1
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Sartori G, Tarantelli C, Spriano F, Gaudio E, Cascione L, Mascia M, Barreca M, Arribas AJ, Licenziato L, Golino G, Ferragamo A, Pileri S, Damia G, Zucca E, Stathis A, Politz O, Wengner AM, Bertoni F. The ATR inhibitor elimusertib exhibits anti-lymphoma activity and synergizes with the PI3K inhibitor copanlisib. Br J Haematol 2024; 204:191-205. [PMID: 38011941 DOI: 10.1111/bjh.19218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The DNA damage response (DDR) is the cellular process of preserving an intact genome and is often deregulated in lymphoma cells. The ataxia telangiectasia and Rad3-related (ATR) kinase is a crucial factor of DDR in the response to DNA single-strand breaks. ATR inhibitors are agents that have shown considerable clinical potential in this context. We characterized the activity of the ATR inhibitor elimusertib (BAY 1895344) in a large panel of lymphoma cell lines. Furthermore, we evaluated its activity combined with the clinically approved PI3K inhibitor copanlisib in vitro and in vivo. Elimusertib exhibits potent anti-tumour activity across various lymphoma subtypes, which is associated with the expression of genes related to replication stress, cell cycle regulation and, as also sustained by CRISPR Cas9 experiments, CDKN2A loss. In several tumour models, elimusertib demonstrated widespread anti-tumour activity stronger than ceralasertib, another ATR inhibitor. This activity is present in both DDR-proficient and DDR-deficient lymphoma models. Furthermore, a combination of ATR and PI3K inhibition by treatment with elimusertib and copanlisib has in vitro and in vivo anti-tumour activity, providing a potential new treatment option for lymphoma patients.
Collapse
Affiliation(s)
- Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michele Mascia
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Marilia Barreca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Luca Licenziato
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Adele Ferragamo
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Stefano Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| |
Collapse
|
3
|
Webb F, Morey A, Mahler-Hinder C, Georgousopoulou E, Koo R, Pati N, Talaulikar D. Comprehensive FISH testing using FFPE tissue microarray of primary lymph node tissue identifies secondary cytogenetic abnormalities in Mantle Cell Lymphoma. Cancer Genet 2023; 274-275:75-83. [PMID: 37094546 DOI: 10.1016/j.cancergen.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Mantle Cell Lymphoma (MCL), is characterised by the reciprocal translocation t(11;14) resulting in CCND1-IGH gene fusion and subsequent upregulation of the CCND1 gene. Rearrangements of MYC and losses of CDKN2A and TP53 have been identified as biomarkers informing prognostic and potentially therapeutic information however these are not routinely assessed in MCL investigation. We aimed to identify additional cytogenetic changes using fluorescence in situ hybridisation (FISH) on formalin fixed paraffin embedded (FFPE) primary lymph node tissue microarrays in a cohort of 28 patients diagnosed with MCL between 2004 and 2019. FISH results were compared with corresponding immunohistochemistry (IHC) biomarkers to determine if IHC was a reliable screening tool to direct FISH testing. METHOD FFPE lymph node tissue samples were constructed into tissue microarrays (TMA) which were stained with 7 immunohistochemical biomarkers: Cyclin D1, c-Myc, p16, ATM, p53, Bcl-6 and Bcl-2. The same TMAs were hybridised with FISH probes for the corresponding genes; CCND1-IGH, MYC, CDKN2A, ATM, TP53, BCL6 and BCL2. FISH and the corresponding IHC biomarkers were analysed to determine if secondary cytogenetic changes could be identified and if IHC could be used as a reliable, inexpensive predictor of FISH abnormalities to potentially direct FISH testing. RESULTS CCND1-IGH fusion was detected in 27/28 (96%) of samples. Additional cytogenetic changes were identified by FISH in 15/28 (54%) of samples. Two additional abnormalities were detected in 2/28 (7%) samples. Cyclin D1 IHC overexpression was an excellent predictor of CCND1-IGH fusion. MYC and ATM IHC were useful screening tests to direct FISH testing and identified cases with poor prognostic features including blastoid change. IHC did not show clear concordance with FISH for other biomarkers. CONCLUSION FISH using FFPE primary lymph node tissue can detect secondary cytogenetic abnormalities in patients with MCL which are associated with an inferior prognosis. An expanded FISH panel including MYC, CDKN2A, TP53 and ATM should be considered in cases where anomalous IHC expression or is seen for these markers or if the patient appears to have the blastoid variant of the disease.
Collapse
Affiliation(s)
- Fiona Webb
- Department of Diagnostic Genomics, ACT Pathology, Canberra Health Services, Canberra, Australia.
| | - Adrienne Morey
- Department of Anatomical Pathology, ACT Pathology, Canberra Health Services, Canberra, Australia; Australian National University, Canberra, Australia
| | | | | | - RayMun Koo
- Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nalini Pati
- Department of Haematology, ACT Pathology, Canberra Health Services, Canberra, Australia
| | - Dipti Talaulikar
- Department of Diagnostic Genomics, ACT Pathology, Canberra Health Services, Canberra, Australia; Australian National University, Canberra, Australia; Department of Haematology, ACT Pathology, Canberra Health Services, Canberra, Australia
| |
Collapse
|
4
|
Ortega V, Mendiola C, Rodriguez J, Ehman W, Qian YW, Velagaleti G. Bi-allelic amplification of ATM gene in blastoid variant of mantle cell lymphoma: a novel mechanism of inactivation due to chromoanagenesis? Mol Cytogenet 2021; 14:8. [PMID: 33541390 PMCID: PMC7863528 DOI: 10.1186/s13039-020-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is derived from naïve CD5+ B-cells with the cytogenetic hallmark translocation 11;14. The presence of additional abnormalities is associated with blastoid variants in MCL (BMCL) and confers a poor prognosis. Many of these tumors also show deletion or loss of heterozygosity (LOH) of the ATM gene and biallelic ATM inactivation show significantly higher chromosomal imbalances. Case presentation Here we report a 52 year-old male who presented to the clinic with worsening dyspnea, fever, chills, diffuse lymphadenopathy, splenomegaly and leukocytosis with blastoid cells circulating in blood. The bone marrow aspirate showed about 40% abnormal blast-looking cells and biopsy revealed a remarkable lymphoid infiltrate. The patient was diagnosed with blastoid variant mantle cell lymphoma (BMCL). Chromosome analysis on bone marrow showed a complex karyotype. FISH analysis from B-cell lymphoma panel showed bi-allelic amplification of ATM gene. Other abnormalities were present including CCND1/IGH fusion, confirming the MCL diagnosis, in addition to RB1 and p53 deletion. High resolution SNP-microarray studies showed complex copy number changes, especially on chromosomes 7 and 11, consistent with chromoanagenesis. Microarray studies also showed LOH at the ATM locus indicating the amplification seen on FISH is not biallelic. Conclusion To the best of our knowledge, ATM gene amplification is not previously reported in BMCL and our case suggests a novel mechanism of ATM inactivation caused by chromoanagenesis resulting in mutant allele specific imbalance with copy number gain.
Collapse
Affiliation(s)
- Veronica Ortega
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Christina Mendiola
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Juana Rodriguez
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - William Ehman
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - You-Wen Qian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gopalrao Velagaleti
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
6
|
The role of circular RNAs in hematological malignancies. Genomics 2020; 112:4000-4008. [DOI: 10.1016/j.ygeno.2020.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
|
7
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2020; 153:103038. [PMID: 32739830 DOI: 10.1016/j.critrevonc.2020.103038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
MCL is a well-characterized generally aggressive lymphoma with a poor prognosis. However, patients with a more indolent disease have been reported in whom the initiation of therapy can be delayed without any consequence for the survival. In 2017 the World Health Organization updated the classification of MCL describing two main subtypes with specific molecular characteristics and clinical features, classical and indolent leukaemic nonnodal MCL. Recent research results suggested an improving outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it did not improve overall survival compared to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidation with autologous stem cell transplantation ameliorated response rate and prolonged progression-free survival in young fit patients, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better understanding of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy and spare the toxicity of intense therapy in most patients. Cases not eligible for intensive regimens, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy as the first-line strategy in a wide range of patients. Finally, since the optimal approach to the management of MCL is still evolving, it is critical that these patients are enrolled in clinical trials to identify the better treatment options.
Collapse
Affiliation(s)
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy; Medical Oncology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Dreyling
- Medizinische Klinik III der Universität München-Grosshadern, München, Germany
| |
Collapse
|
8
|
Sakhdari A, Ok CY, Patel KP, Kanagal-Shamanna R, Yin CC, Zuo Z, Hu S, Routbort MJ, Luthra R, Medeiros LJ, Khoury JD, Loghavi S. TP53 mutations are common in mantle cell lymphoma, including the indolent leukemic non-nodal variant. Ann Diagn Pathol 2019; 41:38-42. [PMID: 31132650 DOI: 10.1016/j.anndiagpath.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an aggressive B-cell neoplasm, but clinically indolent subtypes are also recognized. Data on the utility of mutation profiling in the context of routine workup and its role in risk-stratification of MCL patients are limited. In this study, we describe the mutational landscape and clinicopathologic correlates of a series of MCL cases at a single-institution setting. METHODS Samples from 26 patients with MCL were evaluated by NGS using DNA extracted from peripheral blood (PB) or bone marrow (BM). Evaluation of extent of PB or BM involvement was performed using flow cytometry immunophenotyping. RESULTS The study group included 17 (65%) men and 9 (35%) women with a median age of 65 years (range, 50-94). Twenty-one (81%) patients had nodal MCL (N-MCL) and 5 (19%) had the "leukemic variant" (L-MCL). Mutated genesincluded TP53 (35%), ATM (27%), CARD11 (10%); and FBXW7, NOTCH1, SPEN, BIRC3 (~5% each). Most mutations were clonal in nature. Ten unique TP53 mutations were identified in 9 samples, including 3 L-MCL cases. There was no difference in the frequency of TP53 mutations between L-MCL and N-MCL groups (p = 0.3), but TP53 mutations were subclonal in 2/3 L-MCL cases. Identification of clonal TP53 alterations in L-MCL patients prompted initiation of therapy despite low tumor burden. CONCLUSIONS TP53 is commonly mutated in MCL. TP53 mutations may be clonal or subclonal. Seemingly indolent L-MCL may harbor subclonal TP53 mutations which may serve as a useful biomarker for prognostication, therapeutic planning, follow-up monitoring, and early detection of clonal expansion.
Collapse
Affiliation(s)
- Ali Sakhdari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
9
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
10
|
Dahl M, Kristensen LS, Grønbæk K. Long Non-Coding RNAs Guide the Fine-Tuning of Gene Regulation in B-Cell Development and Malignancy. Int J Mol Sci 2018; 19:E2475. [PMID: 30134619 PMCID: PMC6165225 DOI: 10.3390/ijms19092475] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
With the introduction of next generation sequencing methods, such as RNA sequencing, it has become apparent that alterations in the non-coding regions of our genome are important in the development of cancer. Particularly interesting is the class of long non-coding RNAs (lncRNAs), including the recently described subclass of circular RNAs (circRNAs), which display tissue- and cell-type specific expression patterns and exert diverse regulatory functions in the cells. B-cells undergo complex and tightly regulated processes in order to develop from antigen naïve cells residing in the bone marrow to the highly diverse and competent effector cells circulating in peripheral blood. These processes include V(D)J recombination, rapid proliferation, somatic hypermutation and clonal selection, posing a risk of malignant transformation at each step. The aim of this review is to provide insight into how lncRNAs including circRNAs, participate in normal B-cell differentiation, and how deregulation of these molecules is involved in the development of B-cell malignancies. We describe the prognostic value and functional significance of specific deregulated lncRNAs in diseases such as acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, Burkitt lymphoma and multiple myeloma, and we provide an overview of the current knowledge on the role of circRNAs in these diseases.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA/genetics
- RNA/immunology
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| | - Lasse Sommer Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. J Transl Med 2018; 98:1657-1669. [PMID: 30087459 PMCID: PMC6265260 DOI: 10.1038/s41374-018-0108-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed endogenous molecules with tissue- and disease-specific expression patterns, which have potential as diagnostic and prognostic biomarkers in cancer. The molecules are formed by a backsplicing event linking the 3'-end of an exon to the 5'-end of the same or an upstream exon, and they exert diverse regulatory functions important in carcinogenesis. The landscape of circRNA expression has not been characterized in B-cell malignancies, and current methods for circRNA quantification have several limitations that prevent development of clinically applicable assays. Here, we demonstrate that circRNAs can be accurately quantified without enzymatic reactions or bias using color-coded probes (NanoString technology). First, we performed high-throughput RNA sequencing (RNA-seq) of several mantle cell lymphoma and multiple myeloma cell lines to profile the genome-wide landscape of circRNA expression. We detected several circRNAs known to be deregulated in other cancers and identified a novel circRNA from the IKZF3 gene. Based on these data, we selected 52 unique circRNAs for which we designed color-coded probes spanning their specific backsplicing junctions. These circRNAs were quantified in cell lines and patient samples from several different B-cell malignancies (mantle cell lymphoma, multiple myeloma, follicular lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma and chronic lymphocytic leukemia) simultaneously using the NanoString technology. The circRNA expression profiles obtained could distinguish different B-cell malignancies, and confirmed the presence of the novel circRNA derived from IKZF3. The NanoString assays were specific for circRNA detection and data were more reproducible and quantitatively more accurate than RNA-seq data. In addition, we obtained high-quality data on severely degraded RNA samples from formalin-fixed, paraffin-embedded (FFPE) tissues. Together, we provide a map of circRNA expression in B-cell malignancies and present an enzyme-free digital counting methodology, which has the potential to become a new gold standard for circRNA quantification.
Collapse
|
12
|
Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res 2017; 27:764-783. [PMID: 28337983 PMCID: PMC5518870 DOI: 10.1038/cr.2017.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand breaks (DSBs) are traditionally associated with cancer through their abilities to cause chromosomal instabilities or gene mutations. Here we report a new class of self-inflicted DNA DSBs that can drive tumor growth irrespective of their effects on genomic stability. We discover a mechanism through which cancer cells cause DSBs in their own genome spontaneously independent of reactive oxygen species or replication stress. In this mechanism, low-level cytochrome c leakage from the mitochondria leads to sublethal activation of apoptotic caspases and nucleases, which causes DNA DSBs. In response to these spontaneous DNA DSBs, ATM, a key factor involved in DNA damage response, is constitutively activated. Activated ATM leads to activation of transcription factors NF-κB and STAT3, known drivers of tumor growth. Moreover, self-inflicted DNA DSB formation and ATM activation are important in sustaining the stemness of patient-derived glioma cells. In human tumor tissues, elevated levels of activated ATM correlate with poor patient survival. Self-inflicted DNA DSBs therefore are functionally important for maintaining the malignancy of cancer cells.
Collapse
|
13
|
Ghosh R, Roy S, Kamyab J, Danzter F, Franco S. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. DNA Repair (Amst) 2016; 45:56-62. [PMID: 27373144 DOI: 10.1016/j.dnarep.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
Abstract
In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.
Collapse
Affiliation(s)
- Rajib Ghosh
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Sanchita Roy
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Johan Kamyab
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Francoise Danzter
- Biotechnology and Cell Signaling Unit, University of Strasbourg, 67412 Illkirch, France
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
14
|
Prochazkova J, Sakaguchi S, Owusu M, Mazouzi A, Wiedner M, Velimezi G, Moder M, Turchinovich G, Hladik A, Gurnhofer E, Hayday A, Behrens A, Knapp S, Kenner L, Ellmeier W, Loizou JI. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genet 2015; 11:e1005645. [PMID: 26544571 PMCID: PMC4636180 DOI: 10.1371/journal.pgen.1005645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Adrian Hayday
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Axel Behrens
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
15
|
Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A, Niino D, Sugita Y, Okamura T, Doi A, Yasuda K, Tashiro K, Kuhara S, Ohshima K. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: Gene expression analysis. Int J Oncol 2013; 43:457-68. [PMID: 23760751 DOI: 10.3892/ijo.2013.1982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
For an accurate understanding of mantle cell lymphoma (MCL), molecular behavior could be staged into two major events: lymphomagenesis with the t(11;14) translocation (initiation), and evolution into a more aggressive form (transformation). Unfortunately, it is still unknown which genes contribute to each event. In this study, we performed cDNA microarray experiments designed based on the concept that morphologically heterogeneous MCL samples would provide insights into the role of aberrant gene expression for both events. A total of 15 MCLs were collected from the files, which include a total of 237 MCL patients confirmed by histology as CCND1-positive. We posited four stepwise morphological grades for MCL: MCL in situ, MCL with classical form (cMCL), MCL with aggressive form (aMCL), and MCL with intermediate morphology between classical and aggressive forms at the same site (iMCL). To identify genes involved in initiation, we compared the tumor cells of MCL in situ (n=4) with normal mantle zone B lymphocytes (n=4), which were selected by laser microdissection (LMD). To identify genes contributing to transformation, we selected the overlapping genes differentially expressed between both cMCL (n=4) vs. aMCL (n=5) and classical vs. aggressive areas in iMCL (n=2) obtained by LMD. A significant number of genes (n=23, p=0.016) belonging to the Wnt signaling pathway were differentially expressed in initiation. This specific activation was confirmed by immuno-histochemistry, as MCL in situ had nuclear localization of phosphorylated-β-catenin with high levels of cytoplasmic Wnt3 staining. For transformation, identified 60 overlapping genes included a number of members of the p53 interaction network (CDC2, BIRC5 and FOXM1), which is known to mediate cell cycle progression during the G2/M transition. Thus, we observe that the Wnt signaling pathway may play an important role in initial lymphomagenesis in addition to t(11;14) translocations, and that specific mitotic regulators facilitate transformation into more aggressive forms.
Collapse
Affiliation(s)
- Yoshizo Kimura
- Department of Pathology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
17
|
Abstract
INTRODUCTION Sapacitabine is an orally bioavailable nucleoside analog prodrug that is in clinical trials for hematologic malignancies and solid tumors. The active metabolite of sapacitabine, CNDAC (2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosylcytosine), exhibits the unique mechanism of action of causing single-strand breaks (SSBs) after incorporation into DNA, which are converted into double-strand breaks (DSBs) when cells enter a second S-phase. CNDAC-induced DSBs are predominantly repaired through homologous recombination (HR). Cells deficient in HR components are greatly sensitized to CNDAC. Therefore, sapacitabine could be specifically effective against tumors that are deficient in this repair pathway. AREAS COVERED This review summarizes results from supporting evidence for the mechanisms of action of sapacitabine, its preclinical activities and the current results of clinical trials in a variety of cancers. The novel action mechanism of sapacitabine is discussed, with a view to validate it as a chemotherapeutic drug targeting malignancies with defects in HR. EXPERT OPINION Knowledge of CNDAC mechanism identifies tumors that may be sensitized to sapacitabine, thus enabling a personalized treatment strategy. It also creates the opportunity to overcome resistance to current front-line therapies and identify synergistic interactions with known anticancer drugs. The results of such investigations may provide rationales for the design of sapacitabine-based clinical trials.
Collapse
Affiliation(s)
- Xiaojun Liu
- The University of Texas M.D. Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX, USA
| | - Hagop Kantarjian
- The University of Texas M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - William Plunkett
- The University of Texas M.D. Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| |
Collapse
|
18
|
Dal Col J, Mastorci K, Faè DA, Muraro E, Martorelli D, Inghirami G, Dolcetti R. Retinoic acid/alpha-interferon combination inhibits growth and promotes apoptosis in mantle cell lymphoma through Akt-dependent modulation of critical targets. Cancer Res 2012; 72:1825-35. [PMID: 22311672 DOI: 10.1158/0008-5472.can-11-2505] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by a profound deregulation of the mechanisms controlling cell-cycle progression and survival. We herein show that the combination of 9-cis-retinoic acid (RA) and IFN-α induces marked antiproliferative and proapoptotic effects in MCL cells through the modulation of critical targets. Particularly, IFN-α enhances RA-mediated G(0)-G(1) cell accumulation by downregulating cyclin D1 and increasing p27(Kip1) and p21(WAF1/Cip1) protein levels. Furthermore, RA/IFN-α combination also induces apoptosis by triggering both caspases-8 and -9 resulting in Bax and Bak activation. In particular, RA/IFN-α treatment downregulates the antiapoptotic Bcl-xL and Bfl-1 proteins and upregulates the proapoptotic BH3-only Noxa protein. Sequestration of Mcl-1 and Bfl-1 by upregulated Noxa results in the activation of Bid, and the consequent induction of apoptosis is inhibited by Noxa silencing. Noxa upregulation is associated with nuclear translocation of the FOXO3a transcription factor as consequence of RA/IFN-α-induced Akt inhibition. Pharmacologic suppression of Akt, but not of TORC1, increases Noxa protein levels and downregulates Bfl-1 protein supporting the conclusion that the inhibition of the Akt pathway, the resulting FOXO3a activation and Noxa upregulation are critical molecular mechanisms underlying RA/IFN-α-dependent MCL cell apoptosis. These results support the potential therapeutic value of RA/IFN-α combination in MCL management.
Collapse
Affiliation(s)
- Jessica Dal Col
- Cancer Bio-Immunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS - National Cancer Institute, Aviano, PN, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood 2011; 118:493-8. [DOI: 10.1182/blood-2011-03-341560] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
A strong clustering of Hodgkin lymphoma in certain families has been long acknowledged. However, the genetic factors in the background of familial Hodgkin lymphoma are largely unknown. We have studied a family of 4 cousins with a rare subtype of the disease, nodular lymphocyte predominant Hodgkin lymphoma. We applied exome sequencing together with genome-wide linkage analysis to this family and identified a truncating germline mutation in nuclear protein, ataxia-telangiectasia locus (NPAT) gene, which segregated in the family. We also studied a large number of samples from other patients with Hodgkin lymphoma, and a germline variation leading to the deletion of serine 724 was found in several cases suggesting an elevated risk for the disease (odds ratio = 4.11; P = .018). NPAT is thus far the first gene implicated in nodular lymphocyte predominant Hodgkin lymphoma predisposition.
Collapse
|
20
|
A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proc Natl Acad Sci U S A 2011; 108:12461-6. [PMID: 21746927 DOI: 10.1073/pnas.1018941108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 overexpression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current treatment strategies. Cyclin-D1 has been postulated as an effective therapeutic target, but the evaluation of this target has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model in which cyclin-D1 expression can be regulated externally. These mice developed cyclin-D1-expressing lymphomas capable of recapitulating features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo; however, using a combination of in vitro and in vivo assays, we identified a novel prosurvival cyclin-D1 function in MCL cells. Specifically, we found that cyclin-D1, besides increasing cell proliferation through deregulation of the cell cycle at the G(1)-S transition, sequestrates the proapoptotic protein BAX in the cytoplasm, thereby favoring BCL2's antiapoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a proapoptotic BH3 mimetic synergistically killed the cyclin-D1-expressing murine lymphomas, human MCL cell lines, and primary lymphoma cells. Our study identifies a role of cyclin-D1 in deregulating apoptosis in MCL cells, and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL. This effective combination therapy also might be exploited in other cyclin-D1-expressing tumors.
Collapse
|
21
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2011; 82:78-101. [PMID: 21658968 DOI: 10.1016/j.critrevonc.2011.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 10/25/2022] Open
Abstract
MCL is a well-characterized clinically aggressive lymphoma with a poor prognosis. Recent research findings have slightly improved the outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it does not improve overall survival with respect to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidated by ASCT ameliorates response rate and prolongs progression-free survival, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better dissection of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy in most patients and spare the toxicity of intense therapy in a minority of MCL patients characterized by a relatively indolent disease. Patients not eligible for intensive regimens, such as hyperC-VAD, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy for relapsed disease, although there are currently no data to recommend this approach as the first-line strategy. As the optimal approach to the management of MCL is still evolving, it is critical that these patients be enrolled in clinical trials to identify better treatment options.
Collapse
Affiliation(s)
- Sergio Cortelazzo
- Hematology and Bone Marrow Transplantation Unit, Azienda Ospedaliera Bolzano, Italy
| | | | | | | |
Collapse
|
22
|
Loizou J, Sancho R, Kanu N, Bolland D, Yang F, Rada C, Corcoran A, Behrens A. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell 2011; 19:587-600. [PMID: 21575860 PMCID: PMC4452547 DOI: 10.1016/j.ccr.2011.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/05/2011] [Accepted: 03/28/2011] [Indexed: 12/03/2022]
Abstract
Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Ataxia Telangiectasia Mutated Proteins
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- DNA Breaks
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Heavy Chain
- Genes, Immunoglobulin Light Chain
- Genomic Instability
- Immunoglobulin Class Switching
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/prevention & control
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Mice, Nude
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Recombination, Genetic
- Signal Transduction
- Time Factors
- Transcription Factors
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Joanna I. Loizou
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rocio Sancho
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nnennaya Kanu
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Daniel J. Bolland
- The Babraham Institute, Laboratory of Chromatin and Gene Expression, Cambridge CB22 3AT, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Anne E. Corcoran
- The Babraham Institute, Laboratory of Chromatin and Gene Expression, Cambridge CB22 3AT, UK
| | - Axel Behrens
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
- Corresponding author
| |
Collapse
|
23
|
Abstract
8-Aminoadenosine (8-NH(2)-Ado), a ribosyl nucleoside analog, in preclinical models of multiple myeloma inhibits phosphorylation of proteins in multiple growth and survival pathways, including Akt. Given that Akt controls the activity of mammalian target of rapamycin (mTOR), we hypothesized that 8-NH(2)-Ado would be active in mantle cell lymphoma (MCL), a hematological malignancy clinically responsive to mTOR inhibitors. In the current study, the preclinical efficacy of 8-NH(2)-Ado and its resulting effects on Akt/mTOR and extracellular-signal-regulated kinase signaling were evaluated using 4 MCL cell lines, primary MCL cells, and normal lymphocytes from healthy donors. For all MCL cell lines, 8-NH(2)-Ado inhibited growth and promoted cell death as shown by reduction of thymidine incorporation, loss of mitochondrial membrane potential, and poly (adenosine diphosphate-ribose) polymerase cleavage. The efficacy of 8-NH(2)-Ado was highly associated with intracellular accumulation of 8-NH(2)-adenosine triphosphate (ATP) and loss of endogenous ATP. Formation of 8-NH(2)-ATP was also associated with inhibition of transcription and translation accompanied by loss of phosphorylated (p-)Akt, p-mTOR, p-Erk1/2, p-phosphoprotein (p)38, p-S6, and p-4E-binding protein 1. While normal lymphocytes accumulated 8-NH(2)-ATP but maintained their viability with 8-NH(2)-Ado treatment, primary lymphoma cells accumulated higher concentrations of 8-NH(2)-ATP, had increased loss of ATP, and underwent apoptosis. We conclude that 8-NH(2)-Ado is efficacious in preclinical models of MCL and inhibits signaling of Akt/mTOR and Erk pathways.
Collapse
|
24
|
Martín-Pérez D, Sánchez E, Maestre L, Suela J, Vargiu P, Di Lisio L, Martínez N, Alves J, Piris MA, Sánchez-Beato M. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:930-42. [PMID: 20558579 DOI: 10.2353/ajpath.2010.090769] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycomb proteins are known to be of great importance in human cancer pathogenesis. SUZ12 is a component of the Polycomb PRC2 complex that, along with EZH2, is involved in embryonic stem cell differentiation. EZH2 plays an essential role in many cancer types, but an equivalent involvement of SUZ12 has not been as thoroughly demonstrated. Here we show that SUZ12 is anomalously expressed in human primary tumors, especially in mantle cell lymphoma (MCL), pulmonary carcinomas and melanoma, and is associated with gene locus amplification in some cases. Using MCL as a model, functional and genomic studies demonstrate that SUZ12 loss compromises cell viability, increases apoptosis, and targets genes involved in central oncogenic pathways associated with MCL pathogenesis. Our results support the hypothesis that the abnormal expression of SUZ12 accounts for some of the unexplained features of MCL, such as abnormal DNA repair and increased resistance to apoptosis.
Collapse
Affiliation(s)
- Daniel Martín-Pérez
- Lymphoma Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheung KJJ, Horsman DE, Gascoyne RD. The significance ofTP53in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br J Haematol 2009; 146:257-69. [DOI: 10.1111/j.1365-2141.2009.07739.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Sander B, Wallblom A, Ekroth A, Porwit A, Kimby E. Characterization of genetic changes in MCL by interphase FISH on tissue sections. Leuk Lymphoma 2009; 48:1344-52. [PMID: 17613764 DOI: 10.1080/10428190701402903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mantle cell lymphoma is a clinically heterogeneous disease, where further elucidation of pathogenetic mechanisms and better prognostic information is required. We evaluated genetic aberrations by interphase FISH on tissue sections or cytological material in 38 samples from 30 MCL patients, including 5 cases with cyclin D1 3'UTR low, which previously has been associated to unfavourable prognosis. The findings have been related to proliferation and clinical outcome. All but one of MCL showed t(11:14) translocation and in 22/30 samples taken at diagnosis or first relapse, one or several cytogenetic changes were detected; 11 deletions of ATM, 13 p53 deletions, 8 numerical c-myc-aberrations and 6 delp16. All but one MCL with low cyclin D1 3'UTR had additional cytogenetic changes, however no particular genetic change was strictly associated with this MCL variant. One fourth of MCL had none of the investigated additional aberrations and these tumours were in general less proliferative and some of these patients had a very long survival.
Collapse
Affiliation(s)
- Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Schraders M, Jares P, Bea S, Schoenmakers EFPM, van Krieken JHJM, Campo E, Groenen PJTA. Integrated genomic and expression profiling in mantle cell lymphoma: identification of gene-dosage regulated candidate genes. Br J Haematol 2008; 143:210-21. [PMID: 18699851 DOI: 10.1111/j.1365-2141.2008.07334.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mantle cell lymphoma (MCL) is characterized by the t(11;14)(q13;q32) translocation and several other cytogenetic aberrations, including heterozygous loss of chromosomal arms 1p, 6q, 11q and 13q and/or gains of 3q and 8q. The common intervals of chromosomal imbalance have been narrowed down using array-comparative genomic hybridization (CGH). However, the chromosomal intervals still contain many genes potentially involved in MCL pathogeny. Combined analysis of tiling-resolution array-CGH with gene expression profiling on 11 MCL tumours enabled the identification of genomic alterations and their corresponding gene expression profiles. Only subsets of genes located within given cytogenetic anomaly-intervals showed a concomitant change in mRNA expression level. The genes that showed consistent correlation between DNA copy number and RNA expression levels are likely to be important in MCL pathology. Besides several 'anonymous genes', we also identified various fully annotated genes, whose gene products are involved in cyclic adenosine monophosphate-regulated pathways (PRKACB), DNA damage repair, maintenance of chromosome stability and prevention of rereplication (ATM, ERCC5, FBXO5), energy metabolism (such as genes that are involved in the synthesis of proteins encoded by the mitochondrial genome) and signal transduction (ARHGAP29). Deregulation of these gene products may interfere with the signalling pathways that are involved in MCL tumour development and maintenance.
Collapse
Affiliation(s)
- Margit Schraders
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Katzenberger T, Kienle D, Stilgenbauer S, Höller S, Schilling C, Mäder U, Puppe B, Petzoldt C, Sander S, Bullinger L, Stöcklein H, Kalla J, Hartmann E, Adam P, Ott MM, Müller-Hermelink HK, Rosenwald A, Ott G. Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol 2008; 142:538-50. [DOI: 10.1111/j.1365-2141.2008.07199.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Quijano S, López A, Rasillo A, Sayagués JM, Barrena S, Sánchez ML, Teodosio C, Giraldo P, Giralt M, Pérez MC, Romero M, Perdiguer L, Orfao A. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2008; 74:139-49. [PMID: 18061951 DOI: 10.1002/cyto.b.20390] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a well-defined clinical entity with heterogeneous molecular and cytogenetic features. Here, we analyze the impact of trisomy 12, del(13q), del(17p), and del(11q) as determined by interphase fluorescence in situ hybridization analysis of purified neoplastic B-CLL cells on their immunophenotype, DNA ploidy status and proliferative rate.Overall, 111 of 180 (62%) B-CLL cases studied displayed one (50%) or more (12%) genetic abnormalities, del(13q) (35%) being more frequently detected than trisomy 12 (23%) followed by del(11q) (9%) and del(17p) (8%). Trisomy 12 was associated with a higher frequency of DNA aneuploidy, stronger expression of CD19, CD20, CD22, CD24, CD27, CD79b, CD38, and sIg and lower reactivity for CD43 with respect to cytogenetically nonaltered cases. In turn, cases with del(13q) displayed greater reactivity for CD20, FMC7, CD27, CD22, CD5, and bcl2, while del(11q) was associated with brighter expression of CD38, FMC7, CD25, and sIg. Hierarchical clustering analysis of the immunophenotype of B-CLL cases with cytogenetic abnormalities allowed the identification of three different groups of patients with increasing frequencies of trisomy 12, del(11q), and del(13q). Remarkably, none of the cytogenetic abnormalities analyzed except coexistence of 13q- and 17p- had a clear impact on the proliferative index of B-CLL cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Cycle
- Cell Proliferation
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 17
- Cytogenetics
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- Female
- Flow Cytometry
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Ploidies
- Prognosis
- Trisomy
Collapse
Affiliation(s)
- Sandra Quijano
- Servicio General de Citometría, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mantle cell lymphoma (MCL) is a well-defined lymphoid neoplasm characterized by a proliferation of mature B lymphocytes expressing CD5 that may show a spectrum of morphological and phenotypic features broader than initially described. Although some patients may follow an indolent clinical evolution, in most of them the tumour has an aggressive behaviour with poor response to conventional chemotherapy. The genetic hallmark is the t(11;14)(q13;q32) translocation leading to the overexpression of cyclin D1, which is considered the initial oncogenic event. In addition to this translocation, MCL may carry a high number of secondary chromosomal and molecular alterations that target regulatory elements of the cell cycle machinery and senescence (BMI1/INK4/ARF/CDK4/RB1), DNA damage response pathways (ATM/CHK2/p53), and cell survival signals. The knowledge of these mechanisms and their influence on the behaviour of the tumour are facilitating the development of prognostic models with a more precise prediction of the clinical evolution of the patients. This information coupled with the availability of a new generation of innovative drugs targeting basic molecular process of the tumour cells, should facilitate the design of new therapeutic protocols able to overcome the resistance of this aggressive lymphoma to conventional treatments and improve the life expectancy of the patients.
Collapse
Affiliation(s)
- Pedro Jares
- Haematopathology Section, Laboratory of Pathology, and Genomics Unit, Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.
| | | |
Collapse
|
31
|
Oliveira FM, Tone LG, Simões BP, Rego EM, Araújo AG, Falcão RP. Blastoid mantle cell lymphoma with t(2;8) (p12;q24). Leuk Lymphoma 2007; 48:2079-82. [PMID: 17917978 DOI: 10.1080/10428190701606834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
NIELÄNDER INGA, BUG STEFANIE, RICHTER JULIA, GIEFING MACIEJ, IGNACIO MARTÍN-SUBERO JOSÉ, SIEBERT REINER. Combining array-based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. APMIS 2007; 115:1107-34. [DOI: 10.1111/j.1600-0463.2007.apm_883.xml.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7:750-62. [PMID: 17891190 DOI: 10.1038/nrc2230] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mantle cell lymphoma (MCL) is a well-defined lymphoid malignancy characterized by a rapid clinical evolution and poor response to current therapeutic protocols. The genetic and molecular mechanisms involved in its pathogenesis combine the dysregulation of cell proliferation and survival pathways with a high level of chromosome instability that seems related to the disruption of the DNA damage response pathway. Understanding these mechanisms and how they affect tumour behaviour is providing the rationale for the identification of reliable predictors of clinical evolution and the design of innovative therapeutic strategies that could open new avenues for the treatment of patients with MCL.
Collapse
Affiliation(s)
- Pedro Jares
- Haematopathology Section, Laboratory of Pathology, and Genomics Unit, Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Aref S, Mossad Y, El-Khodary T, Awad M, El-Shahat E. Cyclin Dl expression in B-cell non Hodgkin lymphoma. ACTA ACUST UNITED AC 2007; 11:365-70. [PMID: 17607588 DOI: 10.1080/10245330600841097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Disorders of the cell cycle regulatory machinery play a key role in the pathogenesis of cancer. Over-expression of cyclin D1 protein has been reported in several solid tumors and certain lymphoid malignancies, but little is known about the effect of its expression on clinical behavior and outcome in B-cell Non-Hodgkin lymphoma (NHL). In this study, we investigated the expression of cyclin Dl in group of patients with NHL and correlated the results with the clinical and laboratory data. The degree of expression of cyclin Dl protein was evaluated by flow cytometry in a group of NHL patients (n = 46) and in normal control group (n = 10). Cyclin Dl over expression was detected in 10 out of 46 (21.7%) patients; they were 5/5-mantle cell lymphoma (MCL) (100%) and 5/28 large B-cell lymphoma (17.8%). All other NHL subtypes showed normal cyclin D1 expression. The clinical signs (hepatomegaly, splenomegaly and B-symptoms, clinical staging) and laboratory data (hemoglobin, white cell count (WBCs), platelet count, and bone marrow infiltration) were not significantly different between NHL subgroup with cyclin Dl over expression and that with normal cyclin Dl expression. Serum lactic dehydrogenase (LDH) levels and lymphadenopathy were significantly higher in NHL group with cyclin D1 over expression as compared to those without. Also, cyclin D1 over expression is associated with poor outcome of NHL patients. Cyclin Dl over expression was evident among all cases of MCL and few cases of large B-cell lymphoma. Cyclin Dl over expression might be used as adjuvant tool for diagnosis of MCL; has role in NHL biology and is bad prognostic index in NHL.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| | | | | | | | | |
Collapse
|
35
|
Kienle D, Katzenberger T, Ott G, Saupe D, Benner A, Kohlhammer H, Barth TFE, Höller S, Kalla J, Rosenwald A, Müller-Hermelink HK, Möller P, Lichter P, Döhner H, Stilgenbauer S. Quantitative Gene Expression Deregulation in Mantle-Cell Lymphoma: Correlation With Clinical and Biologic Factors. J Clin Oncol 2007; 25:2770-7. [PMID: 17563396 DOI: 10.1200/jco.2006.08.7999] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PurposeThere is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis.Patients and MethodsQuantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples.ResultsGenomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors.ConclusionThese results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.
Collapse
Affiliation(s)
- Dirk Kienle
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parry-Jones N, Matutes E, Morilla R, Brito-Babapulle V, Wotherspoon A, Swansbury GJ, Catovsky D. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol 2007; 137:117-24. [PMID: 17391491 DOI: 10.1111/j.1365-2141.2007.06526.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mantle cell lymphoma (MCL), characterised by t(11;14)(q13;q32), has a poor prognosis. Many cases have additional cytogenetic abnormalities, and often have a complex karyotype. Fluorescence in situ hybridisation (FISH) was used to study 60 cases with leukaemic presentation of MCL, to determine the frequency, clinical correlations and prognostic impact of a panel of molecular cytogenetic abnormalities: 17p13 (TP53 locus), 13q14, 12 p11.1-q11 (centromere), 6q21 and 11q23. CD38 expression, of prognostic value in chronic lymphocytic leukaemia (CLL), was also studied, and correlations with clinical and cytogenetic abnormalities sought. Eighty per cent of cases had at least one abnormality in addition to t(11;14). Deletions at 17p13 (TP53) and 13q14 were most frequent and involved the majority of the leukaemic clone. Cases with TP53 deletion were more likely to have splenomegaly and marked leucocytosis (>30 x 10(9)/l), and less likely to have lymphadenopathy than those without deletion. Deletions at 11q23 and 6q21 were associated with extranodal disease. 13q14 and 11q23 deletions showed a trend towards worse prognosis by univariate analysis. In multivariate analysis, deletions at 13q14 and 6q21 were independent predictors of poor outcome. Deletion at 17p13 did not show prognostic impact in this series. CD38, positive in two-thirds of cases, was associated with male gender and nodal disease but not with any cytogenetic abnormality, or with survival.
Collapse
Affiliation(s)
- N Parry-Jones
- Section of Haemato-Oncology, Institute of Cancer Research and Royal Marsden NHS Trust, London and Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Filippi AR, Franco P, Galliano M, Ricardi U. Peripheral blood complete remission after splenic irradiation in mantle-cell lymphoma with 11q22-23 deletion and ATM inactivation. Radiat Oncol 2006; 1:35. [PMID: 16956411 PMCID: PMC1569379 DOI: 10.1186/1748-717x-1-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/06/2006] [Indexed: 11/10/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is a well-known histological and clinical subtype of B-cell non-Hodgkin's Lymphomas. It is usually characterized by an aggressive disease course, presenting with advanced stage disease at diagnosis and with low response rates to therapy. However few cases of indolent course MCL have been described. We herein report a case of MCL with splenomegaly and peripheral blood involvement as main clinical features. The patient underwent moderate dose splenic radiation therapy and achieved spleen downsizing and peripheral blood complete remission. Splenic irradiation has been extensively used in the past as palliative treatment in several lymphoproliferative disorders and a systemic effect and sometimes peripheral blood complete remissions have been observed. Mainly advocated mechanisms responsible for this phenomenon are considered direct radiation-induced apoptotic cell death, immune modulation via proportional changes of lymphocyte subsets due to known differences in intrinsic radiosensitivity and a radiation-induced cytokine release. The peculiar intrinsic radiosensitivity pattern of lymphoid cells could probably be explained by well-defined individual genetic and molecular features. In this context, among NHLs, MCL subtype has the highest rate of ATM (Ataxia Teleangiectasia Mutated) inactivation. While the ATM gene is thought to play a key-role in detecting radiation-induced DNA damage (expecially Double Strand Breaks), recent in vitro data support the hypothesis that ATM loss may actually contribute to the radiosensitivity of MCL cells. ATM status was retrospectively investigated in our patient, with the tool of Fluorescence In Situ Hybridization, showing a complete inactivation of a single ATM allele secondary to the deletion of chromosomal region 11q22-23. The presence of this kind of cytogenetic aberration may be regarded in the future as a potential predictive marker of radiation response.
Collapse
Affiliation(s)
| | - Pierfrancesco Franco
- Radiation Oncology, University of Torino, Ospedale S. Giovanni Battista, Torino, Italy
| | - Marco Galliano
- Medical Oncology, Ospedale Alba-Bra-ASL 18, Alba-Bra, Italy
| | - Umberto Ricardi
- Radiation Oncology, University of Torino, Ospedale S. Giovanni Battista, Torino, Italy
| |
Collapse
|
38
|
Briani C, Schlotter M, Lichter P, Kalla C. Development of a mantle cell lymphoma in an ATM heterozygous woman after occupational exposure to ionising radiation and somatic mutation of the second allele. Leuk Res 2006; 30:1193-6. [PMID: 16387360 DOI: 10.1016/j.leukres.2005.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/25/2022]
Abstract
Predisposition to lymphomagenesis is a well-known phenomenon of ataxia-telangiectasia, a recessive disorder caused by germline inactivation of ATM. ATM encodes a protein implicated in the repair of radiation induced double-strand breaks. Biallelic ATM inactivation was described also in sporadic lymphoid malignancies, supporting a role of ATM as a tumour suppressor gene. It is, however, still unclear whether ATM heterozygotes are at higher risk of tumours. We describe an ATM heterozygous patient, who developed a mantle cell lymphoma (MCL) after occupational exposure to ionising radiation and somatic mutation of the second ATM allele supporting the contention that heterozygous germline ATM alterations in combination with irradiation exposure predisposes to sporadic MCL.
Collapse
Affiliation(s)
- Chiara Briani
- Neuroscience Department, University of Padova, Via Giustiniani 5, I-35128 Padova, Italy
| | | | | | | |
Collapse
|
39
|
Gumy-Pause F, Wacker P, Maillet P, Betts DR, Sappino AP. ATM alterations in childhood non-Hodgkin lymphoma. ACTA ACUST UNITED AC 2006; 166:101-11. [PMID: 16631465 DOI: 10.1016/j.cancergencyto.2005.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 09/12/2005] [Indexed: 12/30/2022]
Abstract
ATM gene alterations and impaired ATM protein expression have been described in various adult lymphoproliferative malignancies, suggesting that ATM contributes to lymphomagenesis. The present study investigated the prevalence of ATM gene and ATM protein expression alterations in sporadic childhood non-Hodgkin lymphoma (NHL). Twenty-seven cases of NHL were screened for ATM mutations by denaturing high-performance liquid chromatography (DHPLC). Direct and indirect criteria, including in silico tools, were used to classify the gene alterations. The methylation status of the ATM promoter CpG island was determined in 25 samples; ATM protein expression was assessed by Western blot in 9 lymphomas. ATM alterations were detected in 12 NHLs (44%). Ten different heterozygous base substitutions were identified in 10 NHLs (37%). Five samples (19%) were found to harbor a gene alteration considered to be a mutation or a rare variant potentially pathogenic. In one case, an ATM mutation was found in the germline. Four NHLs (44%) showed reduced or absent ATM protein expression. Except for one sample, no definite genetic or epigenetic alteration was identified to account for impaired ATM protein expression. These observations document a high prevalence of ATM gene and protein expression alterations, suggesting that ATM is involved in childhood NHL.
Collapse
Affiliation(s)
- Fabienne Gumy-Pause
- Department of Pediatrics, Unit of Hemato-Oncology, University Hospital of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Meier M, den Boer ML, Hall AG, Irving JAE, Passier M, Minto L, van Wering ER, Janka-Schaub GE, Pieters R. Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia. Leukemia 2005; 19:1887-95. [PMID: 16167060 DOI: 10.1038/sj.leu.2403943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The T-lineage phenotype in children with acute lymphoblastic leukaemia (ALL) is associated with in vitro drug resistance and a higher relapse-risk compared to a precursor B phenotype. Our study was aimed to investigate whether mutations in the ATM gene occur in childhood T-lineage acute lymphoblastic leukaemia (T-ALL) that are linked to drug resistance and clinical outcome. In all, 20 different single nucleotide substitutions were found in 16 exons of ATM in 62/103 (60%) T-ALL children and 51/99 (52%, P = 0.21) controls. Besides the well-known polymorphism D1853N, five other alterations (S707P, F858L, P1054R, L1472W, Y1475C) in the coding part of ATM were found. These five coding alterations seem to occur more frequently in T-ALL (13%) than controls (5%, P = 0.06), but did not associate with altered expression levels of ATM or in vitro resistance to daunorubicin. However, T-ALL patients carrying these five coding alterations presented with a higher white blood cell count at diagnosis (P = 0.05) and show an increased relapse-risk (5-year probability of disease-free survival (pDFS) = 48%) compared to patients with other alterations or wild-type ATM (5-year pDFS = 76%, P = 0.05). The association between five coding ATM alterations in T-ALL, their germline presence, white blood cell count and unfavourable outcome may point to a role for ATM in the development of T-ALL in these children.
Collapse
Affiliation(s)
- M Meier
- Department of Paediatric Oncology/Haematology, Erasmus MC/Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yared MA, Khoury JD, Medeiros LJ, Rassidakis GZ, Lai R. Activation status of the JAK/STAT3 pathway in mantle cell lymphoma. Arch Pathol Lab Med 2005; 129:990-6. [PMID: 16048411 DOI: 10.5858/2005-129-990-asotsp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Signal transducer and activator of transcription 3 (STAT3) is oncogenic, and we previously found evidence of constitutive STAT3 activation in a relatively small number of frozen mantle cell lymphoma (MCL) cell tumors. OBJECTIVES To comprehensively survey the activation and phosphorylation status of STAT3 in MCL and to assess if STAT3 activation in these tumors is due to cytokine stimulation by examining the phosphorylation and activation status of Janus kinase (JAK), the physiologic activator of STAT3. DESIGN We evaluated 43 formalin-fixed, paraffin-embedded MCL tumors using immunohistochemistry and phospho-specific antibodies against STAT3 and JAK. RESULTS There were 37 small cell and 6 blastoid cases. There was heterogeneous expression of phospho-STAT3 (pSTAT3), with 23 negative cases (53%), 12 weakly positive cases (28%), and 8 strongly positive cases (19%). JAK3 was the only member detectable in 3 MCL cell lines, and immunoprecipitation data showed a relatively low level of tyrosine phosphorylation of JAK3 in these cells. Using immunohistochemistry, phospho-JAK3 (pJAK3) was detectable in 18 (44%) of 41 MCL tumors examined, and pJAK3 expression correlated with that of pSTAT3 (P = .008). A notable exception to this correlation was seen in the blastoid variant, since 4 (67%) of 6 blastoid cases were pSTAT3 positive but pJAK3 negative. CONCLUSIONS We have confirmed our previous finding that STAT3 is constitutively activated in MCL tumors, with an overall frequency of 47% in this series. STAT3 activation in the small cell but not the blastoid variant of MCL is likely mediated by JAK3.
Collapse
Affiliation(s)
- Marwan A Yared
- Department of Hematopathology, The University of Texas, M. D. Anderson Cancer Center, Houston, USA
| | | | | | | | | |
Collapse
|
42
|
Fernàndez V, Hartmann E, Ott G, Campo E, Rosenwald A. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol 2005; 23:6364-9. [PMID: 16155021 DOI: 10.1200/jco.2005.05.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mantle-cell lymphoma (MCL) is a well-defined subtype of B-cell non-Hodgkin's lymphomas (B-NHL), accounts for approximately 6% of all lymphoid neoplasms, and has a median survival of 3 to 4 years. The genetic hallmark of MCL is the chromosomal translocation t(11;14)(q13;q32) that leads to deregulation and upregulation of Cyclin D1, an important regulator of the G1 phase of the cell cycle. This genetic event is present in virtually all cases of MCL, whereas additional genetic alterations that occur in subsets of MCL have been described. Most of these alterations appear to disturb the cell cycle machinery/interfere with the cellular response to DNA damage, thus making MCL a paradigm for cell cycle and DNA damage response dysregulation in cancer in general. In particular, Cyclin D1 upregulation, genomic amplification of the cyclin-dependent kinase (CDK) -4, deletions of the CDK inhibitor p16(INK4a) and overexpression of BMI-1, a transcriptional repressor of the p16(INK4a) locus, are associated with dysregulation of the cell cycle machinery in MCL. The DNA damage response pathway is affected by frequent alterations of the ataxia-telangiectasia mutated (ATM) kinase as well as occasional inactivation of checkpoint kinase (CHK)-1 and CHK2 that are kinases that act downstream of ATM in response to detection of DNA damage. Moreover, p53 is frequently targeted by alterations in MCL. A recent gene expression profiling study defined the proliferation signature, a quantitative measure of gene expression of proliferation-associated genes as the strongest survival predictor available to date allowing the definition of prognostic MCL subgroups that differ in median survival by more than 5 years.
Collapse
Affiliation(s)
- Veronica Fernàndez
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, Würzburg, 97080 Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma is the B-cell lymphoma with the worst prognosis. Until now, no standard treatment has resulted in cure. Improvements in understanding of the disease are needed to advance therapeutic efforts. RECENT FINDINGS Pathology and immunohistochemistry can identify the subset of patients with the worse prognosis. New data suggest that at least a subset of mantle cell lymphoma cases have undergone some form of antigene selection, and particular types of Ig gene rearrangement seem to give a better prognosis. The cell cycle, the ATM, gene and the nuclear factor kappaB pathways are the main targets of the genetic abnormalities occurring in mantle cell lymphoma: new genomic and expression data have been recently published. Unfortunately, this progress has not yet brought any major improvements in therapeutic approaches, which still remain highly unsatisfactory. Autologous and allogenic bone marrow transplantations appear to be the only current treatments that might improve the outcome of patients with PMCL. New additional treatment modalities are currently under investigation. SUMMARY This review summarizes all the most recent data published on the biology and treatment of mantle cell lymphoma.
Collapse
MESH Headings
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Gene Expression Regulation, Leukemic/genetics
- Gene Rearrangement, B-Lymphocyte/genetics
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/therapy
- Prognosis
- Signal Transduction/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Francesco Bertoni
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | |
Collapse
|
44
|
Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A, Morishima Y, Nakamura S, Seto M. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24:1348-58. [PMID: 15608680 DOI: 10.1038/sj.onc.1208300] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by 11q13 chromosomal translocation and CCND1 overexpression, but additional genomic changes are also important for lymphomagenesis. To identify the genomic aberrations of MCL at higher resolutions, we analysed 29 patient samples and seven cell lines using array-based comparative genomic hybridization (array CGH) consisting of 2348 artificial chromosome clones, which cover the whole genome at a 1.3 mega base resolution. The incidence of identified genomic aberrations was generally higher than that determined with chromosomal CGH. The most frequent imbalances detected by array CGH were gains of chromosomes 3q26 (48%), 7p21 (34%), 6p25 (24%), 8q24 (24%), 10p12 (21%) and 17q23 (17%), and losses of chromosomes 2p11 (83%), 11q22 (59%), 13q21 (55%), 1p21-p22 (52%), 13q34 (52%), 9q22 (45%), 17p13 (45%), 9p21 (41%), 9p24 (41%), 6q23-q24 (38%), 1p36 (31%), 8p23 (34%), 10p14 (31%), 19p13 (28%), 5q21 (21%), 22q12 (21%), 1q42 (17%) and 2q13 (17%). Our analyses also detected several novel recurrent regions of loss located at 1p36, 1q42.2-q43, 2p11.2, 2q13, 17p13.3 and 19p13.2-p13.3, as well as recurrent regions of homozygous loss such as 2p11 (Ig(kappa)), 2q13 and 9p21.3-p24.1 (INK4a/ARF). Of the latter, we investigated the 2q13 loss, which led to identification of homozygous deletions of the proapoptotic gene BIM. The high-resolution array CGH technology allowed for the precise identification of genomic aberrations and identification of BIM as a novel candidate tumor suppressor gene in MCL.
Collapse
Affiliation(s)
- Hiroyuki Tagawa
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, 1-1-1 Kanokoden, Chikusa-ku, Aichi, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schraders M, Pfundt R, Straatman HMP, Janssen IM, van Kessel AG, Schoenmakers EFPM, van Krieken JHJM, Groenen PJTA. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood 2005; 105:1686-93. [PMID: 15498857 DOI: 10.1182/blood-2004-07-2730] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractMantle cell lymphoma (MCL) is an aggressive, highly proliferative B-cell non-Hodgkin lymphoma, characterized by the specific t(11;14)(q13;q32) translocation. It is well established that this translocation alone is not sufficient to promote MCL development, but that additional genetic changes are essential for malignant transformation. We have identified such additional tumorigenic triggers in MCL tumors, by applying genome-wide array-based comparative genomic hybridization with an 800-kilobase (kb) resolution. This strategy, combined with a newly developed statistical approach, enabled us to confirm previously reported genomic alterations such as loss of 1p, 6q, 11q, 13q and gain of 3q and 8q, but it also facilitated the detection of novel recurrent genomic imbalances, such as gain of 4p12-13 and loss of 20p12.1-12.3, 20q12-13.2, 22q12.1-12.3, and 22q13.31-13.32. Genomic hotspot detection allowed for the identification of small genomic intervals that are frequently affected (57%-93%), resulting in interesting positional candidate genes such as KITLG, GPC5, and ING1. Finally, by assessing multiple biopsies from the same patient, we show that seemingly stable genomes do show subtle genomic changes over time. The follow-up of multiple biopsies of patients with MCL by high-resolution genomic profiling is expected to provide us with new clues regarding the relation between clinical outcome and in vivo cytogenetic evolution. (Blood. 2005;105:1686-1693)
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Chromosome Aberrations
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 20/genetics
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 4/genetics
- Disease Progression
- Female
- Genome, Human
- Humans
- Lymphoma, Mantle-Cell/genetics
- Male
- Middle Aged
- Neoplasm Recurrence, Local
- Nucleic Acid Hybridization/methods
- Oligonucleotide Array Sequence Analysis/methods
Collapse
Affiliation(s)
- Margit Schraders
- Department of Pathology, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rudolph C, Steinemann D, Von Neuhoff N, Gadzicki D, Ripperger T, Drexler HG, Mrasek K, Liehr T, Claussen U, Emura M, Schrock E, Schlegelberger B. Molecular cytogenetic characterization of the mantle cell lymphoma cell line GRANTA-519. ACTA ACUST UNITED AC 2004; 153:144-50. [PMID: 15350304 DOI: 10.1016/j.cancergencyto.2004.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/05/2004] [Accepted: 01/08/2004] [Indexed: 11/28/2022]
Abstract
Combining fluorescence R-banding, fluorescence in situ hybridization and spectral karyotyping allowed us to precisely define chromosomal breakpoints, gains, losses and a newly detected amplification in the human mantle cell lymphoma (MCL) cell line GRANTA-519. GRANTA-519 is characterized by the t(11;14)(q13;q32) resulting in overexpression of cyclin D1, a key player in cell cycle control. Hitherto unresolved complex rearrangements involve 1p, 1q, 3cen, 9p, 11q, 12p, 12q, 16p, 17p, and 18cen. Moreover, a 4- to 6-fold gain of sequences on 18q leads to a low-level amplification of the BCL2 gene and to an overexpression of the BCL2 protein. These results provide the basis for the identification of not only candidate oncogenes responsible for MCL in gained regions, but also for the identification of putative tumor suppressor genes in commonly deleted regions like 1p22, which would eventually enable functional studies of these genes.
Collapse
Affiliation(s)
- C Rudolph
- Institute of Cell and Molecular Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Molecular genetic methods such as fluorescence in situ hybridization and DNA sequencing have greatly improved our understanding of pathogenic events and prognostic markers in chronic lymphocytic leukemia (CLL). There are genomic aberrations detected in over 80% of CLL cases, and genes potentially involved in the pathogenesis were identified with ATM in a subset of cases with 11q deletion and p53 in cases with 17p13 deletion. Genetic subgroups with distinct clinical features have been identified, such as 11q deletion, which is associated with marked lymphadenopathy and rapid disease progression, whereas 17p deletion predicts for treatment failure with alkylating agents, fludarabine, and short survival times. There is mutation status of the VH genes that allows the separation into patients with long (mutated VH) or short (unmutated VH) survival times. V-gene usage, VDJ structure, and gene expression differences in the two subgroups allow insights into differential pathogenic mechanisms and provide further prognostic information (V3-21 usage, ZAP-70 expression). The VH mutation status and genomic abnormalities have been shown to be of independent prognostic value in multivariate analysis, seem to allow outcome predication irrespective of the clinical stage, and may therefore allow a risk assessment for individual patients early in the course of their disease.
Collapse
MESH Headings
- Chromosome Aberrations
- Gene Deletion
- Humans
- Karyotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Molecular Biology/methods
- Survival Analysis
Collapse
Affiliation(s)
- Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany.
| | | |
Collapse
|
48
|
Hirt C, Schüler F, Dölken L, Schmidt CA, Dölken G. Low prevalence of circulating t(11;14)(q13;q32)–positive cells in the peripheral blood of healthy individuals as detected by real-time quantitative PCR. Blood 2004; 104:904-5. [PMID: 15265798 DOI: 10.1182/blood-2004-02-0738] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Wan M, Chow J, Lei K, Chan W. Allelotyping of gastrointestinal nasal-type NK/T-cell lymphoma. Leuk Res 2004; 28:339-43. [PMID: 15109531 DOI: 10.1016/j.leukres.2003.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 08/02/2003] [Indexed: 12/21/2022]
Abstract
Nasal-type natural killer/T-cell lymphoma (NKL) is a rare but distinct malignancy that often involves the mid-facial region and the gastrointestinal tract. This study is the first genome-wide allelotyping analysis on this rare lymphoma. We applied 382 microsatellite markers covering loci which spanned 22 autosomes to screen for allelic imbalances (AI) in six intestinal NKL. The most common chromosomal regions of allelic imbalances were found in 11p, 9q and 13q. Novel spots of allelic losses spots found at 2p21, 2q37.22, 18p11.21 and 18q12.1. In spite of presence of a few recurrent loci of imbalances, the allelotyping results show that NKL is heterogeneous.
Collapse
Affiliation(s)
- Maxim Wan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T. Hong Kong SAR, China
| | | | | | | |
Collapse
|
50
|
Kohlhammer H, Schwaenen C, Wessendorf S, Holzmann K, Kestler HA, Kienle D, Barth TFE, Möller P, Ott G, Kalla J, Radlwimmer B, Pscherer A, Stilgenbauer S, Döhner H, Lichter P, Bentz M. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 2004; 104:795-801. [PMID: 15090459 DOI: 10.1182/blood-2003-12-4175] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor samples of 53 patients with t(11;14)-positive mantle cell lymphomas (MCLs) were analyzed by matrix-based comparative genomic hybridization (matrix-CGH) using a dedicated DNA array. In 49 cases, genomic aberrations were identified. In comparison to chromosomal CGH, a 50% higher number of aberrations was found and the high specificity of matrix-CGH was demonstrated by fluorescence in situ hybridization (FISH) analyses. The 11q gains and 13q34 deletions, which have not been described as frequent genomic aberrations in MCL, were identified by matrix-CGH in 15 and 26 cases, respectively. For several genomic aberrations, novel consensus regions were defined: 8p21 (size of the consensus region, 2.4 megabase pairs [Mbp]; candidate genes: TNFRSF10B, TNFRSF10C, TNFRSF10D); 10p13 (2.7 Mbp; BMI1); 11q13 (1.4 Mbp; RELA); 11q13 (5.2 Mbp; CCND1); 13q14 (0.4 Mbp; RFP2, BCMSUN) and 13q34 (6.9 Mbp). In univariate analyses correlating genomic aberrations and clinical course, 8p- and 13q14- deletions were associated with an inferior overall survival. These data provide a basis for further studies focusing on the identification of pathogenetically or clinically relevant genes in MCL.
Collapse
Affiliation(s)
- Holger Kohlhammer
- Department of Innere Medizin I, Medizinische Klinik der Universität Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|