1
|
Sun H, Liu P, Nolan LK, Lamont SJ. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 2015; 16:690. [PMID: 26369556 PMCID: PMC4570614 DOI: 10.1186/s12864-015-1850-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. Results We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. Conclusion The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1850-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA.
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
2
|
A Role for PPARgamma in the Regulation of Cytokines in Immune Cells and Cancer. PPAR Res 2011; 2008:961753. [PMID: 18566687 PMCID: PMC2430015 DOI: 10.1155/2008/961753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/22/2008] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. PPARγ and its ligands appear to serve diverse biological functions. In addition to the well-studied effects of PPARγ on metabolism and cellular differentiation, abundant evidence suggests that PPARγ is an important regulator of the immune system and cancers. Since cytokines are not only key modulators of inflammation with pro- and anti-inflammatory functions but they also can either stimulate or inhibit tumor growth and progression, this review summarizes the role for PPARγ in the regulation of cytokine production and cytokine-mediated signal transduction pathways in immune cells and cancer.
Collapse
|
3
|
D'Cruz OJ, Uckun FM. Targeting mast cells in endometriosis with janus kinase 3 inhibitor, JANEX-1. Am J Reprod Immunol 2007; 58:75-97. [PMID: 17631002 DOI: 10.1111/j.1600-0897.2007.00502.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endometriosis (EMS) is a chronic inflammatory disease of multifactorial etiology characterized by implantation and growth of endometrial glands and stroma outside the uterine cavity. EMS is a significant public health issue as it affects 15-20% of women in their reproductive age. Clinical symptoms may include pelvic pain, dysmenorrhea, dyspareunia, pelvic/abdominal masses, and infertility. Symptomatic treatments such as surgical resection and/or hormonal suppression of ovarian function and analgesics are not as effective as desired. Consequently, there is an enormous unmet need to develop effective medical therapy capable of preventing the occurrence and recurrence of EMS without undesirable side-effects. EMS-associated intra-abdominal bleeding episodes, local inflammation, adhesions, and i.p. immunologic dysfunction leads to pelvic nociception and pelvic pain. Increasing evidence supports the involvement of allergic-type inflammation in EMS. Invasion of mast cells, degranulation, and proliferation of interstitial component are observed in endometriotic lesions. Presence of activated and degranulating mast cells within the nerve structures can contribute to the development of pain and hyperalgesia by direct effects on primary nociceptive neurons. Therefore, treatments targeting endometrial mast cells may prove effective in preventing or alleviating EMS-associated symptoms. The Janus kinase 3 (JAK3) is abundantly expressed in mast cells and is required for the full expression of high-affinity IgE receptor-mediated mast cell inflammatory sequelae. JANEX-1/WHI-P131 is a rationally designed novel JAK3 inhibitor with potent anti-inflammatory activity in several cellular and in vivo animal models of inflammation, including mouse models of peritonitis, colitis, cellulitis, sunburn, and airway inflammation with favorable toxicity and pharmacokinetic profile. We hypothesize that JAK3 inhibitors, especially JANEX-1, may prove useful to prevent or alleviate the symptoms of EMS.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Paradigm Pharmaceuticals, St Paul, MN 55113, USA.
| | | |
Collapse
|
4
|
Yarovinsky TO, Butler NS, Monick MM, Hunninghake GW. Early exposure to IL-4 stabilizes IL-4 mRNA in CD4+ T cells via RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2006; 177:4426-35. [PMID: 16982877 DOI: 10.4049/jimmunol.177.7.4426] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanisms regulating IL-4 mRNA stability in differentiated T cells are not known. We found that early exposure of CD4+ T cells to endogenous IL-4 increased IL-4 mRNA stability. This effect of IL-4 was mediated by the RNA-binding protein HuR. IL-4 mRNA interacted with HuR and the dominant binding site was shown within the coding region of IL-4 mRNA. Exposure of CD4+ T cells to IL-4 had no effects on HuR expression or subcellular localization, but triggered HuR binding to IL-4 mRNA. Thus, IL-4 plays a positive role in maintaining IL-4 mRNA stability in CD4+ T cells via a HuR-mediated mechanism.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
5
|
Fiset PO, Tulic MK, Skrablin PSA, Grover SM, Létuvé S, Mazer BD, Hamid Q. Signal transducer and activator of transcription 6 down-regulates toll-like receptor-4 expression of a monocytic cell line. Clin Exp Allergy 2006; 36:158-65. [PMID: 16433852 DOI: 10.1111/j.1365-2222.2006.02370.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4), part of the bacterial lipopolysaccharide (LPS) receptor, is an important bridge between innate and adaptive immunity. Our previous studies have indicated reduced expression of TLR4 and reduced responsiveness to LPS in nasal mucosa of atopic adults compared with non-atopic adults. IL-4 and signal transducer and activator of transcription 6 (STAT6), which are increased in atopic patients, may have a role in modulating TLR4. OBJECTIVE To examine direct effects of IL-4 and STAT6 on TLR4 expression of U-937 monocytic cells. METHODS LPS responsiveness, under different conditions of U-937 cells was measured by nuclear factor (NF)-kappaB activation of transcription. TLR4 mRNA was quantified by real-time PCR and TLR4 surface expression was measured by flow cytometry. The promoter and 4.3 kb of the upstream region of TLR4 were cloned into a plasmid vector and transiently transfected into U-937 cells. Transfected cells were incubated with IL-4 and transcriptional activity was assayed by the luciferase assay. STAT6 was transfected to evaluate overexpression of this transcription factor. Cells were also incubated with Tyrphostin AG490 to inhibit tyrosine kinases. RESULTS NF-kappaB activation by LPS was inhibited by IL-4 pre-incubation but not when IL-4 was added at the same time as LPS. TLR4 mRNA expression was inhibited by IL-4 as early as 6 h but the effect was lost by 24 h. Surface expression of TLR4 was inhibited by IL-4 at 12 and 24 h, but returned to baseline at 48 h. IL-4 inhibited activity of the TLR4 promoter as early as 6 h, but, like the mRNA, these effects were transient. STAT6 overexpression enhanced the inhibition of the TLR4 promoter and prolonged it. Inhibition of TLR4 by IL-4 was abolished by pre-incubation with the tyrosine kinase inhibitor Tyrphostin AG490. CONCLUSION Our findings demonstrate that IL-4, through STAT6, can modulate TLR4 expression and suggests that Th2 cytokines can impact on the LPS responsiveness of cells.
Collapse
Affiliation(s)
- P O Fiset
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Johnson EN, Appelbaum ER, Carpenter DC, Cox RF, Disa J, Foley JJ, Ghosh SK, Naselsky DP, Pullen MA, Sarau HM, Scheff SR, Steplewski KM, Zaks-Zilberman M, Aiyar N. Neuromedin U elicits cytokine release in murine Th2-type T cell clone D10.G4.1. THE JOURNAL OF IMMUNOLOGY 2005; 173:7230-8. [PMID: 15585845 DOI: 10.4049/jimmunol.173.12.7230] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuromedin U (NmU), originally isolated from porcine spinal cord and later from other species, is a novel peptide that potently contracts smooth muscle. NmU interacts with two G protein-coupled receptors designated as NmU-1R and NmU-2R. This study demonstrates a potential proinflammatory role for NmU. In a mouse Th2 cell line (D10.G4.1), a single class of high affinity saturable binding sites for (125)I-labeled NmU (K(D) 364 pM and B(max) 1114 fmol/mg protein) was identified, and mRNA encoding NmU-1R, but not NmU-2R, was present. Competition binding analysis revealed equipotent, high affinity binding of NmU isopeptides to membranes prepared from D10.G4.1 cells. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular Ca(2+) concentration (EC(50) 4.8 nM for human NmU). In addition, NmU also significantly increased the synthesis and release of cytokines including IL-4, IL-5, IL-6, IL-10, and IL-13. Studies using pharmacological inhibitors indicated that maximal NmU-evoked cytokine release required functional phospholipase C, calcineurin, MEK, and PI3K pathways. These data suggest a role for NmU in inflammation by stimulating cytokine production by T cells.
Collapse
Affiliation(s)
- Eric N Johnson
- Department of High Throughput Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
O'Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 2004; 3:555-64. [PMID: 15232577 DOI: 10.1038/nrd1441] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
8
|
Wong WSF, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:53-69. [PMID: 15023350 DOI: 10.1016/j.bbapap.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 01/21/2023]
Abstract
The pathogenesis of allergic asthma involves the interplay of inflammatory cells and airway-resident cells, and of their secreted mediators including cytokines, chemokines, growth factors and inflammatory mediators. Receptor tyrosine kinases are important for the pathogenesis of airway remodeling. Activation of epidermal growth factor (EGF) receptor kinase and platelet-derived growth factor (PDGF) receptor kinase leads to hyperplasia of airway smooth muscle cells, epithelial cells and goblet cells. Stimulation of non-receptor tyrosine kinases (e.g. Lyn, Lck, Syk, ZAP-70, Fyn, Btk, Itk) is the earliest detectable signaling response upon antigen-induced immunoreceptor activation in inflammatory cells. Cytokine receptor dimerization upon ligand stimulation induces activation of Janus tyrosine kinases (JAKs), leading to recruitment and phosphorylation of signal transducer and activator of transcription (STAT) for selective gene expression regulation. Activation of chemokine receptors can trigger JAK-STAT pathway, Lck, Fyn, Lyn, Fgr, and Syk/Zap-70 to induce chemotaxis of inflammatory cells. Inhibitors of tyrosine kinases have been shown in vitro to block growth factor-induced hyperplasia of airway-resident cells; antigen-induced inflammatory cell activation and cytokine synthesis; cytokine-mediated pro-inflammatory gene expression in inflammatory and airway cells; and chemokine-induced chemotaxis of inflammatory cells. Recently, anti-inflammatory effects of tyrosine kinase inhibitors (e.g. genistein, tyrphostin AG213, piceatannol, tyrphostin AG490, WHI-P97, WHI-P131, Syk antisense) in animal models of allergic asthma have been reported. Therefore, development of inhibitors of tyrosine kinases can be a very attractive strategy for the treatment of asthma.
Collapse
Affiliation(s)
- W S Fred Wong
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, MD2 18 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
9
|
Corry DB, Kheradmand F. Biology and therapeutic potential of the interleukin-4/interleukin-13 signaling pathway in asthma. ACTA ACUST UNITED AC 2004; 1:185-93. [PMID: 14720056 DOI: 10.1007/bf03256608] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The future management of patients with allergic asthma is poised to change in the coming one to two decades. This prediction is based on fundamental new insights into the pathogenesis of disease, gained through the study of both humans and experimental models of asthma. These studies have revealed that allergic asthma is an immune-mediated disease which, despite the redundancy characteristic of all immune responses, may be induced through a single dominant signaling cascade called the interleukin (IL)-4/IL-13 signaling pathway. In addition to the cytokine IL-4, this pathway includes IL-13, the cytokine receptor subunit IL-4 receptor alpha (IL-4Ralpha), Janus-associated tyrosine kinases and the transcription factor, signal transducer and activator of transcription 6. The IL-4 signaling pathway controls the most important cellular developmental (afferent) events that underlie asthma. These include T helper (Th) type 2 cell activation, B cell activation and immunoglobulin (Ig) E secretion, mast cell development, and effector (efferent) events related exclusively to immune effects on the lung such as goblet cell metaplasia and airway hyperresponsiveness. Any of the IL-4 signaling molecules are potentially amenable to pharmacological intervention, but a detailed understanding of the entire pathway is required to appreciate their actual potential for drug development. For example, neutralization strategies that target only IL-4 are unlikely to succeed because they leave IL-13 free to continue the signaling cascade. In contrast, neutralization of IL-4Ralpha may represent a more feasible strategy, as it should prevent signaling by both IL-4 and IL-13. The therapeutic potential of targeting intracytoplasmic tyrosine kinases has already been achieved with the use of small molecules, suggesting that this approach may be realistically adopted for the treatment of asthma. However, well designed asthma clinical trials are warranted to determine with certainty, the efficacy of therapies based on IL-4/IL-13 blockade.
Collapse
Affiliation(s)
- David B Corry
- Departments of Medicine and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
10
|
Cetkovic-Cvrlje M, Dragt AL, Vassilev A, Liu XP, Uckun FM. Targeting JAK3 with JANEX-1 for prevention of autoimmune type 1 diabetes in NOD mice. Clin Immunol 2003; 106:213-25. [PMID: 12706408 DOI: 10.1016/s1521-6616(02)00049-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we show that Janus kinase (JAK) 3 is an important molecular target for treatment of autoimmune insulin-dependent (type 1) diabetes mellitus. The rationally designed JAK3 inhibitor JANEX-1 exhibited potent immunomodulatory activity and delayed the onset of diabetes in the NOD mouse model of autoimmune type 1 diabetes. Whereas 60% of vehicle-treated control NOD mice became diabetic by 25 weeks, the incidence of diabetes at 25 weeks was only 9% for NOD females treated with daily injections of JANEX-1 (100 mg/kg/day) from Week 10 through Week 25 (P = 0.007). Furthermore, JANEX-1 prevented the development of insulitis and diabetes in NOD-scid/scid females after adoptive transfer of splenocytes from diabetic NOD females. Chemical inhibitors such as JANEX-1 may provide the basis for effective treatment modalities against human type 1 diabetes. To our knowledge, this is the first report of the immunosuppressive activity of a JAK3 inhibitor in the context of an autoimmune disease.
Collapse
Affiliation(s)
- Marina Cetkovic-Cvrlje
- Department of Immunology, Parker Hughes Institute, 2699 Patton Road, St. Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
11
|
Mena A, Ioannou XP, Van Kessel A, Van Drunen Little-Van Den Hurk S, Popowych Y, Babiuk LA, Godson DL. Th1/Th2 biasing effects of vaccination in cattle as determined by real-time PCR. J Immunol Methods 2002; 263:11-21. [PMID: 12009200 DOI: 10.1016/s0022-1759(02)00029-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Real-time polymerase chain reaction (PCR) is now becoming an accepted tool for measuring gene expression at the transcriptional level. In this study, a direct comparison between real-time PCR, enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot (ELISPOT) assay was performed. When interferon-gamma (IFN-gamma) gene expression was assessed, both ELISA and ELISPOT data strongly correlated to results obtained by real-time PCR. Real-time PCR was subsequently used to measure bovine IFN-gamma (bIFN-gamma) and bovine interleukin-4 (bIL-4) gene expression by antigen stimulated peripheral blood mononuclear cells (PBMC), isolated from bovine herpesvirus-1 (BHV-1) infected animals. BHV-1-infected animals were either non-vaccinated or vaccinated using one of two adjuvants prior to infection. With non-vaccinated infected animals, a Th1 bias occurred, based on IFN-gamma expression exceeding IL-4 expression. The level of cytokine expression, and the IFN-gamma/IL-4 ratio could be significantly affected, depending on the manner in which animals were vaccinated.
Collapse
Affiliation(s)
- Angelo Mena
- Veterinary Infectious Disease Organisation, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang XY, Wang LH, Mihalic K, Xiao W, Chen T, Li P, Wahl LM, Farrar WL. Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands. J Biol Chem 2002; 277:3973-8. [PMID: 11726648 DOI: 10.1074/jbc.m105619200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The respective development of either T helper type 1 (Th1) or Th2 cells is believed to be mediated by the effects of cytokines acting directly on Th precursors (Thp). We have generated evidence for an indirect monocyte-dependent immunoregulatory pathway. Recently, interleukin (IL) 4 has been shown to produce "new" potential peroxisome proliferator-activated receptor gamma (PPARgamma) ligands by inducing macrophage 12/15-lipoxygenase (12/15-LO). We have shown previously that the activated PPARgamma is a profound inhibitor of IL-2 transcription in human T lymphocytes. It is hypothetically possible that IL-4 might indirectly affect IL-2 production by Thp cells via macrophage-derived PPARgamma ligands. Using human monocytes and T lymphocytes from same donors, we have found that monocyte 12/15-LO products mediate the indirect inhibitory effect of IL-4 on anti-CD3- or phytohemagglutinin/phorbol 12-myristate 13-acetate-stimulated IL-2 production by T lymphocytes. We further analyzed which major 12/15-LO metabolites contributed to the above inhibition. 13-Hydroxyoctadecadienoic acid (13-HODE), a 12/15-LO product, markedly blocked IL-2 production by human blood T lymphocytes, but not Jurkat T cells. Moreover, the IL-4-conditioned macrophage medium contained a sufficient amount of 13-HODE and anti-13-HODE antibody indeed neutralized the inhibitory effects of the IL-4-conditional medium on T-cell IL-2 production. Using human T lymphocytes and the PPARgamma-transfected Jurkat T cells, we demonstrated the specific inhibition by 13-HODE of the transcription factors NFAT (nuclear factor of activated T cells) and nuclear factor kappaB, the IL-2 promoter reporter, and IL-2 production. However, 15-hydroxytetraenoic acid had little inhibitory effect. The potency of such inhibitory effects correlates well with the capability of the above metabolic lipids to activate PPARgamma. These data provide a mechanism whereby IL-4 may indirectly affect Thp function via PPARgamma activated by macrophage products of the 12/15-LO pathway.
Collapse
Affiliation(s)
- Xiao Yi Yang
- Intramural Research Support Program, Science Applications International Corporation, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recent discoveries on the molecular and cellular basis of asthma have markedly altered our understanding of this common respiratory disorder. These insights have come during an unexplained period of rising disease incidence and severity and are now being applied to develop improved therapies. This review explores the latest advances in our understanding of the pathogenesis of allergic asthma, and provides insight into the expanding collaborations between research scientists, clinicians and the pharmaceutical industry in the race to control the asthma epidemic.
Collapse
Affiliation(s)
- David B Corry
- Departments of Medicine and Immunology, Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|