1
|
Poletto E, Silva AO, Weinlich R, Martin PKM, Torres DC, Giugliani R, Baldo G. Ex vivo gene therapy for lysosomal storage disorders: future perspectives. Expert Opin Biol Ther 2023; 23:353-364. [PMID: 36920351 DOI: 10.1080/14712598.2023.2192348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.
Collapse
Affiliation(s)
- Edina Poletto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ricardo Weinlich
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Davi Coe Torres
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Roberto Giugliani
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Guilherme Baldo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
2
|
Nguyen QH, Witt RG, Wang B, Eikani C, Shea J, Smith LK, Boyle G, Cadaoas J, Sper R, MacKenzie JD, Villeda S, MacKenzie TC. Tolerance induction and microglial engraftment after fetal therapy without conditioning in mice with Mucopolysaccharidosis type VII. Sci Transl Med 2021; 12:12/532/eaay8980. [PMID: 32102934 DOI: 10.1126/scitranslmed.aay8980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis type VII (MPS7) is a lysosomal storage disorder (LSD) resulting from mutations in the β-glucuronidase gene, leading to multiorgan dysfunction and fetal demise. While postnatal enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation have resulted in some phenotypic improvements, prenatal treatment might take advantage of a unique developmental window to penetrate the blood-brain barrier or induce tolerance to the missing protein, addressing two important shortcomings of postnatal therapy for multiple LSDs. We performed in utero ERT (IUERT) at E14.5 in MPS7 mice and improved survival of affected mice to birth. IUERT penetrated brain microglia, whereas postnatal administration did not, and neurological testing (after IUERT plus postnatal administration) showed decreased microglial inflammation and improved grip strength in treated mice. IUERT prevented antienzyme antibody development even after multiple repeated postnatal challenges. To test a more durable treatment strategy, we performed in utero hematopoietic stem cell transplantation (IUHCT) using congenic CX3C chemokine receptor 1-green fluorescent protein (CX3CR1-GFP) mice as donors, such that donor-derived microglia are identified by GFP expression. In wild-type recipients, hematopoietic chimerism resulted in microglial engraftment throughout the brain without irradiation or conditioning; the transcriptomes of donor and host microglia were similar. IUHCT in MPS7 mice enabled cross-correction of liver Kupffer cells and improved phenotype in multiple tissues. Engrafted microglia were seen in chimeric mice, with decreased inflammation near donor microglia. These results suggest that fetal therapy with IUERT and/or IUHCT could overcome the shortcomings of current treatment strategies to improve phenotype in MPS7 and other LSDs.
Collapse
Affiliation(s)
- Quoc-Hung Nguyen
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Russell G Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bowen Wang
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlo Eikani
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeremy Shea
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucas K Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Renan Sper
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John D MacKenzie
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Saul Villeda
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Wolf DA, Lenander AW, Nan Z, Belur LR, Whitley CB, Gupta P, Low WC, McIvor RS. Direct gene transfer to the CNS prevents emergence of neurologic disease in a murine model of mucopolysaccharidosis type I. Neurobiol Dis 2011; 43:123-33. [PMID: 21397026 DOI: 10.1016/j.nbd.2011.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 12/31/2022] Open
Abstract
The mucopolysaccharidoses (MPSs) are a group of 11 storage diseases caused by disruptions in glycosaminoglycan (GAG) catabolism, leading to their accumulation in lysosomes. Resultant multisystemic disease is manifested by growth delay, hepatosplenomegaly, skeletal dysplasias, cardiopulmonary obstruction, and, in severe MPS I, II, III, and VII, progressive neurocognitive decline. Some MPSs are treated by allogeneic hematopoietic stem cell transplantation (HSCT) and/or recombinant enzyme replacement therapy (ERT), but effectiveness is limited by central nervous system (CNS) access across the blood-brain barrier. To provide a high level of gene product to the CNS, we tested neonatal intracerebroventricular (ICV) infusion of an adeno-associated virus (AAV) serotype 8 vector transducing the human α-L-iduronidase gene in MPS I mice. Supranormal levels of iduronidase activity in the brain (including 40× normal levels in the hippocampus) were associated with transduction of neurons in motor and limbic areas identifiable by immunofluorescence staining. The treatment prevented accumulation of GAG and GM3 ganglioside storage materials and emergence of neurocognitive dysfunction in a modified Morris water maze test. The results suggest the potential of improved outcome for MPSs and other neurological diseases when a high level of gene expression can be achieved by direct, early administration of vector to the CNS.
Collapse
Affiliation(s)
- Daniel A Wolf
- Department of Genetics, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Doty RT, Sabo KM, Chen J, Miller AD, Abkowitz JL. An all-feline retroviral packaging system for transduction of human cells. Hum Gene Ther 2011; 21:1019-27. [PMID: 20222826 DOI: 10.1089/hum.2010.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The subgroup C feline leukemia virus (FeLV-C) receptor FLVCR is a widely expressed 12-transmembrane domain transporter that exports cytoplasmic heme and is a promising target for retrovirus-mediated gene delivery. Previous studies demonstrated that FeLV-C pseudotype vectors were more efficient at targeting human hematopoietic stem cells than those pseudotyped with gibbon ape leukemia virus (GALV), and thus we developed an all FeLV-C-based packaging system, termed CatPac. CatPac is helper-virus free and can produce higher titer vectors than existing gammaretroviral packaging systems, including systems mixing Moloney murine leukemia virus (MoMLV) Gag-Pol and FeLV-C Env proteins. The vectors can be readily concentrated (>30-fold), refrozen (three to five times), and held on ice (>2 days) with little loss of titer. Furthermore, we demonstrate that CatPac pseudotype vectors efficiently target early CD34(+)CD38(-) stem/progenitor cells, monocytic and erythroid progenitors, activated T cells, mature macrophages, and cancer cell lines, suggesting utility for human cell and cell line transduction and possibly gene therapy.
Collapse
Affiliation(s)
- Raymond T Doty
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
5
|
Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:189-204. [PMID: 20112244 PMCID: PMC4002210 DOI: 10.1002/wnan.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses the multiple bio- and nanotechnological strategies developed in the last few decades for treatment of a group of fatal genetic diseases termed lysosomal storage disorders. Some basic foundation on the biomedical causes and social and clinical relevance of these diseases is provided. Several treatment modalities, from those currently available to novel therapeutic approaches under development, are also discussed; these include gene and cell therapies, substrate reduction therapy, chemical chaperones, enzyme replacement therapy, multifunctional chimeras, targeting strategies, and drug carrier approaches.
Collapse
Affiliation(s)
- Silvia Muro
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA.
| |
Collapse
|
6
|
Abstract
BACKGROUND Lysosomal storage diseases are devastating illnesses, in large part because of their neurologic consequences. Because significant morbidity occurs prenatally, in utero (IU) therapy is an attractive therapeutic approach. METHODS We studied the feasibility and efficacy of IU injections of monocytic cells (derived from normal marrow) in feline alpha-mannosidosis. Heterozygous cats were interbred to produce affected (homozygous) and control (heterozygous and wild-type) offspring. Thirty-seven pregnancies were studied in which fetuses were transplanted intraperitoneally (1x10 cells/kg recipient) at gestational days 27 to 33 and then each week for 2 weeks (term=63 days). After birth, affected kittens were evaluated clinically and pathologically, tissue alpha-mannosidase levels were assayed, and in many studies, the numbers of alpha-mannosidase-containing cells were enumerated. When male donor cells were transplanted into female recipients, engraftment was also quantified using polymerase chain reaction to amplify a Y chromosome-specific sequence. RESULTS We establish methods to transplant cats intraperitoneally while IU using ultrasound guidance, thus, describing a new large animal model for prenatal therapy. We show that the donor monocytic cells engraft and persist (for up to 125 days) in the brain, liver, and spleen, albeit at levels below those needed to alter the clinical or pathological progression of the alpha-mannosidosis. CONCLUSIONS This is the first study of monocyte transplantation in a large animal model of a lysosomal storage disorder and demonstrates its feasibility, safety, and promise. Delivering cells IU may be a useful strategy to prevent morbidities before a definitive therapy, such as hematopoietic stem-cell transplantation, can be administered after birth.
Collapse
|
7
|
Tomatsu S, Gutierrez M, Nishioka T, Yamada M, Yamada M, Tosaka Y, Grubb JH, Montaño AM, Vieira MB, Trandafirescu GG, Peña OM, Yamaguchi S, Orii KO, Orii T, Noguchi A, Laybauer L. Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum Mol Genet 2005; 14:3321-35. [PMID: 16219627 DOI: 10.1093/hmg/ddi364] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. In recent studies of enzyme replacement therapy for animal models with lysosomal storage diseases, cellular and humoral immune responses to the injected enzymes have been recognized as major impediments to effective treatment. To study the long-term effectiveness and side effects of therapies in the absence of immune responses, we have developed an MPS IVA mouse model, which has many similarities to human MPS IVA and is tolerant to human GALNS protein. We used a construct containing both a transgene (cDNA) expressing inactive human GALNS in intron 1 and an active site mutation (C76S) in adjacent exon 2 and thereby introduced both the inactive cDNA and the C76S mutation into the murine Galns by targeted mutagenesis. Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow. At 3 months, lysosomal storage is marked within hepatocytes, reticuloendothelial Kupffer cells, and cells of the sinusoidal lining of the spleen, neurons and meningeal cells. The bone storage is also obvious, with lysosomal distention in osteoblasts and osteocytes lining the cortical bone, in chondrocytes and in the sinus lining cells in bone marrow. Ubiquitous expression of the inactive human GALNS was also confirmed by western blot using the anti-GALNS monoclonal antibodies newly produced, which resulted in tolerance to immune challenge with human enzyme. The newly generated MPS IVA mouse model should provide a good model to evaluate long-term administration of enzyme replacement.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Pediatric Research Institute, Saint Louis University, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Young PP, Vogler C, Hofling AA, Sands MS. Biodistribution and efficacy of donor T lymphocytes in a murine model of lysosomal storage disease. Mol Ther 2003; 7:52-61. [PMID: 12573618 DOI: 10.1016/s1525-0016(02)00016-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lymphocyte-directed gene transfer has been proposed as potential therapy to treat certain congenital immunological deficiencies as well as other genetic diseases such as lysosomal storage diseases (LSDs). To understand better the extent to which adoptively transferred peripheral T lymphocytes (PTLs) are able to ameliorate LSDs we utilized the beta-glucuronidase-deficient mouse as a model system. PTLs (1 x 10(7)) isolated from the spleen of syngeneic mice overexpressing ( approximately 8-fold) human beta-glucuronidase (GUSB) were injected intravenously into young adult beta-glucuronidase-deficient mice without myeloablative conditioning. Using biochemical and histochemical assays, we were able to track the donor lymphocytes in vivo. Donor lymphocytes were detected in relatively high numbers in liver, spleen, small intestine, mesenteric lymph node, and thymus for at least 5 months, the last time point of analysis. Although liver and spleen had the highest total GUSB activity, histopathologic analysis demonstrated minimal to no correction of lysosomal distention at all time points studied. By contrast, we have shown in earlier studies that administration of similar numbers of macrophages reduced lysosomal storage in several organs, including liver and spleen. To understand this difference in efficacy, we compared the relative level of GUSB released into the medium by nonactivated and activated PTLs as well as by macrophages. Macrophages released >50-fold excess enzyme compared to either activated or nonactivated PTLs. These data suggest that a LSD can be more effectively treated by directing a gene therapy approach to a hematopoietic lineage other than T lymphocytes.
Collapse
Affiliation(s)
- Pampee P Young
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
9
|
VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z, Collen D, Chuah MKL. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100:813-22. [PMID: 12130491 DOI: 10.1182/blood.v100.3.813] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-titer self-inactivating human immunodeficiency virus type-1 (HIV-1)-based vectors expressing the green fluorescent protein reporter gene that contained the central polypurine and termination tract and the woodchuck hepatitis virus posttranscriptional regulatory element were constructed. Transduction efficiency and biodistribution were determined, following systemic administration of these improved lentiviral vectors. In adult severe combined immunodeficiency (SCID) mice, efficient stable gene transfer was achieved in the liver (8.0% +/- 6.0%) and spleen (24% +/- 3%). Most transduced hepatocytes and nonhepatocytes were nondividing, thereby obviating the need to induce liver cell proliferation. In vivo gene transfer with this improved lentiviral vector was relatively safe since liver enzyme concentration in the plasma was only moderately and transiently elevated. In addition, nondividing major histocompatibility complex class II-positive splenic antigen-presenting cells (APCs) were efficiently transduced in SCID and normal mice. Furthermore, B cells were efficiently transduced, whereas T cells were refractory to lentiviral transduction in vivo. However, in neonatal recipients, lentiviral transduction was more widespread and included not only hepatocytes and splenic APCs but also cardiomyocytes. The present study suggests potential uses of improved lentiviral vectors for gene therapy of genetic blood disorders resulting from serum protein deficiencies, such as hemophilia, and hepatic disease. However, the use of liver-specific promoters may be warranted to circumvent inadvertent transgene expression in APCs. In addition, these improved lentiviral vectors could potentially be useful for genetic vaccination and treatment of perinatal cardiac disorders.
Collapse
Affiliation(s)
- Thierry VandenDriessche
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology-University of Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Simonaro CM, Haskins ME, Schuchman EH. Articular chondrocytes from animals with a dermatan sulfate storage disease undergo a high rate of apoptosis and release nitric oxide and inflammatory cytokines: a possible mechanism underlying degenerative joint disease in the mucopolysaccharidoses. J Transl Med 2001; 81:1319-28. [PMID: 11555679 DOI: 10.1038/labinvest.3780345] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mucopolysaccharidosis (MPS) Type VI (Maroteaux-Lamy Disease) is the lysosomal storage disease characterized by deficient arylsulfatase B activity and the resultant accumulation of dermatan sulfate-containing glycosaminoglycans (GAGs). A major feature of this and other MPS disorders is abnormal cartilage and bone development leading to short stature, dysostosis multiplex, and degenerative joint disease. To investigate the underlying cause(s) of degenerative joint disease in the MPS disorders, articular cartilage and cultured articular chondrocytes were examined from rats and cats with MPS VI. An age-progressive increase in the number of apoptotic chondrocytes was identified in the MPS animals by terminal transferase nick-end translation (TUNEL) staining and by immunohistochemical staining with anti-poly (ADP-ribose) polymerase (PARP) antibodies. Articular chondrocytes grown from these animals also released more nitric oxide (NO) and tumor necrosis factor alpha (TNF-alpha) into the culture media than did control chondrocytes. Notably, dermatan sulfate, the GAG that accumulates in MPS VI cells, induced NO release from normal chondrocytes, suggesting that GAG accumulation was responsible, in part, for the enhanced cell death in the MPS cells. Coculture of normal chondrocytes with MPS VI cells reduced the amount of NO release, presumably because of the release of arylsulfatase B by the normal cells and reuptake by the mutant cells. As a result of the enhanced chondrocyte death, marked proteoglycan and collagen depletion was observed in the MPS articular cartilage matrix. These results demonstrate that MPS VI articular chondrocytes undergo cell death at a higher rate than normal cells, because of either increased levels of dermatan sulfate and/or the presence of inflammatory cytokines in the MPS joints. In turn, this leads to abnormal cartilage matrix homeostasis in the MPS individuals, which further exacerbates the joint deformities characteristic of these disorders.
Collapse
Affiliation(s)
- C M Simonaro
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
11
|
Abstract
The lysosomal storage disorders (LSD) are monogenic inborn errors of metabolism with heterogeneous pathophysiology and clinical manifestations. In the last decades, these disorders have been models for the development of molecular and cellular therapies for inherited metabolic diseases. Studies in preclinical in vitro systems and animal models have allowed the successful development of bone marrow transplantation (BMT) and enzyme replacement therapy (ERT) as therapeutic options for several LSDs. However, BMT is limited by poor donor availability and high morbidity and mortality, and ERT is not a life-long cure. Moreover, the neuropathology present in many LSDs responded poorly, if at all, to these treatments. Therefore, gene therapy is an attractive therapeutic alternative. Gene therapy strategies for LSDs have employed ex vivo gene transduction of cellular targets with subsequent transplantation of the enzymatically corrected cells, or direct in vivo delivery of the viral vectors. Oncoretroviral vectors and more recently adeno associated vectors (AAV) and lentiviral vectors have been extensively tested, with some success. This review summarises the main gene therapy strategies which have been employed or are under development for both non-neurological and neuronopathic LSDs. Some of the in vitro and in vivo preclinical studies presented herein have provided the rationale for a gene therapy clinical trial for Gaucher disease Type I.
Collapse
Affiliation(s)
- J M Barranger
- University of Pittsburgh, Department of Human Genetics, PA, USA.
| | | |
Collapse
|
12
|
Abstract
Lysosomal storage disorders (LSDs), over 40 different diseases, are now considered treatable disorders. Only a few short years ago, Lysosomal storage disorders were seen as interesting neurodegenerative disorders without any potential for treatment. Effective treatment strategies such as bone marrow transplantation (BMT), enzyme replacement therapy (ERT), and glycolipid synthesis inhibition have been developed in the last 20 years and continue to be researched and evaluated. Bone marrow transplantation began approximately 15 years ago and has shown benefit for some of the lysosomal storage disorders. In order to be effective, the transplant must be performed early in the course of the disease, before the development of irreversible neurologic damage. Diseases such as Hurler appear to respond to BMT, however, improvement in bone disease is much less vigorous than responses in other organs. Krabbe disease responds if the transplant is performed before irreversible signs of neurologic damage appear. Metachromatic leukodystrophy may respond if the transplant can be performed early enough although peripheral nerve findings appear to progress. Other diseases, eg, GM1- and GM2-gangliosidoses do not appear to be altered by BMT. Despite its high cost, ERT has been very effective treatment for type I (non-neuronopathic) Gaucher disease. Enzyme replacement therapy for other LSDs, including ERT for Fabry and Pompe diseases, which are planned to be imminently introduced, and other enzymes such as for Morquio and Hunter diseases that are in the study phases, may be marketed in the very near future. Glycolipid inhibitors, such as N-butyldeoxynijirimycin (OGS-918), have been effective in reducing the liver and spleen volume in type I Gaucher disease. These oral inhibitors may prove to be important adjuncts to ERT and provide the advantage of being able to cross the blood/brain barrier, which limits enzyme access to brain. Currently, clinical studies are being conducted on patients with type III Gaucher disease and Fabry disease using OGS-918. Other, potentially more specific, glycolipid inhibitors are being developed.
Collapse
Affiliation(s)
- Edward M. Kaye
- Section of Biochemical Genetics, Division of Human and Molecular Genetics, Division of Neurology, Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|