1
|
Chen H, Ma J, Ouyang J, Fu L, Ma J, Yao J, Wu R, Chen Z. The Differences of Serum Thrombopoietin Levels Between Acquired Aplastic Anemia and Immune Thrombocytopenia in Pediatric Patients. J Pediatr Hematol Oncol 2024; 46:281-286. [PMID: 38857156 DOI: 10.1097/mph.0000000000002873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/02/2024] [Indexed: 06/12/2024]
Abstract
Thrombopoietin (TPO) is the critical regulator of platelet production. However, the role of TPO in pediatric patients with thrombocytopenic disorders has not been fully elucidated. In the present study, we attempted to investigate serum TPO levels in patients with acquired aplastic anemia (aAA) and immune thrombocytopenia (ITP). We analyzed the endogenous plasma concentration of TPO and platelet count at the time of TPO measurement in 166 patients with aAA and 280 patients with ITP retrospectively. We further observed a correlation between platelet counts and TPO. Serum TPO levels were significantly higher in aAA compared with ITP (1142 vs. 77.99 pg/mL, P <0.001). In patients with aAA, an elevation for TPO levels in very severe AA (VSAA) was seen when compared with non-severe AA (NSAA) (1360 vs. 984.4 pg/mL, P <0.05). In contrast, the circulating TPO levels with chronic ITP (CITP) showed a decrease than newly diagnosed ITP (NITP) and persistent ITP (PITP) (62.28 vs. 81.56 pg/mL, P <0.01, 62.28 vs. 87.82 pg/mL, P <0.05, respectively). There was a negative correlation between platelet counts and TPO levels in aAA (r s =-0.3325, P <0.001) as well as ITP (r s =-0.2570, P <0.001). Especially, TPO levels were inversely correlated with platelet counts in NSAA (r s =-0.3672, P <0.001) and NITP (r s =-0.3316, P <0.001). After grouping by age or sex, there were no statistical differences in aAA or ITP. Serum TPO levels were markedly elevated in pediatric patients with aAA compared with ITP. It was higher in VSAA and lower in CITP, suggesting that serum TPO level could play a role in classifying disease severity or clinical course in aAA and ITP.
Collapse
Affiliation(s)
- Hui Chen
- Hematologic Disease Laboratory, Hematology Center
| | - Jie Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | | | - Lingling Fu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Jingyao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Jiafeng Yao
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | | |
Collapse
|
2
|
Fu H, Lv M, Liu H, Sun Y, Zhang Y, Mo X, Han T, Wang F, Yan C, Wang Y, Kong J, Han W, Chen H, Chen Y, Chen Y, Xu L, Liu K, Huang X, Zhang X. Thrombopoietin level predicts the response to avatrombopag treatment for persistent thrombocytopenia after haploidentical haematopoietic stem cell transplantation. Bone Marrow Transplant 2023; 58:1368-1376. [PMID: 37679646 DOI: 10.1038/s41409-023-02100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Persistent thrombocytopenia (PT) has an unsatisfactory response to therapy after haploidentical haematopoietic stem cell transplantation (haplo-HSCT). We retrospectively evaluated the safety and efficacy of avatrombopag treatment in 69 patients with PT following haplo-HSCT and assessed whether baseline thrombopoietin (TPO) levels could predict treatment response. Overall response (OR) and complete response (CR) were defined as increased platelet levels to over 20 × 109/L or 50 × 109/L independent of platelet transfusion during or within 7 days of the end of avatrombopag treatment, respectively. The incidences of OR and CR were 72.5% and 58.0%, with a median of 11 and 29 days to OR and CR, respectively. ROC analysis suggested that the optimally discriminant baseline TPO level threshold for both OR and CR to avatrombopag was ≤ 1714 pg/mL. In multivariate analysis, a lower baseline TPO level (P = 0.005) was a significant independent factor of response to avatrombopag. For patients resistant to other TPO receptor agonists (TPO-RAs), 9/16 (56.3%) exhibited a response after switching to avatrombopag. Avatrombopag was well tolerated, and responders achieved improved overall survival (79.0% vs. 91.1%, P = 0.001). In conclusion, avatrombopag is a potential safe and effective treatment for PT after haplo-HSCT, and lower baseline TPO levels predicted a better response.
Collapse
Affiliation(s)
- Haixia Fu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Huixin Liu
- Peking University People's Hospital, Department of Clinical Epidemiology and Biostatistics, Beijing, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China.
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- National Clinical Research Center for Haematologic Disease, Beijing, China.
| |
Collapse
|
3
|
Karakas D, Xu M, Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res Pract Thromb Haemost 2021; 5:e12506. [PMID: 33977209 PMCID: PMC8105161 DOI: 10.1002/rth2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin (TPO), a glycoprotein hormone produced predominantly in the liver, plays important roles in the hematopoietic stem cell (HSC) niche, and is essential for megakaryopoiesis and platelet generation. Long-standing understanding proposes that TPO is constitutively produced by hepatocytes, and levels are fine-tuned through platelet and megakaryocyte internalization/degradation via the c-Mpl receptor. However, in immune thrombocytopenia (ITP) and several other diseases, TPO levels are inconsistent with this theory. Recent studies showed that platelets, besides their TPO clearance, can induce TPO production in the liver. Our group also accidentally discovered that platelet glycoprotein (GP) Ibα is required for platelet-mediated TPO generation, which is underscored in both GPIbα-/- mice and patients with Bernard-Soulier syndrome. This review will introduce platelet versatilities and several new findings in hemostasis and platelet consumption but focus on its roles in TPO regulation. The implications of these new discoveries in hematopoiesis and the HSC niche, particularly in ITP, will be discussed.
Collapse
Affiliation(s)
- Danielle Karakas
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
| | - Miao Xu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Heyu Ni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
- Canadian Blood Services Centre for InnovationTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
4
|
Klompas AM, Boswell MR, Plack DL, Smith MM. Thrombocytopenia: Perioperative Considerations for Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth 2021; 36:893-905. [PMID: 33707107 DOI: 10.1053/j.jvca.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/11/2022]
Abstract
The etiologies of thrombocytopenia in patients presenting for cardiac surgery are extensive, but clinically relevant conditions generally can be categorized by those related to decreased platelet production or increased platelet destruction. Many causes require mere acknowledgment and availability of allogeneic platelet transfusion; others have unique considerations for which providers should be familiar. The purpose of this review is to provide an overview of the common causes of thrombocytopenia, summarize the literature, and discuss perioperative considerations for patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Allan M Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, 200 First St SW, Rochester, MN
| | - Michael R Boswell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, 200 First St SW, Rochester, MN
| | - Daniel L Plack
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, 200 First St SW, Rochester, MN
| | - Mark M Smith
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, 200 First St SW, Rochester, MN.
| |
Collapse
|
5
|
Smith BB, Boswell MR, Matzek LJ, Smith MM. Thrombocytosis: Perioperative Considerations for Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth 2020; 34:772-781. [DOI: 10.1053/j.jvca.2019.07.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/11/2022]
|
6
|
Nakamura-Ishizu A, Suda T. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann N Y Acad Sci 2019; 1466:51-58. [PMID: 31292976 DOI: 10.1111/nyas.14169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
Thrombopoietin (Thpo) and its receptor myeloid proliferative leukemia (Mpl) were initially identified as the cytokine signaling that stimulates megakaryopoiesis and platelet production. However, Thpo-Mpl signaling has also been widely characterized as one of the few cytokine systems that directly regulates hematopoietic stem and progenitor cells. The ability of Thpo signaling to stimulate hematopoietic stem cell (HSC) self-renewal has led to the development and utilization of Thpo mimetic drugs to treat hematopoietic diseases with restricted function of HSCs, such as aplastic anemia. This review will cover the mechanisms by which Thpo-Mpl signaling regulates HSCs.
Collapse
Affiliation(s)
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|
7
|
Tan YX, Cui H, Wan LM, Gong F, Zhang X, Vlodavsky I, Li JP. Overexpression of heparanase in mice promoted megakaryopoiesis. Glycobiology 2018; 28:269-275. [PMID: 29471321 DOI: 10.1093/glycob/cwy011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heparanase, an endo-glucuronidase that specifically cleaves heparan sulfate (HS), is upregulated in several pathological conditions. In this study, we aimed to find a correlation of heparanase expression and platelets production. In the transgenic mice overexpressing human heparanase (Hpa-tg), hematological analysis of blood samples revealed a significantly higher number of platelets in comparison with wild-type (Ctr) mice, while no significant difference was found in leukocytes and red blood cell number between the two groups. Total number of thiazole orange positive platelets was increased in Hpa-tg vs. Ctr blood, reflecting a higher rate of platelets production. Concomitantly, megakaryocytes from Hpa-tg mice produced more and shorter HS fragments that were shed into the medium. Further, thrombopoietin (TPO) level was elevated in the liver and plasma of Hpa-tg mice. Together, the data indicate that heparanase expression promoted megakaryopoiesis, which may be through upregulated expression of TPO and direct effect of released HS fragments expressed in the megakaryocytes.
Collapse
Affiliation(s)
- Ying-Xia Tan
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden.,Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Hao Cui
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden.,College of Life Science, Jiangxi Normal University, No 99, Ziyang Road, 330022 Nanchang, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Xiao Zhang
- Department of Neuroscience and Pharmacology, University of Uppsala, Box 593, 75124 Uppsala, Sweden
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Box 9649, 31096 Haifa, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
8
|
Li S, Shao J, Xia M, Zhang N, Yang J, Li H, Jiang H. Thrombopoietin and its receptor expression in pediatric patients with chronic immune thrombocytopenia. ACTA ACUST UNITED AC 2018; 23:433-438. [PMID: 29313460 DOI: 10.1080/10245332.2017.1422316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Chronic immune thrombocytopenia (cITP) is common in children. However, the pathogenesis has not been fully elucidated. This study aimed to determine whether thrombopoietin (TPO) and its receptor c-mannosylation of the TPO receptor (c-Mpl) have an impact on childhood cITP. METHODS Sixty-four patients with newly diagnosed ITP (nITP), 64 patients with persistent ITP, 80 patients with cITP, and 64 healthy children (control) were enrolled in this study. Plasma TPO was measured with an ELISA, and c-Mpl was determined by flow cytometry. RESULTS Plasma TPO levels showed differences among the four groups (p = 0.001). TPO levels in the cITP group were significantly decreased compared to those in the nITP group (p < 0.05). The mean fluorescence intensity (MFI) of c-Mpl was significantly different among the four groups (p = 0.0275). c-Mpl MFI was lower in the cITP group than in the nITP group(p < 0.05). Quantitative real-time PCR analysis showed that TPO mRNA expression was higher in the control group than in the ITP groups (p < 0.0001). The c-Mpl mRNA levels also showed significant differences among the four groups (p = 0.023). The control group, compared with the other groups, had lower levels of c-Mpl mRNA. CONCLUSIONS The expression of TPO and c-Mpl was significantly decreased in the cITP group compared to the nITP group, suggesting that TPO and its receptor may play important roles in childhood cITP pathogenesis.
Collapse
Affiliation(s)
- Shanshan Li
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jingbo Shao
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Min Xia
- b Department of Clinical Laboratory , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Na Zhang
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jingwei Yang
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hong Li
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hui Jiang
- a Department of Hematology and Oncology , Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
9
|
Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in thrombopoietin. Blood 2017; 130:875-880. [PMID: 28559357 DOI: 10.1182/blood-2017-02-768036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
We report 5 individuals in 3 unrelated families with severe thrombocytopenia progressing to trilineage bone marrow failure (BMF). Four of the children received hematopoietic stem cell transplants and all showed poor graft function with persistent severe cytopenias even after repeated transplants with different donors. Exome and targeted sequencing identified mutations in the gene encoding thrombopoietin (THPO): THPO R99W, homozygous in affected children in 2 families, and THPO R157X, homozygous in the affected child in the third family. Both mutations result in a lack of THPO in the patients' serum. For the 2 surviving patients, improvement in trilineage hematopoiesis was achieved following treatment with a THPO receptor agonist. These studies demonstrate that biallelic loss-of-function mutations in THPO cause BMF, which is unresponsive to transplant due to a hematopoietic cell-extrinsic mechanism. These studies provide further support for the critical role of the MPL-THPO pathway in hematopoiesis and highlight the importance of accurate genetic diagnosis to inform treatment decisions for BMF.
Collapse
|
10
|
Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2017; 141 Suppl 2:S68-72. [PMID: 27207430 DOI: 10.1016/s0049-3848(16)30370-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The daily production of billions of platelets must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Complex mechanisms control platelet production and clearance in physiological and pathological conditions. This review will focus on the mechanisms of platelet senescence with specific emphasis on the role of post-translational modifications in platelet life-span and thrombopoietin production downstream of the hepatic Ashwell-Morrell receptor.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The human body produces and removes 10 platelets daily to maintain a normal steady-state platelet count. Platelet production must be tightly regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet removal and production in physiological and pathological conditions. This review will focus on different mechanisms of platelet clearance, with focus on the biological significance of platelet glycans. RECENT FINDINGS The Ashwell-Morrell receptor (AMR) recognizes senescent, desialylated platelets under steady state conditions. Desialylated platelets and the AMR are the physiological ligand-receptor pair regulating hepatic thrombopoietin (TPO) mRNA production, resolving the longstanding mystery of steady state TPO regulation. The AMR-mediated removal of desialylated platelets regulates TPO synthesis in the liver by recruiting JAK2 and STAT3 to increase thrombopoiesis. SUMMARY Inhibition of TPO production downstream of the hepatic AMR-JAK2 signaling cascade could additionally contribute to the thrombocytopenia associated with JAK1/2 treatment, which is clinically used in myeloproliferative neoplasms.
Collapse
|
12
|
Fu H, Zhang X, Xu L, Liu K, Huang X. Characterization of thrombopoietin kinetics within 60 days after allogeneic hematopoietic stem cell transplantation and its correlation with megakaryocyte ploidy distribution. Clin Transplant 2015; 30:170-8. [PMID: 26589669 DOI: 10.1111/ctr.12673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Haixia Fu
- Peking University People's Hospital; Institute of Hematology; Beijing China
| | - Xiaohui Zhang
- Peking University People's Hospital; Institute of Hematology; Beijing China
| | - Lanping Xu
- Peking University People's Hospital; Institute of Hematology; Beijing China
| | - Kaiyan Liu
- Peking University People's Hospital; Institute of Hematology; Beijing China
| | - Xiaojun Huang
- Peking University People's Hospital; Institute of Hematology; Beijing China
| |
Collapse
|
13
|
Chiou TJ, Chang YF, Wang MC, Kao CW, Lin HY, Chen TY, Hsueh EJ, Lan YJ, Sung YC, Lin SF, Bai LY, Chen CG. Eltrombopag enhances platelet adhesion by upregulating the expression of glycoprotein VI in patients with chronic immune thrombocytopenic purpura. Transl Res 2015; 166:750-761.e4. [PMID: 26477577 DOI: 10.1016/j.trsl.2015.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Eltrombopag, a thrombopoietin receptor agonist, has been approved for the treatment of patients with immune thrombocytopenia because of its abilities to enhance platelet production and reduce hemorrhage. Both platelet count and platelet adhesion are crucial to stop bleeding. Although eltrombopag is known to improve platelet counts, its effects on platelet adhesion are not yet known. This study aimed to assess the efficacy of eltrombopag on platelet production and platelet adhesive affinity. To evaluate the efficacy of low-dose eltrombopag (25 mg) for patients with chronic refractory immune thrombocytopenic purpura (ITP) and to determine the ex vivo platelet adhesion ability before and after treatment with eltrombopag, we conducted an open-label, multicenter study in which 25 Taiwanese patients with chronic ITP were enrolled. During the 6-month evaluation, the starting and maximum doses of eltrombopag were 25 and 50 mg, respectively, to maintain the platelet count of ≥50,000 per μL. Flow-based adhesion assay was used to detect the percentage of platelets adhering to immobilized von Willebrand factor-collagen on microslides. Of the enrolled patients, 48% achieved a platelet count of ≥50,000 per μL. Interestingly, 83% of all responders required 25 mg of eltrombopag daily to achieve the target platelet count. In addition, the percentage of bleeding patients was significantly reduced in both responders and nonresponders by 50% from the baseline level throughout the treatment period. The ex vivo platelet adhesion capacity was elevated after the 6-month eltrombopag treatment in both responders and nonresponders. Furthermore, glycoprotein VI (GPVI) expression was significantly upregulated after treatment with eltrombopag. Low-to-intermediate dose of eltrombopag showed good efficacy to expedite platelet production and augment platelet adhesion. These 2 factors might explain the efficacy of eltrombopag in ameliorating hemorrhage in patients with ITP.
Collapse
Affiliation(s)
- Tzeon-Jye Chiou
- Department of Hematology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Chang
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | - Hsuan-Yu Lin
- National Cheng-Kung University Hospital, Tainan, Taiwan
| | | | | | | | - Yung-Chuan Sung
- Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | | | - Li-Yuan Bai
- Institute Molecular Medicine, National Tsing-Hua University, Hsinchu, Taiwan
| | - Caleb G Chen
- Department of Hematology, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
14
|
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212:2133-46. [PMID: 26552707 PMCID: PMC4647260 DOI: 10.1084/jem.20150057] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Nakamura-Ishizu et al. report that megakaryocytes function as a niche to maintain HSC quiescence through CLEC-2–mediated production of Thpo and other key regulators of HSC function. These findings could enable manipulation of HSCs for clinical application. Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Keiyo Takubo
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| |
Collapse
|
15
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
16
|
Zhang W, Yu C, Huang B, Zhou FL, Huang HD, Li Q. Correlation between bone metastasis and thrombocytosis in pulmonary adenocarcinoma patients. Oncol Lett 2014; 9:762-768. [PMID: 25621048 PMCID: PMC4301510 DOI: 10.3892/ol.2014.2770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022] Open
Abstract
Thrombocytosis is commonly observed in patients exhibiting a variety of malignancies, including pulmonary, gastrointestinal and hepatic cancer. In the present study, the correlation between distant metastasis and thrombocytosis was retrospectively reviewed in 308 cases of histopathologically confirmed pulmonary adenocarcinoma. The patients were classified as having thrombocytosis or not, based on their platelet counts upon diagnosis; thrombocytosis was documented in 82/308 patients (26.6%). A log-rank test indicated a statistically significant difference in survival between patients exhibiting thrombocytosis compared with patients not exhibiting thrombocytosis (P<0.001). In addition, the occurrence of distant metastasis and the survival period were correlated with the presence of thrombocytosis upon diagnosis. In descending order of frequency, metastases were documented at the following sites: Lymph nodes (218/308 patients; 70.8%), bone (138/308 patients; 44.8%), lung (93/308 patients; 30.2%), brain (67/308 patients; 21.8%), liver (46/308 patients; 4.9%), adrenal glands (11/308 patients; 3.6%) and kidneys (5/308 patients; 1.6%). Bone metastasis occurred significantly more frequently in patients exhibiting thrombocytosis (50/82 patients: 61.0%; P<0.05) compared with patients not exhibiting thrombocytosis (88/226 patients; 38.9%). Furthermore, according to univariate analysis, thrombocytosis, weight loss, an Eastern Cooperative Oncology Group performance status score of ≥2 points, anemia, increased erythrocyte sedimentation rate, and increased alkaline phosphatase (AKP) and carcinoembryonic protein (CEA) levels were risk factors for bone metastasis. According to multivariate analysis, thrombocytosis, weight loss, and increased AKP and CEA levels were correlated with bone metastasis. Therefore, patients exhibiting pulmonary adenocarcinoma and thrombocytosis have a higher risk of bone metastasis compared with patients not exhibiting thrombocytosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Yu
- Department of Respiratory Medicine, No. 413 Hospital of People's Liberation Army, Zhoushan, Zhejiang 316000, P.R. China
| | - Bin Huang
- Department of Respiratory Medicine, No. 413 Hospital of People's Liberation Army, Zhoushan, Zhejiang 316000, P.R. China
| | - Feng-Liang Zhou
- Department of Respiratory Medicine, No. 413 Hospital of People's Liberation Army, Zhoushan, Zhejiang 316000, P.R. China
| | - Hai-Dong Huang
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qiang Li
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
17
|
Abstract
The production of platelets is a complex process that involves hematopoietic stem cells (HSCs), their differentiated progeny, the marrow microenvironment and hematopoietic cytokines. Much has been learned in the 110 years since James Homer Wright postulated that marrow megakaryocytes were responsible for blood platelet production, at a time when platelets were termed the "dust of the blood". In the 1980s a number of in vitro culture systems were developed that could produce megakaryocytes, followed by the identification of several cytokines that could stimulate the process in vitro. However, none of these cytokines produced a substantial thrombocytosis when injected into animals or people, nor were blood levels inversely related to platelet count, the sine qua non of a physiological regulator. A major milestone in our understanding of thrombopoiesis occurred in 1994 when thrombopoietin, the primary regulator of platelet production was cloned and initially characterized. Since that time many of the molecular mechanisms of thrombopoiesis have been identified, including the effects of thrombopoietin on the survival, proliferation, and differentiation of hematopoietic stem and progenitor cells, the development of polyploidy and proplatelet formation, the final fragmentation of megakaryocyte cytoplasm to yield blood platelets, and the regulation of this process. While much progress has been made, several outstanding questions remain, such as the nature of the signals for final platelet formation, the molecular nature of the regulation of marrow stromal thrombopoietin production, and the role of these physiological processes in malignant hematopoiesis.
Collapse
|
18
|
TGFβ-Mediated Downregulation of Thrombopoietin Is Associated With Platelet Decline in Asymptomatic SIV Infection. J Acquir Immune Defic Syndr 2014; 65:510-6. [PMID: 24220290 DOI: 10.1097/qai.0000000000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Thrombocytopenia is a known consequence of HIV infection, and decreased production of platelets has been previously implicated in the pathogenesis of platelet decline during asymptomatic infection. Thrombopoietin (THPO) drives platelet production by stimulating the maturation of bone marrow megakaryocytes and can be transcriptionally downregulated by cytokines that are increased during infection such as transforming growth factor β (TGFβ) and platelet factor 4 (pf4). DESIGN To determine whether transcriptional downregulation of THPO contributed to decreased platelet production during asymptomatic infection in the simian immunodeficiency virus (SIV)/macaque model of HIV, we compared hepatic THPO mRNA levels to platelet number and megakaryocyte density. To identify potential inhibitory factors that decrease THPO transcription during asymptomatic infection, we measured TGFβ and pf4 plasma levels. To determine whether combined antiretroviral therapy (cART) could correct platelet decline by altering cytokine levels, we measured TGFβ and pf4 in cART-treated SIV-infected macaques and compared these values to cART-untreated SIV-infected macaques. RESULTS Hepatic THPO transcription was downregulated during asymptomatic SIV infection concurrent with platelet decline. Hepatic THPO mRNA levels correlated with bone marrow megakaryocyte density. In contrast, plasma TGFβ levels were inversely correlated with hepatic THPO transcription and bone marrow megakaryocyte density. With cART treatment, plasma TGFβ levels and platelet count returned to values similar to those in uninfected macaques. CONCLUSIONS TGFβ-mediated downregulation of hepatic THPO may lead to decline in platelet number during asymptomatic SIV infection, and cART may prevent platelet decline by normalizing plasma TGFβ levels.
Collapse
|
19
|
Abstract
In the two decades since its cloning, thrombopoietin (TPO) has emerged not only as a critical haematopoietic cytokine, but also serves as a great example of bench-to-bedside research. Thrombopoietin, produced by the liver, is the primary regulator of megakaryocyte progenitor expansion and differentiation. Additionally, as TPO is vital for the maintenance of haematopoietic stem cells, it can truly be described as a pan-haematopoietic cytokine. Since recombinant TPO became available, the molecular mechanisms of TPO function have been the subject of extensive research. Via its receptor, c-Mpl (also termed MPL), TPO activates a wide array of downstream signalling pathways, promoting cellular survival and proliferation. Due to its central, non-redundant role in haematopoiesis, alterations of both the hormone and its receptor contribute to human disease; congenital and acquired states of thrombocytosis and thrombocytopenia and aplastic anaemia as a result from dysregulated TPO expression or functional alterations of c-Mpl. With TPO mimetics now in clinical use, the story of this haematopoietic cytokine represents a great success for biomedical research.
Collapse
Affiliation(s)
- Ian S Hitchcock
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
20
|
Exome sequencing reveals a thrombopoietin ligand mutation in a Micronesian family with autosomal recessive aplastic anemia. Blood 2013; 122:3440-9. [PMID: 24085763 DOI: 10.1182/blood-2012-12-473538] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We recently identified 2 siblings afflicted with idiopathic, autosomal recessive aplastic anemia. Whole-exome sequencing identified a novel homozygous missense mutation in thrombopoietin (THPO, c.112C>T) in both affected siblings. This mutation encodes an arginine to cysteine substitution at residue 38 or residue 17 excluding the 21-amino acid signal peptide of THPO receptor binding domain (RBD). THPO has 4 conserved cysteines in its RBD that form 2 disulfide bonds. Our in silico modeling predicts that introduction of a fifth cysteine may disrupt normal disulfide bonding to cause poor receptor binding. In functional assays, the mutant-THPO-containing media shows two- to threefold reduced ability to sustain UT7-TPO cells, which require THPO for proliferation. Both parents and a sibling with heterozygous R17C change have reduced platelet counts, whereas a sibling with wild-type sequence has normal platelet count. Thus, the R17C partial loss-of-function allele results in aplastic anemia in the homozygous state and mild thrombocytopenia in the heterozygous state in our family. Together with the recent identification of THPO receptor (MPL) mutations and the effects of THPO agonists in aplastic anemia, our results have clinical implications in the diagnosis and treatment of patients with aplastic anemia and highlight a role for the THPO-MPL pathway in hematopoiesis in vivo.
Collapse
|
21
|
Figueiredo A, Bulla S, Lunsford K, Bulla C. Expression of the Thrombopoietin Gene in Tissues from Healthy Dogs. J Comp Pathol 2013; 149:298-302. [DOI: 10.1016/j.jcpa.2013.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 03/11/2013] [Indexed: 01/14/2023]
|
22
|
Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 2013; 161:778-93. [PMID: 23594368 DOI: 10.1111/bjh.12328] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Megakaryocytopoiesis involves the commitment of haematopoietic stem cells, proliferation and terminal differentiation of megakaryocytic progenitors (MK-p) and maturation of megakaryocytes (MKs) to produce functional platelets. This complex process occurs in specialized niches in the bone marrow where MKs align adjacent to vascular endothelial cells, form proplatelet projections and release platelets into the circulation. Thrombopoietin (THPO, TPO) is the primary growth factor for the MK lineage and necessary at all stages of development. THPO is constitutively produced in the liver, and binds to MPL (c-Mpl) receptor on platelets and MKs. This activates a cascade of signalling molecules, which induce transcription factors to drive MK development and thrombopoiesis. Decreased turnover rate and platelet number result in increased levels of free THPO, which induces a concentration-dependent compensatory response of marrow-MKs to enhance platelet production. Newly developed thrombopoietic agents operating via MPL receptor facilitate platelet production in thrombocytopenic states, primarily immune thrombocytopenia. Other drugs are available for attenuating malignant thrombocytosis. Herein, we review the regulation of megakaryocytopoiesis and platelet production in normal and disease states, and the innovative drugs and therapeutic modalities to stimulate or decrease thrombopoiesis.
Collapse
Affiliation(s)
- Varda R Deutsch
- The Haematology Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel.
| | | |
Collapse
|
23
|
|
24
|
Eliades A, Matsuura S, Ravid K. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J Cell Physiol 2012; 227:3355-62. [PMID: 22331622 DOI: 10.1002/jcp.24071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is a site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS-generating oxidases in MK biology and pathology, including myelofibrosis, is also described.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
25
|
Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, Maghzal GJ, Stocker R, Parish CR, Chong BH, Lieschke GJ, Wong TW, Chesterman CN, Francis DJ, Moloney FJ, Barnetson RSC, Halliday GM, Khachigian LM. DNAzyme Targeting c-jun Suppresses Skin Cancer Growth. Sci Transl Med 2012; 4:139ra82. [DOI: 10.1126/scitranslmed.3003960] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases. Mediators Inflamm 2012; 2012:390892. [PMID: 22577249 PMCID: PMC3337636 DOI: 10.1155/2012/390892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/01/2012] [Indexed: 02/07/2023] Open
Abstract
Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β.
This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.
Collapse
|
27
|
Zhang N, Chan CWS, Sanchez-Guerrero E, Khachigian LM. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC. Am J Physiol Cell Physiol 2012; 302:C1590-8. [PMID: 22322974 DOI: 10.1152/ajpcell.00429.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.
Collapse
Affiliation(s)
- Ning Zhang
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
28
|
Effects of CXCR1 and CXCR2 inhibition on expansion and differentiation of umbilical cord blood CD133+ cells into megakaryocyte progenitor cells. Cytokine 2011; 55:181-7. [DOI: 10.1016/j.cyto.2011.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/07/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022]
|
29
|
Abstract
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.
Collapse
|
30
|
Teofili L, Larocca LM. Advances in understanding the pathogenesis of familial thrombocythaemia. Br J Haematol 2011; 152:701-12. [DOI: 10.1111/j.1365-2141.2010.08500.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Liu C, Li J, Meng FY, Liang SX, Deng R, Li CK, Pong NH, Lau CP, Cheng SW, Ye JY, Chen JL, Yang ST, Yan H, Chen S, Chong BH, Yang M. Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. Altern Ther Health Med 2010; 10:79. [PMID: 21176128 PMCID: PMC3022894 DOI: 10.1186/1472-6882-10-79] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 12/21/2010] [Indexed: 11/10/2022]
Abstract
Background Dozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of "blood production" for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of Radix Angelicae Sinensis and Radix Astragali in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of Radix Angelicae Sinensis (APS) in this study. Methods A myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested. Results In animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis. Conclusions APS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.
Collapse
|
32
|
Ghinassi B, Zingariello M, Martelli F, Lorenzini R, Vannucchi AM, Rana RA, Nishikawa M, Migliaccio G, Mascarenhas J, Migliaccio AR. Increased differentiation of dermal mast cells in mice lacking the Mpl gene. Stem Cells Dev 2009; 18:1081-92. [PMID: 19025339 DOI: 10.1089/scd.2008.0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thrombopoietin interactions with its receptor, Mpl, play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation. In this study, we report that the mast cell restricted progenitor cells (MCP) and the mast cell precursors in the bone marrow of wild-type mice express Mpl on their surface. Furthermore, targeted deletion of the Mpl gene in mice decreases the number of MCP while increasing the number of mast cell precursors present in the marrow and spleen. It also increases the number of mast cells present in the dermis, in the peritoneal cavity, and in the gut of the mice. In addition, serosal mast cells from Mpl(null) mice have a distinctive differentiation profile similar to that expressed by wild-type dermal mast cells. These results suggest that not only does ligation of thrombopoietin with the Mpl receptor exert an effect at the mast cell restricted progenitor cell level, but also plays an unexpected yet important role in mast cell maturation.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang M, Chan GCF, Deng R, Ng MH, Cheng SW, Lau CP, Ye JY, Wang L, Liu C. An herbal decoction of Radix astragali and Radix angelicae sinensis promotes hematopoiesis and thrombopoiesis. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:87-97. [PMID: 19443149 DOI: 10.1016/j.jep.2009.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/12/2009] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A decoction containing Radix angelicae sinensis and Radix astragali (Danggui Buxue Tang, DBT) has been used to raise the "Qi" and nourish the "Blood". However, its effects on haematopoiesis and particularly thrombopoiesis have not been studied. AIMS This study aims to examine the effects of DBT on hematopoiesis and thrombopoiesis. MATERIALS AND METHODS A myelosuppression mouse model was treated with DBT (10mg/kg/day). Peripheral blood cells from DBT and thrombopoietin-treated samples were counted on days 0, 7, 14 and 21. Then CFU assays were used to determine the effects of DBT on the megakaryocytic progenitor cells and other lineages. Last, analyses of annexin V, caspase-3, and mitochondrial membrane potential were conducted in megakaryocytic cell line M-07e. RESULTS Morphological examination showed that DBT treatment significantly increased the recovery of the megakaryocytic series. DBT significantly enhanced the platelet recovery and CFU-MK formation in vivo. DBT significantly promoted CFU-MK and CFU-F formation. Last, we observed the antiapoptotic effects of DBT on M-07e cells. CONCLUSION DBT might promote haematopoiesis and thrombopoiesis in the mouse model through (i) directly promoting the growth of megakaryocytes; (ii) indirectly promoting the growth of bone marrow stromal cells; (iii) inhibiting apoptosis of megakaryocytes.
Collapse
Affiliation(s)
- Mo Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaushansky K. Determinants of platelet number and regulation of thrombopoiesis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:147-152. [PMID: 20008193 DOI: 10.1182/asheducation-2009.1.147] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Our understanding of thrombopoiesis has improved greatly in the last two decades with the availability of in vitro assays of megakaryocyte progenitor cell growth, with the cloning and characterization of stem cell factor (SCF) and thrombopoietin (Tpo), the latter the primary humoral regulator of this process, and with the generation of genetically altered murine models of thrombopoietic failure and excess. While SCF affects developmentally early aspects of megakaryocyte growth, Tpo affects nearly all aspects of platelet production, from hematopoietic stem cell (HSC) self-renewal and expansion, through stimulation of megakaryocyte progenitor cell proliferation, to supporting their maturation into platelet-producing cells. The molecular and cellular mechanisms through which the marrow microenvironment and humoral mediators affect platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis, and highlight new opportunities to translate basic biology into clinical advances.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0671, USA.
| |
Collapse
|
35
|
Transcriptional regulation of bone marrow thrombopoietin by platelet proteins. Exp Hematol 2008; 36:799-806. [PMID: 18410987 DOI: 10.1016/j.exphem.2008.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 02/06/2023]
Abstract
Platelet production is regulated primarily by the cytokine thrombopoietin (TPO). Although TPO is expressed in several different tissues, only in the bone marrow has the level of expression been reported to increase in response to reduced numbers of platelets. In these studies, we demonstrate that platelet granule proteins are able to transcriptionally repress TPO mRNA expression in a marrow stromal cell line as well as in primary bone marrow stromal cell cultures. Like TPO mRNA, secretion of TPO protein was also suppressed by serum treatment. Reporter gene constructs indicate that DNA elements located in an approximately 1.9-kb region between 250-bp upstream of the transcriptional initiation site and the middle of the second intron are able to mediate the transcriptional repression.
Collapse
|
36
|
Marcucci R, Romano M. Thrombopoietin and its splicing variants: structure and functions in thrombopoiesis and beyond. Biochim Biophys Acta Mol Basis Dis 2008; 1782:427-32. [PMID: 18433726 DOI: 10.1016/j.bbadis.2008.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/18/2022]
Abstract
Since its cloning in 1994, several studies have reported that thrombopoietin (THPO) presents several alternative splicing products that differ from the full-length protein in its 5' UTR, N- or C-terminal regions. Most of these splice variants are evolutionarily conserved and have been detected in different tissues as well as in cell lines. Although the possible functions of the THPO isoforms are still elusive, different clues link them to the peculiar mechanism that regulates THPO production. Moreover, novel fields to explore possible roles of the THPO variants are opened by observations that this hormone can influence the formation of hematopoietic progenitors and its expression occurs in some tumors as well as in tissues not directly related to the thrombopoiesis. In this review, we summarize the structure and functions of THPO through the published evidence on its splicing isoforms and discuss about their involvement with physiopathologic phenomena.
Collapse
Affiliation(s)
- Roberto Marcucci
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012, Trieste, Italy
| | | |
Collapse
|
37
|
Abstract
The study of thrombopoiesis has evolved greatly since an era when platelets were termed "the dust of the blood," only about 100 years ago. During this time megakaryocytes were identified as the origin of blood platelets; marrow-derived megakaryocytic progenitor cells were functionally defined and then purified; and the primary regulator of the process, thrombopoietin, was cloned and characterized and therapeutic thrombopoietic agents developed. During this journey we continue to learn that the physiologic mechanisms that drive proplatelet formation can be recapitulated in cell-free systems and their biochemistry evaluated; the molecular underpinnings of endomitosis are being increasingly understood; the intracellular signals sent by engagement of a large number of megakaryocyte surface receptors have been defined; and many of the transcription factors that drive megakaryocytic fate determination have been identified and experimentally manipulated. While some of these biologic processes mimic those seen in other cell types, megakaryocytes and platelets possess enough unique developmental features that we are virtually assured that continued study of thrombopoiesis will yield innumerable clinical and scientific insights for many decades to come.
Collapse
|
38
|
Lambert MP, Rauova L, Bailey M, Sola-Visner MC, Kowalska MA, Poncz M. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. Blood 2007; 110:1153-60. [PMID: 17495129 PMCID: PMC1976471 DOI: 10.1182/blood-2007-01-067116] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet factor 4 (PF4) is a negative regulator of megakaryopoiesis in vitro. We have now examined whether PF4 regulates megakaryopoiesis in vivo by studying PF4 knockout mice and transgenic mice that overexpress human (h) PF4. Steady-state platelet count and thrombocrit in these animals was inversely related to platelet PF4 content. Growth of megakaryocyte colonies was also inversely related to platelet PF4 content. Function-blocking anti-PF4 antibody reversed this inhibition of megakaryocyte colony growth, indicating the importance of local PF4 released from developing megakaryocytes. The effect of megakaryocyte damage and release of PF4 on 5-fluorouracil-induced marrow failure was then examined. Severity of thrombocytopenia and time to recovery of platelet counts were inversely related to initial PF4 content. Recovery was faster and more extensive, especially in PF4-overexpressing mice, after treatment with anti-PF4 blocking antibodies, suggesting a means to limit the duration of such a chemotherapy-induced thrombocytopenia, especially in individuals with high endogenous levels of PF4. We found that approximately 8% of 250 healthy adults have elevated (> 2 times average) platelet PF4 content. These individuals with high levels of platelet PF4 may be especially sensitive to developing thrombocytopenia after bone marrow injury and may benefit from approaches that block the effects of released PF4.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Platelet Growth Factors. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Abstract
This review summarizes current data on the pathomechanisms and clinical aspects of primary and secondary thrombocytosis in childhood. Primary thrombocytosis is extremely rare in childhood, mostly diagnosed at the beginning of the second decade of life. As in adults, the criteria of the Polycythemia Vera Group are appropriate to diagnose primary thrombocytosis. The pathomechansims of non-familial forms are complex and include spontaneous formation of megakaryopoietic progenitors and increased sensitivity to thrombopoietin (Tpo). Familial forms can be caused by mutations in Tpo or Tpo receptor (c-mpl) genes. These mutations result in overexpression of Tpo, sustained intracellular signalling or disturbed regulation of circulating Tpo. Treatment of primary thrombocytosis is not recommended if platelet counts are <1500/nl and bleeding or thrombosis did not occur in patient's history. In severe cases, decision on treatment should weigh potential risks of treatment options (hydroxyurea, anagrelide) against expected benefits for preventing thrombosis or haemorrhage. Secondary thrombocytosis is frequent in children, in particular in the first decade of life. Hepatic Tpo production is stimulated in acute response reaction to a variety of disorders. Thrombosis prophylaxis is not required, even at platelet counts >1000/nl, except for cases with additional prothrombotic risk factors.
Collapse
Affiliation(s)
- Christof Dame
- Department of Neonatology, Charité- University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | |
Collapse
|
42
|
Wang JC, Hemavathy K, Charles W, Zhang H, Dua PK, Novetsky AD, Chang T, Wong C, Jabara M. Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 2004; 32:905-10. [PMID: 15504545 DOI: 10.1016/j.exphem.2004.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/18/2004] [Accepted: 07/06/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the mechanism of osteosclerosis in IMF in relation to OPG derangement. METHODS Plasma OPG level was assayed by OPG ELISA in 19 patients with IMF, 15 patients with other myeloproliferative disorders (MPDs), and 12 normal volunteers as controls and correlated with the degree of osteosclerosis. Furthermore, the level of OPG mRNA, in the cultured bone marrow stromal (BMS) cells of patients with IMF and anemia patients used as controls, in the presence or absence of TGF-beta1, was studied by real-time RT-PCR. RESULTS The present study showed that blood OPG level was significantly elevated in patients with IMF as compared to patients with other MPDs (p < 0.01) or normal volunteer controls (p < 0.05), and there was no significant difference in the level between patients with MPDs and controls. In addition, there was a positive correlation (r=0.67, p=0.04) between plasma OPG levels and the degree of osteosclerosis. There was no difference in the OPG mRNA in patients with IMF as compared with controls even on TGF-beta1 stimulation. CONCLUSION These results suggest that osteosclerosis in IMF may be related to overproduction of OPG and enhanced level of OPG is not due to the effect of TGF-beta1 on the BMS cells. It could be due to the effect of TGF-beta1 or other growth factors on cells other than BMS cells such as the osteoblasts.
Collapse
Affiliation(s)
- Jen C Wang
- Division of Hematology/Oncology, Department of Medicine, Maimonide Medical Center, Brooklyn, NY 11219, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dame C, Wolber EM, Freitag P, Hofmann D, Bartmann P, Fandrey J. Thrombopoietin gene expression in the developing human central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:217-23. [PMID: 12855193 DOI: 10.1016/s0165-3806(03)00134-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thrombopoietin gene expression in the human adult central nervous system (CNS) appears to be locally restricted. The aim of this study was to identify areas of thrombopoietin expression in the developing human CNS, and to compare the thrombopoietin mRNA content in the CNS to that in liver and kidneys as major sites of thrombopoietin production. Thrombopoietin protein concentrations in the cerebrospinal fluid (CSF) were measured by ELISA. In 14 fetuses and neonates with perinatal death, thrombopoietin mRNA expression was measured by competitive RT-PCR. Thrombopoietin mRNA was expressed in 29 of 32 specimens taken from the CNS. The following ranking of the intensity of expression in the CNS was possible: Spinal cord=cerebellum=cortex>>pituitary gland>>>brain stem=corpora amygdala=hippocampus. Whereas in the latter three tissues only trace amounts of thrombopoietin transcripts were detectable, thrombopoietin mRNA levels in the spinal cord were comparable to levels in liver and kidney. Thrombopoietin protein concentrations in CSF ranged between 41 and 75 pg/ml. In the developing human CNS, the thrombopoietin gene is abundantly expressed. Considering that thrombopoietin contains a neurotrophic sequence, it may well play a role in neuronal cell biology.
Collapse
Affiliation(s)
- Christof Dame
- Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, von Andrian UH, Wagner DD, Stossel TP, Hartwig JH. The clearance mechanism of chilled blood platelets. Cell 2003; 112:87-97. [PMID: 12526796 DOI: 10.1016/s0092-8674(02)01253-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.
Collapse
Affiliation(s)
- Karin M Hoffmeister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zreiqat H, Crotti TN, Howlett CR, Capone M, Markovic B, Haynes DR. Prosthetic particles modify the expression of bone-related proteins by human osteoblastic cells in vitro. Biomaterials 2003; 24:337-46. [PMID: 12419636 DOI: 10.1016/s0142-9612(02)00324-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of bone near joint prostheses is thought to be caused by activation of recruited osteoclasts by osteolytic mediators induced by wear particles. It is proposed that particles inhibit osteogenesis during bone remodelling causing a reduction in the levels of peri-implant bone. This study explores whether prosthetic particles modulate bone formation by affecting osteoblastic bone-related mRNAs (alkaline phosphatase, pro-collagen Ialpha1, osteopontin, osteonectin, osteocalcin, bone sialoprotein and thrombospondin) or their translated proteins using titanium alloy, commercially pure titanium, and cobalt-chrome particles. The direct effect of the particles revealed no change to the expression of the bone-related mRNAs in human bone-derived cells (HBDC) at the time points investigated; although non-collagenous translated proteins expressed by these HBDC were significantly effected (p<0.05). Different patterns of expression for bone-related proteins were induced by the different particles both directly and indirectly. Inflammatory mediators (interleukin-1beta, tumor necrosis factor alpha, interleukin-6, and prostaglandin E2) had similar effects on HBDC to the media obtained from monocytes incubated with particles. This study shows that prosthetic wear particles can significantly modify the expression of bone-related proteins by osteogenic cells in vitro. These alterations in osteogenic activity at the interface of the implant and bone may be an important factor in the failure of many orthopaedic implants.
Collapse
Affiliation(s)
- H Zreiqat
- Department of Pathology, School of Medical Sciences, The University of New South Wales, 2052 Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Yang M, Li K, Ng MHL, Yuen PMP, Fok TF, Li CK, Hogg PJ, Chong BH. Thrombospondin-1 inhibits in vitro megakaryocytopoiesis via CD36. Thromb Res 2003; 109:47-54. [PMID: 12679131 DOI: 10.1016/s0049-3848(03)00142-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombospondin-1 (TSP-1) is an inhibitor of angiogenesis, inducing apoptosis of the endothelial cells via CD36 signaling mechanism. We investigated CD36 expression and the effect of TSP-1 on megakaryocytopoiesis, with and without pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), and with and without blocking TSP-1 binding with receptor CD36 on megakaryocytic cells. Our data showed that TSP-1 induced a dose-dependent growth inhibition in both murine and human colony forming unit-megakaryocyte (CFU-MK) assays and significantly counteracted the mitogenic effect from PEG-rHuMGDF. Moreover, the growth suppression induced by TSP-1 was correlated with CD36 expression in megakaryocytic cell lines, where growth inhibition was demonstrated in CD36 positive (Meg-01, Dami and CHRF-288-11) but not in CD36 negative (M-07e) cell lines. More importantly, the inhibitory effect of TSP-1 on both human CFU-MK and Meg-01 cells was partially but significantly reversed by the addition of FA6-152 (anti-CD36), a blocking antibody which blocks the access of TSP-1 to CD36 receptor, suggesting that the TSP-1-induced inhibition of megakaryocytopoiesis is probably mediated in part by the binding of TSP-1 to CD36 expressed on the megakaryocytic progenitors. Thus, our findings represent the first demonstration that TSP-1 inhibits in vitro megakaryocytopoiesis via interaction with CD36.
Collapse
Affiliation(s)
- Mo Yang
- Department of Paediatrics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Oda M, Kurasawa Y, Todokoro K, Nagata Y. Thrombopoietin-induced CXC chemokines, NAP-2 and PF4, suppress polyploidization and proplatelet formation during megakaryocyte maturation. Genes Cells 2003; 8:9-15. [PMID: 12558795 DOI: 10.1046/j.1365-2443.2003.00610.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously reported that the expressions of two CXC chemokines, neutrophil activating peptide-2 (NAP-2) and platelet factor-4 (PF-4), were induced by megakaryocyte-specific cytokine thrombopoietin (TPO) in mouse bone marrow megakaryocytes. The roles of these chemokines on megakaryocyte maturation/differentiation processes, including polyploidization and proplatelet formation (PPF) remain unresolved. RESULTS NAP-2 and PF-4 suppressed the PPF of mature megakaryocytes freshly prepared from mouse bone marrow as well as that of the megakaryocyte progenitors, c-Kit+CD41+ cells, isolated from mouse bone marrow and cultured with TPO. NAP-2 and PF-4 inhibited polyploidization of c-Kit+CD41+ cells in the presence of TPO, and also inhibited the proliferation of c-Kit+CD41+ cells. CONCLUSIONS NAP-2 and PF-4 produced by TPO stimulation in megakaryocytes suppress megakaryocyte maturation and proliferation as a feedback control.
Collapse
Affiliation(s)
- Masaaki Oda
- Laboratory of Molecular Cell Science, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
48
|
Zreiqat H, Akin FA, Howlett CR, Markovic B, Haynes D, Lateef S, Hanley L. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A 2003; 64:105-13. [PMID: 12483702 DOI: 10.1002/jbm.a.10376] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various surface modifications have been applied to titanium alloy (Ti-6Al-4V) implants, in an attempt to enhance osseointegration; crucial for ideal prosthetic fixation. Despite the numerous studies demonstrating that peptide-modified surfaces influence in vitro cellular behavior, there is relatively little data reporting their effects on bone remodeling. The objective of this article was to examine the effects of chemically modifying Ti-6Al-4V surfaces with a common RGD sequence, a 15-residue peptide containing GRGDSP (glycine-arginine-glycine-aspartate-serine-proline), on the modulation of bone remodeling. The expression of proteins known to be associated with osseous matrix and bone resorption were studied during the growth of human bone-derived cells (HBDC) on these peptide-modified surfaces. HBDC grown for 7 days on RGD surfaces displayed significantly increased levels of osteocalcin, and pro-collagen Ialpha1 mRNAs, compared with the production by HBDC grown on the native Ti-6Al-4V. A pattern that was also reflected at the protein levels for osteocalcin, type I collagen, and bone sialoprotein. Moreover, HBDC grown for 7 and 14 days on RGD-modified Ti-6Al-4V expressed significantly higher level of osteoclast differentiation factors and lower levels of osteoprotegerin and IL-6 proteins compared with other surfaces tested. These results suggest that different chemical treatments of implant material (Ti-6Al-4V) surface result in differential bone responses, not only their ability to form bone but also to stimulate osteoclastic formation.
Collapse
Affiliation(s)
- H Zreiqat
- School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Blood platelets are here presented as active players in antimicrobial host defense and the induction of inflammation and tissue repair in addition to their participation in hemostasis. Megakaryopoiesis is inhibited after acute infection with viruses or bacteria. In contrast, chronic inflammation is often associated with reactive thrombocytosis. Platelets can bind and internalize pathogens and release microbicidal proteins that kill certain bacteria and fungi. By making cell-cell contacts with leukocytes and endothelial cells, platelets assist white blood cells in rolling, arrest and transmigration. On stimulation by bacteria or thrombin, platelets release the content of their alpha-granules, which include an arsenal of bioactive peptides, such as CC-chemokines and CXC-chemokines and growth factors for endothelial cells, smooth muscle cells and fibroblasts. Thus, integral to innate immunity, the tiny little platelets may become bombshells when irritated by pathogens.
Collapse
|
50
|
Gale RE. Basic sciences of the myeloproliferative diseases: pathogenic mechanisms of ET and PV. Int J Hematol 2002; 76 Suppl 2:305-10. [PMID: 12430942 DOI: 10.1007/bf03165139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The molecular pathogenesis of ET and PV is unknown, although the relatively indolent clinical course observed in most patients suggests that the defect may be subtle and difficult to establish. Clonality analysis using X-chromosome inactivation patterns in females on purified CD34+ cells have confirmed that a defect is present in the hematopoietic stem cell. However, at least in ET, a significant proportion of patients have polyclonal hemopoiesis, and this presumably reflects the heterogeneous nature of the disorder(s). Attention has focussed on the potential disruption of the physiological regulators EPO and TPO and their respective receptors. In familial disorders, pathological mutations have been identified in some, but by no means all, cases: EPO receptor mutations in PFCP, TPO mutations in FT and, conversely, TPO receptor (c-mpl) mutations in CAMT. Equivalent ligand or receptor mutations have not been detected in ET or PV patients. However, there is evidence to suggest that c-mpl expression may be dysregulated, with low or absent c-mpl mRNA or protein reported in ET and/or PV patients. At present it is not clear whether this is the cause or consequence of the paradoxically normal/increased TPO levels found with both primary and secondary thrombocytosis. In vitro culture analysis has demonstrated both cytokine independence and hyper-sensitivity as a generalised feature of progenitor cells from many patients, but differences exist depending on the assays used and there is little understanding of the mechanism(s) underlying these responses. Two genes have recently been identified with increased mRNA expression in PV granulocytes: PRV-1, a novel cell surface receptor closely related to the uPAR/Ly6/CD59/snake toxin family of proteins, and NFI-B, a member of the nuclear factor I family which may be associated with TGF-beta resistance. Investigation of their regulation and biological effects may assist in determining the pathobiology of these elusive disorders.
Collapse
|