colonies, and CLPs expressing the pre-T cell receptor alpha gene differentiate into normal numbers of B cells. Thus, the accessibility for multiple myeloid or lymphoid programs promiscuously may allow flexibility in fate commitments at these multipotent stages.
Collapse
Affiliation(s)
- Toshihiro Miyamoto
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Rothenberg EV, Anderson MK. Elements of transcription factor network design for T-lineage specification. Dev Biol 2002; 246:29-44. [PMID: 12027432 DOI: 10.1006/dbio.2002.0667] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complex spectrum of cell types produced in mammalian hematopoiesis can be understood as the output of highly combinatorial transcription factor action. The generation of multiple diverse combinations of transcription factors from the common starting state of the hematopoietic stem cell must be explained through the cross-regulatory interactions of these transcription factors at several levels. Here, the operation of such a network is addressed through a focus on murine T cell development, where we have recently established regulatory linkages between GATA-3 and PU.1 and multiple other factors essential to this differentiation pathway. The action of both essential/rate-limiting factors and factors with effects that shift qualitatively with dose and time of action can be traced through the regulatory interaction network. Hypothetical models are proposed to indicate the network nodes that are differentially activated in normal T cell lineage progression and in cells diverted to other potential fates.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena 91125, USA.
| | | |
Collapse
|
22
|
Abstract
The past two decades have witnessed significant advances in our understanding of the cellular physiology and molecular regulation of hematopoiesis. At the heart of stem cell self-renewal and lineage commitment decisions lies the relative expression levels of lineage-specific transcription factors. The expression of these transcription factors in early stem cells may be promiscuous and fluctuate, but ultimately comes under the influence of extracellular regulatory signals in the form of hematopoietic cytokines. In this review, we first summarize our current understanding of the phenotypic characterization of hematopoietic stem cells. Next, we describe key known transcription factors which govern stem cell self-renewal and lineage commitment decisions. Finally, we review data concerning the role of specific cytokines in influencing these decisions. From this review, a picture emerges in which stem cell fate decisions are governed by the integrated effects of intrinsic transcription factors and external signaling pathways initiated by regulatory cytokines.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| | | |
Collapse
|
23
|
Abstract
Significant progress has recently been made in our understanding of how transcription factors such as PU.1, Notch1, E2A, EBF, Pax5, Bcl6, Blimp1 and XBP1 control different developmental decisions during the onset and terminal phase of B-lymphopoiesis. One emerging theme is that negative regulatory networks play an important role in suppressing alternative gene programs and their corresponding cell fates throughout B-cell development.
Collapse
Affiliation(s)
- Michael Schebesta
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
24
|
Collins SJ, Ulmer J, Purton LE, Darlington G. Multipotent hematopoietic cell lines derived from C/EBPalpha(-/-) knockout mice display granulocyte macrophage-colony-stimulating factor, granulocyte- colony-stimulating factor, and retinoic acid-induced granulocytic differentiation. Blood 2001; 98:2382-8. [PMID: 11588034 DOI: 10.1182/blood.v98.8.2382] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor C/EBPalpha is an important mediator of granulocyte differentiation and regulates the expression of multiple granulocyte-specific genes including the granulocyte-colony-stimulating factor (G-CSF) receptor, neutrophil elastase, and myeloperoxidase. Indeed C/EBPalpha knockout mice display a profound block in granulocyte differentiation. To study this block in granulocytic differentiation in more detail, retroviral vector-mediated transduction of a dominant-negative retinoic acid receptor was used to establish hematopoietic growth factor-dependent, lympho-myeloid progenitor cell lines from the fetal livers of both the C/EBPalpha knockout animals (C/EBPalpha(-/-)) and their heterozygous littermates (C/EBPalpha(+/-)). Surprisingly, the C/EBPalpha(-/-) cell lines displayed significant spontaneous granulocytic differentiation, and this differentiation was markedly enhanced when the cells were stimulated with granulocyte macrophage (GM)-CSF. This GM-CSF-mediated differentiation was associated with the up-regulation of G-CSF receptor mRNA, and the combination of GM-CSF and G-CSF generated more than 95% mature neutrophils in the C/EBPalpha(-/-) cultures. The addition of all-trans retinoic acid also enhanced this granulocytic differentiation of the cultured C/EBPalpha(-/-) cells, indicating that the activated retinoic acid receptors can enhance granulocytic differentiation through a molecular pathway that is independent of C/EBPalpha. These studies clearly indicate that terminal granulocytic differentiation associated with the up-regulation of C/EBPalpha-responsive genes can occur in the absence of C/EBPalpha, and they indicate the existence of multiple independent molecular pathways potentially used by primitive hematopoietic precursors that can lead to the development of mature granulocytes.
Collapse
Affiliation(s)
- S J Collins
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | |
Collapse
|
25
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
26
|
Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. THE JOURNAL OF IMMUNOLOGY 2001; 166:6593-601. [PMID: 11359812 DOI: 10.4049/jimmunol.166.11.6593] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We identified an IL-7Ralpha(+)Sca-1(low)c-Kit(low) population in E14 fetal liver, which is the phenotypical analog of common lymphoid progenitors (CLP) in adult bone marrow. After transfer into newborn mice, the IL-7Ralpha(+)Sca-1(low)c-Kit(low) population rapidly differentiated into CD45(+)CD4(+)CD3(-) cells, which are candidate cells for initiating lymph node and Peyer's patch formation. In addition, this population also gave rise to B, T, NK, and CD8alpha(+) and CD8alpha(-) dendritic cells. The fetal liver precursors expressed a significantly lower level of the myeloid-suppressing transcription factor Pax-5, than adult CLP, and retained differentiation activity for macrophages in vitro. We propose that the transition from fetal liver IL-7Ralpha(+)Sca-1(low)c-Kit(low) cells to adult CLP involves a regulated restriction of their developmental potential, controlled, at least in part, by Pax-5 expression.
Collapse
Affiliation(s)
- R E Mebius
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen D, Zhang G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol 2001; 29:971-80. [PMID: 11495703 DOI: 10.1016/s0301-472x(01)00670-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Three GATA family transcription factors are involved in various aspects of hematopoiesis. Their lineage-restricted expression correlates well with their function in selective lineage commitment and differentiation. We focused on the role of GATA-3 to determine whether an intrinsic variation among different GATA proteins, in addition to the distinct expression pattern, determines lineage specification. MATERIALS AND METHODS Using a retroviral vector, we introduced the GATA-3 gene into primary murine hematopoietic stem cells (HSC) and examined their development in in vitro suspension culture and colony-forming assays as well as in vivo competitive repopulation studies. RESULTS Although GATA-3 expression normally is restricted to lymphoid precursor and committed T cells, overexpression of GATA-3 in HSC results in cessation of cell expansion followed by selective induction of megakaryocytic and erythroid differentiation and inhibition of myeloid and lymphoid precursor development in liquid suspension culture and in vitro colony-forming assays. Competitive repopulation studies show that transplanted GATA-3-expressing HSC/progenitor cells give one wave of erythrocyte development but fail to expand in the bone marrow or to reconstitute other lineages. CONCLUSIONS The selective megakaryocytic/erythroid differentiation in HSC with enforced GATA-3 expression suggests a functional redundancy among GATA proteins and indicates that the specific lineage fate determination by individual GATA proteins is largely regulated at the level of expression in a lineage and developmental-stage restricted fashion, whereas the identity of the GATA factor may not be as important.
Collapse
Affiliation(s)
- D Chen
- Systemix, Inc., Palo Alto, Calif., USA.
| | | |
Collapse
|
28
|
Chiang MY, Monroe JG. Role for transcription Pax5A factor in maintaining commitment to the B cell lineage by selective inhibition of granulocyte-macrophage colony-stimulating factor receptor expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6091-8. [PMID: 11342627 DOI: 10.4049/jimmunol.166.10.6091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During early B lymphopoiesis, developing B cells maintain lineage commitment despite the local presence of myeloid lineage-promoting cytokines such as GM-CSF and IL-3. Previous observations suggest that the B cell-specific transcription factor Pax5A (paired box 5A transcription factor) plays a role in maintaining B cell lineage commitment by limiting expansion and survival of early IL-3/GM-CSF-dependent myeloid lineage cells. To define a mechanism by which Pax5A can exert these inhibitory effects on myeloid lineage differentiation, an inducible form of the Pax5A protein was expressed in the myeloid cell line FDC-P1. This cell line models myeloid progenitors in that it responds to the survival and growth-potentiating effects of IL-3 and GM-CSF. We observed that enforced expression of Pax5A selectively suppressed proliferation in response to GM-CSF, but not IL-3. This effect was associated with specific down-regulation of GM-CSFR alpha-chain, but not beta-chain expression. These data provide a molecular mechanism to enforce commitment to the B cell lineage despite the presence of GM-CSF, a factor that has been shown to convert early developing B cells to the myeloid lineage. Furthermore, they indicate a role for B cell Pax5A expression in maintaining rather than directing commitment to the B cell lineage.
Collapse
Affiliation(s)
- M Y Chiang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol 2001; 20:65-82. [PMID: 11342298 DOI: 10.3109/08830180109056723] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite being one of the most intensively studied cell types, the molecular basis of B cell specification is largely unknown. The Pax5 gene encoding the transcription factor BSAP is required for progression of B-lymphopoiesis beyond the pro-B cell stage. Pax5-deficient pro-B cells are, however, not yet committed to the B-lymphoid lineage, but instead have a broad lymphomyeloid developmental potential. Pax5 appears to mediate B-lineage commitment by repressing the transcription of non-B-lymphoid genes and by simultaneously activating the expression of B-lineage-specific genes. Pax5 thus functions both as a transcriptional repressor and activator, depending on its interactions with corepressors of the Groucho protein family or with positive regulators such as the TATA-binding protein. Once committed to the B-lineage, B cells require Pax5 function to maintain their B-lymphoid identity throughout B cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- B-Lymphocyte Subsets/cytology
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Coculture Techniques
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental
- Gene Rearrangement, B-Lymphocyte
- Genes, Immunoglobulin
- Genes, myc
- Hematopoiesis/genetics
- Humans
- Interleukin-7/physiology
- Mice
- Mice, Knockout
- Models, Biological
- PAX5 Transcription Factor
- Proteins/genetics
- Proteins/physiology
- Repressor Proteins/physiology
- Stromal Cells/cytology
- Transcription Factor TFIID
- Transcription Factors/physiology
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- F J Staal
- Department of Immunology, Erasmus University Rotterdam, Netherlands
| | | |
Collapse
|
31
|
Telfer JC, Rothenberg EV. Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development. Dev Biol 2001; 229:363-82. [PMID: 11203699 DOI: 10.1006/dbio.2000.9991] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Runt family transcription factor CBFalpha2 (AML1, PEBP2alphaB, or Runx1) is required by hematopoietic stem cells and expressed at high levels in T-lineage cells. In human T cells CBFalpha2 is usually transcribed from a different promoter (distal promoter) than in myeloid cells (proximal promoter), but the developmental and functional significance of this promoter switch has not been known. Here, we report that both coding and noncoding sequences of the distal 5' end are highly conserved between the human and the murine genes, and the distal promoter is responsible for the overwhelming majority of CBFalpha2 expression in murine hematopoietic stem cells as well as in T cells. Distal promoter activity is maintained throughout T cell development and at lower levels in B cell development, but downregulated in natural killer cell development. The distal N-terminal isoform binds to functionally important regulatory sites from known target genes with two- to threefold higher affinity than the proximal N-terminal isoform. Neither full-length isoform alters growth of a myeloid cell line under nondifferentiating conditions, but the proximal isoform selectively delays mitotic arrest of the cell line under differentiating conditions, resulting in the generation of greater numbers of neutrophils.
Collapse
Affiliation(s)
- J C Telfer
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
32
|
Abstract
B and T lymphocytes differentiate from multipotent precursors through distinct specification and commitment steps. New findings on the unique role of Pax5 in B-lineage commitment, dichotomous action of Notch signaling in B versus T cell development, and the gene expression changes comprising T-lineage specification and commitment now illuminate this process.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
33
|
Abstract
Lymphopoiesis of mature and diverse populations of T, B and NK (natural killer) cells from multipotent hematopoietic stem cells is an ideal model of tissue generation and regeneration. Identification and isolation of hematolymphoid stem and progenitor cells in several laboratories over the past several years have provided populations that can be studied biologically for lineage commitment and biochemically for receptor function, signal transduction and selective gene expression. These studies may ultimately provide candidate genes involved in lineage commitment, cell death or survival, self-renewal and migratory capacities of progenitors.
Collapse
Affiliation(s)
- K Akashi
- Departments of Pathology and Developmental Biology, Beckman Center B-261, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|