1
|
Ye MT, Zuo Z, Calin S, Ye F, He H, Kamata W, Yang Y, You MJ. Integrated Clinical Genotype-Phenotype Characteristics of STAT3-Mutated Myeloid Neoplasms. Clin Cancer Res 2024; 30:4681-4689. [PMID: 38767620 DOI: 10.1158/1078-0432.ccr-24-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE STAT3 is a key transcription factor that mediates cancer progression through phosphorylation or gain-of-function mutations. STAT3 activation in myeloid neoplasms (MN) is primarily mediated through phosphorylation. STAT3 mutation has only rarely been reported in MNs. EXPERIMENTAL DESIGN We assessed the clinicopathologic and molecular genetic features of 32 STAT3-mutated MNs. RESULTS The frequency of STAT3 mutation in MNs was <0.5%. Twenty (62.5%) cases were classified as acute myeloid leukemia, 7 (21.9%) as myelodysplastic syndrome, and 5 (15.6%) as chronic myelomonocytic leukemia, but none as myeloproliferative neoplasms. STAT3 mutations occurred at initial diagnosis in 22 (88%) cases or at relapse or upon leukemic transformation. Clonal hierarchy analysis revealed that STAT3 mutations represented the dominant clone in 30% of acute myeloid leukemia cases but were subclonal in myelodysplastic syndrome and chronic myelomonocytic leukemia. Most were missense mutations located at the SH2 domain, Y640F being the most common. STAT3 mutation was accompanied by coexisting mutations in all cases, most frequently SRSF2, TET2, ASXL1, and SETBP1. STAT3 mutations were usually associated with morphologic dysplasia, increased blasts, and monosomy 7/del7q. With a median follow-up of 24.5 months, 21 patients died, 6 had persistent disease, and 5 achieved complete remission after stem cell transplantation. CONCLUSIONS STAT3 mutation is present in various MNs but not in myeloproliferative neoplasms. It is often an early event or occurs upon leukemic transformation, which suggests an important role in the pathogenesis and progression of MNs by activating the JAK-STAT pathway. It may help determine a subset of patients with MNs who may benefit from targeted therapy. See related commentary by Hochman and Frank, p. 4554.
Collapse
MESH Headings
- Humans
- STAT3 Transcription Factor/genetics
- Middle Aged
- Aged
- Mutation
- Male
- Female
- Adult
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Aged, 80 and over
- Genetic Association Studies
- Phenotype
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Genotype
Collapse
Affiliation(s)
- Matthew T Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fengxi Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua He
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wataru Kamata
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Wu YN, Su X, Wang XQ, Liu NN, Xu ZW. The roles of phospholipase C-β related signals in the proliferation, metastasis and angiogenesis of malignant tumors, and the corresponding protective measures. Front Oncol 2023; 13:1231875. [PMID: 37576896 PMCID: PMC10419273 DOI: 10.3389/fonc.2023.1231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
PLC-β is widely distributed in eukaryotic cells and is the key enzyme in phosphatidylinositol signal transduction pathway. The cellular functions regulated by its four subtypes (PLC-β1, PLC-β2, PLC-β3, PLC-β4) play an important role in maintaining homeostasis of organism. PLC-β and its related signals can promote or inhibit the occurrence and development of cancer by affecting the growth, differentiation and metastasis of cells, while targeted intervention of PLC-β1-PI3K-AKT, PLC-β2/CD133, CXCR2-NHERF1-PLC-β3, Gαq-PLC-β4-PKC-MAPK and so on can provide new strategies for the precise prevention and treatment of malignant tumors. This paper reviews the mechanism of PLC-β in various tumor cells from four aspects: proliferation and differentiation, invasion and metastasis, angiogenesis and protective measures.
Collapse
Affiliation(s)
- Yu-Nuo Wu
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xing Su
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qin Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Na-Na Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
STAT3 Activation in Combination with NF-KappaB Inhibition Induces Tolerogenic Dendritic Cells with High Therapeutic Potential to Attenuate Collagen-Induced Arthritis. J Immunol Res 2019; 2019:1982570. [PMID: 31355296 PMCID: PMC6636450 DOI: 10.1155/2019/1982570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) have the ability to induce tolerance or inflammation in response to self-antigens, which makes them fundamental players in autoimmunity. In this regard, immunogenic DCs produce IL-12 and IL-23 favouring the acquisition of Th1 and Th17 inflammatory phenotypes, respectively, by autoreactive CD4+ T-cells, thus promoting autoimmunity. Conversely, tolerogenic DCs produce IL-10 and TGF-β, inducing the generation of CD4+ T-cells with suppressive activity (Treg), which promote tolerance to self-constituents. Previous studies have shown that STAT3 signalling in DCs attenuates the production of proinflammatory cytokines, whilst NF-κB activation promotes it. In this study, we aimed to generate DCs displaying strong and constitutive tolerogenic profile to be used as immunotherapy in autoimmunity. To this end, we transduced bone marrow-derived DCs with lentiviral particles codifying for a constitutively active version of STAT3 (constitutively active STAT3 (STAT3ca)) or with a constitutive repressor of NF-κB (IκBα superrepressor (IκBαSR)), and their therapeutic potential was evaluated in a mouse model of arthritis induced by collagen (CIA). Our results show that STAT3ca transduction favoured the production of the anti-inflammatory mediator IL-10, whereas IκBαSR transduction attenuated the expression of the proinflammatory cytokine IL-23 in DCs. Moreover, both STAT3ca-transduced and IκBαSR-transduced DCs separately exerted a mild but significant therapeutic effect reducing the severity of CIA development. Furthermore, when DCs were transduced with both STAT3ca and IκBαSR together, they reduced CIA manifestation significantly stronger than when transduced with only STAT3ca or IκBαSR separately. These results show STAT3 and NF-κB as two important and complementary regulators of the tolerogenic behaviour of DCs, which should be considered as molecular targets in the design of DC-based suppressive immunotherapies for the treatment of autoimmune disorders.
Collapse
|
4
|
Abu-Khader A, Law KW, Jahan S, Manesia JK, Pasha R, Hovey O, Pineault N. Paracrine Factors Released by Osteoblasts Provide Strong Platelet Engraftment Properties. Stem Cells 2018; 37:345-356. [PMID: 30520180 DOI: 10.1002/stem.2956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
Ex vivo expansion of hematopoietic stem cell (HSCs) and progenitors may one day overcome the slow platelet engraftment kinetics associated with umbilical cord blood transplantation. Serum-free medium conditioned with osteoblasts (i.e., osteoblast-conditioned medium [OCM]) derived from mesenchymal stromal cells (MSC) was previously shown to increase cell growth and raise the levels of human platelets in mice transplanted with OCM-expanded progenitors. Herein, we characterized the cellular and molecular mechanisms responsible for these osteoblast-derived properties. Limiting dilution transplantation assays revealed that osteoblasts secrete soluble factors that synergize with exogenously added cytokines to promote the production of progenitors with short-term platelet engraftment activities, and to a lesser extent with long-term platelet engraftment activities. OCM also modulated the expression repertoire of cell-surface receptors implicated in the trafficking of HSC and progenitors to the bone marrow. Furthermore, OCM contains growth factors with prosurvival and proliferation activities that synergized with stem cell factor. Insulin-like growth factor (IGF)-2 was found to be present at higher levels in OCM than in control medium conditioned with MSC. Inhibition of the IGF-1 receptor, which conveys IGF-2' intracellular signaling, largely abolished the growth-promoting activity of OCM on immature CD34+ subsets and progenitors in OCM cultures. Finally, IGF-1R effects appear to be mediated in part by the coactivator β-catenin. In summary, these results provide new insights into the paracrine regulatory activities of osteoblasts on HSC, and how these can be used to modulate the engraftment properties of human HSC and progenitors expanded in culture. Stem Cells 2019;37:345-356.
Collapse
Affiliation(s)
- Ahmad Abu-Khader
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Kyle W Law
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Owen Hovey
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene 2018; 38:2151-2161. [DOI: 10.1038/s41388-018-0571-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
|
6
|
Ishida S, Akiyama H, Umezawa Y, Okada K, Nogami A, Oshikawa G, Nagao T, Miura O. Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BH3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PVTL-2. Oncotarget 2018; 9:26834-26851. [PMID: 29928488 PMCID: PMC6003557 DOI: 10.18632/oncotarget.25515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/13/2018] [Indexed: 11/25/2022] Open
Abstract
The activated JAK2-V617F mutant is very frequently found in myeloproliferative neoplasms (MPNs), and its inhibitor ruxolitinib has been in clinical use, albeit with limited efficacies. Here, we examine the signaling mechanisms from JAK2-V617F and responses to ruxolitinib in JAK2-V617F-positive leukemic cell lines, including PVTL-2, newly established from a patient with post-MPN secondary acute myeloid leukemia, and the widely used model cell line HEL. We have found that ruxolitinib downregulated the mTORC1/S6K/4EBP1 pathway at least partly through inhibition of the STAT5/Pim-2 pathway with concomitant downregulation of c-Myc, MCL-1, and BCL-xL as well as induction of autophagy in these cells. Ruxolitinib very efficiently inhibited proliferation but only modestly induced apoptosis. However, inhibition of BCL-xL/BCL-2 by the BH3 mimetics ABT-737 and navitoclax or BCL-xL by A-1331852 induced caspase-dependent apoptosis involving activation of Bak and Bax synergistically with ruxolitinib in HEL cells. On the other hand, the putative pan-BH3 mimetic obatoclax as well as chloroquine and bafilomycin A1 inhibited autophagy at its late stage and induced apoptosis in PVTL-2 cells synergistically with ruxolitinib. The present study suggests that autophagy as well as the anti-apoptotic BCL-2 family members, regulated at least partly by the mTORC1 pathway downstream of STAT5/Pim-2, protects JAK2-V617F-positive leukemic cells from ruxolitinib-induced apoptosis depending on cell types and may contribute to development of new strategies against JAK2-V617F-positive neoplasms.
Collapse
Affiliation(s)
- Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E, Kent DG, Göttgens B, Wilson NK. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood 2018; 131:e1-e11. [PMID: 29588278 PMCID: PMC5969381 DOI: 10.1182/blood-2017-12-821413] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W41/W41) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced Myc expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.
Collapse
Affiliation(s)
- Joakim S Dahlin
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fiona K Hamey
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Blanca Pijuan-Sala
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Mairi Shepherd
- Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and
| | - Winnie W Y Lau
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Sonia Nestorowa
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Samuel Wolock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Rebecca Hannah
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - David G Kent
- Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
8
|
Prado C, Gaiazzi M, González H, Ugalde V, Figueroa A, Osorio-Barrios FJ, López E, Lladser A, Rasini E, Marino F, Zaffaroni M, Cosentino M, Pacheco R. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:571. [PMID: 29619030 PMCID: PMC5871671 DOI: 10.3389/fimmu.2018.00571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
The dual potential to promote tolerance or inflammation to self-antigens makes dendritic cells (DCs) fundamental players in autoimmunity. Previous results have shown that stimulation of dopamine receptor D5 (DRD5) in DCs potentiates their inflammatory behaviour, favouring the development of experimental autoimmune encephalomyelitis (EAE). Here, we aimed to decipher the underlying mechanism and to test its relevance in multiple sclerosis (MS) patients. Our data shows that DRD5-deficiency confined to DCs in EAE mice resulted in reduced frequencies of CD4+ T-cell subsets with inflammatory potential in the central nervous system, including not only Th1 and Th17 cells but also granulocyte-macrophage colony-stimulating factor producers. Importantly, ex vivo depletion of dopamine from DCs resulted in a dramatic reduction of EAE severity, highlighting the relevance of an autocrine loop promoting inflammation in vivo. Mechanistic analyses indicated that DRD5-signalling in both mouse DCs and human monocytes involves the attenuation of signal transducer and activator of transcription 3-activation, a transcription factor that limits the production of the inflammatory cytokines interleukin (IL)-12 and IL-23. Furthermore, we found an exacerbated expression of all dopamine receptors in peripheral blood pro-inflammatory monocytes obtained from MS patients. These findings illustrate a novel mechanism by which myeloid antigen-presenting cells may trigger the onset of their inflammatory behaviour promoting the development of autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | - Michela Gaiazzi
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | - Valentina Ugalde
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | - Alicia Figueroa
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | | | - Ernesto López
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia and Vida, Santiago, Chile
| | - Alvaro Lladser
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia and Vida, Santiago, Chile
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Mauro Zaffaroni
- Multiple Sclerosis Centre, ASST della Valle Olona, Hospital of Gallarate, Gallarate, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Yang J, Komatsubara KM, Carvajal RD. JAK-ing up the Response to KIT Inhibition. J Invest Dermatol 2018; 138:6-8. [DOI: 10.1016/j.jid.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
|
10
|
Yee KWL, Chen HWT, Hedley DW, Chow S, Brandwein J, Schuh AC, Schimmer AD, Gupta V, Sanfelice D, Johnson T, Le LW, Arnott J, Bray MR, Sidor C, Minden MD. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia. Invest New Drugs 2016; 34:614-24. [PMID: 27406088 DOI: 10.1007/s10637-016-0375-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023]
Abstract
ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11-65 %). The RP2D in this patient population is 225 mg orally once daily.
Collapse
Affiliation(s)
- Karen W L Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| | - Hsiao-Wei T Chen
- Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - David W Hedley
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Sue Chow
- Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Joseph Brandwein
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Division of Clinical Hematology, University of Alberta, Edmonton, AB, Canada
| | - Andre C Schuh
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Aaron D Schimmer
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Vikas Gupta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Deborah Sanfelice
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Tara Johnson
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Lisa W Le
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | | | | | - Mark D Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
11
|
Oncogenic KIT mutations in different exons lead to specific changes in melanocyte phospho-proteome. J Proteomics 2016; 144:140-7. [PMID: 27216642 DOI: 10.1016/j.jprot.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/15/2023]
Abstract
UNLABELLED Mutations in the proto-oncogene c-KIT (KIT) are found in several cancers, and the site of these mutations differs markedly between cancer types. We used site directed mutagenesis to induce KIT(559), KIT(642) and KIT(816) mutations in primary human melanocytes (PHM) and we investigated the impact of each mutation on KIT function. We studied canonical KIT-signaling pathways by immunoblotting, and we used stable isotope labeling by amino acids in cell culture (SILAC) and kinase prediction models to identify kinases differently activated in respective mutants. We validated our results with the analysis of phosphorylation levels of selected substrates for each kinase. We concluded that CK1 ε and δ are more active in cell clones harboring KIT(559) and KIT(642) mutations, whereas PAK4 is more active in clones with KIT(816) mutation. Our findings might help to develop further therapeutic options for tumors with specific KIT mutations in different domains. BIOLOGICAL SIGNIFICANCE Different types of cancers harbor mutations in the oncogene KIT. The use of small molecules inhibitors directly targeting KIT had a limited success in the treatment of patients with KIT mutant cancers. Our study describes specific phospho-proteome changes due to different KIT mutations, and provides targets of further therapeutic options.
Collapse
|
12
|
Ziai JM, Siddon AJ. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol 2015; 144:539-54. [PMID: 26386075 DOI: 10.1309/ajcp77zfpuqgygwy] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a rapidly fatal disease without the use of aggressive chemotherapy regimens. Cytogenetic and molecular studies are commonly used to classify types of AML based on prognosis, as well as to determine therapeutic regimens. METHODS Although there are several AML classifications determined by particular translocations, cytogenetically normal AML represents a molecularly, as well as clinically, heterogeneous group of diseases. Laboratory evaluation of AML will become increasingly important as new mutations with both prognostic and therapeutic implications are being recognized. Moreover, because many patients with AML are being treated more effectively, these mutations may become increasingly useful as markers of minimal residual disease, which can be interpreted in an individualized approach. RESULTS Current laboratory studies of gene mutations in AML include analysis of NPM1, FLT3, CEBPA, and KIT. In addition to these genes, many other genes are emerging as potentially useful in determining patients' prognosis, therapy, and disease course. CONCLUSIONS This article briefly reviews the current most clinically relevant gene mutations and their clinical and immunophenotypic features, prognostic information, and methods used for detection.
Collapse
Affiliation(s)
| | - Alexa J. Siddon
- Departments of Pathology, Yale School of Medicine, New Haven, CT
- Laboratory Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare, West Haven, CT
| | | |
Collapse
|
13
|
A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer. PLoS One 2015; 10:e0131108. [PMID: 26098881 PMCID: PMC4476594 DOI: 10.1371/journal.pone.0131108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. METHODS AND FINDINGS We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. CONCLUSIONS In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.
Collapse
|
14
|
Molderings GJ. The genetic basis of mast cell activation disease - looking through a glass darkly. Crit Rev Oncol Hematol 2015; 93:75-89. [DOI: 10.1016/j.critrevonc.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023] Open
|
15
|
Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation. Nat Commun 2014; 5:5715. [PMID: 25493654 PMCID: PMC4284665 DOI: 10.1038/ncomms6715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022] Open
Abstract
Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit's kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation.
Collapse
|
16
|
de Melo Campos P, Machado-Neto JA, Scopim-Ribeiro R, Visconte V, Tabarroki A, Duarte AS, Barra FF, Vassalo J, Rogers HJ, Lorand-Metze I, Tiu RV, Costa FF, Olalla Saad ST, Traina F. Familial systemic mastocytosis with germline KIT K509I mutation is sensitive to treatment with imatinib, dasatinib and PKC412. Leuk Res 2014; 38:1245-51. [DOI: 10.1016/j.leukres.2014.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
17
|
Zhou J, Chong PSY, Lu X, Cheong LL, Bi C, Liu SC, Zhou Y, Tan TZ, Yang H, Chung TH, Zeng Q, Chng WJ. Phosphatase of regenerating liver-3 is regulated by signal transducer and activator of transcription 3 in acute myeloid leukemia. Exp Hematol 2014; 42:1041-52.e1-2. [PMID: 25139404 DOI: 10.1016/j.exphem.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/17/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022]
Abstract
Overexpression of protein-tyrosine phosphatase of regenerating liver 3 (PRL-3) has been identified in about 50% of patients with acute myeloid leukemia (AML). The mechanism of regulation of PRL-3 remains obscure. Signal transducer and activator of transcription 3 (STAT3), a latent transcriptional factor, has also been often found to be activated in AML. We first identified STAT3-consensus-binding sites in the promoter of PRL-3 genes. Then we experimentally validated the direct binding and transcriptional activation. We applied shRNA-mediated knockdown and overexpression approaches in STAT3(-/-) liver cells and leukemic cells to validate the functional regulation of PRL-3 by STAT3. A STAT3 core signature, derived through data mining from publicly available gene expression data, was employed to correlate PRL-3 expression in large AML patient samples. We discovered that STAT3 binds to the -201 to -210 region of PRL-3, which was conserved between human and mouse. Importantly, PRL-3 protein was significantly reduced in mouse STAT3-knockout liver cells compared with STAT3-wild type counterparts, and ectopic expression of STAT3 in these cells led to a pronounced increase in PRL-3 protein. We demonstrated that STAT3 functionally regulated PRL-3, and STAT3 core signature was enriched in AML with high PRL-3 expression. Targeting either STAT3 or PRL-3 reduced leukemic cell viability. Silencing PRL-3 impaired invasiveness and induced leukemic cell differentiation. In conclusion, PRL-3 was transcriptionally regulated by STAT3. The STAT3/PRL-3 regulatory loop contributes to the pathogenesis of AML, and it might represent an attractive therapeutic target for antileukemic therapy.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Differentiation
- Cell Line, Tumor
- Conserved Sequence
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Gene Dosage
- Gene Expression Regulation, Leukemic
- Genes, Reporter
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Liver/metabolism
- Mice
- Mutagenesis, Site-Directed
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic/genetics
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- RNA Interference
- RNA, Small Interfering/pharmacology
- STAT3 Transcription Factor/deficiency
- STAT3 Transcription Factor/physiology
- Signal Transduction
- Species Specificity
- Transfection
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Phyllis S Y Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Xiao Lu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Lip-Lee Cheong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chonglei Bi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Shaw-Cheng Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Yafeng Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Hematology-Oncology, National University Hospital, Singapore, Republic of Singapore.
| |
Collapse
|
18
|
Bar-Natan M, Nelson EA, Xiang M, Frank DA. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAKSTAT 2014; 1:55-64. [PMID: 24058751 PMCID: PMC3670294 DOI: 10.4161/jkst.20006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STAT transcription factors play a critical role in mediating the effects of cytokines on myeloid cells. As STAT target genes control key processes such as survival, proliferation and self-renewal, it is not surprising that constitutive activation of STATs, particularly STAT3 and STAT5, are common events in many myeloid tumors. STATs are activated both by mutant tyrosine kinases as well as other pathogenic events, and continued activation of STATs is common in the setting of resistance to kinase inhibitors. Thus, the targeting of STATs, alone or in combination with other drugs, will likely have increasing importance for cancer therapy.
Collapse
Affiliation(s)
- Michal Bar-Natan
- Department of Medical Oncology; Dana-Farber Cancer Institute; and Departments of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston, MA USA
| | | | | | | |
Collapse
|
19
|
Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34:219-37. [PMID: 24745671 DOI: 10.1016/j.iac.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors discuss common gain-of-function mutations in the stem cell factor receptor KIT found in mast cell proliferation disorders and summarize the current understanding of the molecular mechanisms by which these transforming mutations may affect KIT structure and function leading to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of mastocytosis and other hyperproliferative diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided.
Collapse
|
20
|
Haenisch B, Nöthen MM, Molderings GJ. Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics. Immunology 2012; 137:197-205. [PMID: 22957768 DOI: 10.1111/j.1365-2567.2012.03627.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite increasing understanding of its pathophysiology, the aetiology of systemic mast cell activation disease (MCAD) remains largely unknown. Research has shown that somatic mutations in kinases are necessary for the establishment of a clonal mast cell population, in particular mutations in the tyrosine kinase Kit and in enzymes and receptors with crucial involvement in the regulation of mast cell activity. However, other, as yet undetermined, abnormalities are necessary for the manifestation of clinical disease. The present article reviews molecular genetic research into the identification of disease-associated genes and their mutational alterations. The authors also present novel data on familial systemic MCAD and review the associated literature. Finally, the importance of understanding the molecular basis of inherited mutations in terms of diagnostics and therapy is emphasized.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Human Genetics, University Hospital of Bonn, Germany
| | | | | |
Collapse
|
21
|
Abstract
INTRODUCTION Mutated forms of the receptor tyrosine kinase c-KIT are "drivers" in several cancers and are attractive targets for therapy. While benefits have been obtained from use of inhibitors of KIT kinase activity such as imatinib, especially in gastrointestinal stromal tumours (GIST), primary resistance occurs with certain oncogenic mutations. Furthermore, resistance frequently develops due to secondary mutations. Approaches to addressing both of these issues as well as combination therapies to optimise use of KIT kinase inhibitors are discussed. AREAS COVERED This review covers the occurrence of oncogenic KIT mutations in different cancers and the molecular basis of their action. The action of KIT kinase inhibitors, especially imatinib, sunitinib, dasatinib and PKC412, on different primary and secondary mutants is discussed. Outcomes of clinical trials in GIST, acute myeloid leukaemia (AML), systemic mastocytosis and melanoma and their implications for future directions are considered. EXPERT OPINION Analysis of KIT mutations in individual patients is an essential prerequisite to the use of kinase inhibitors for therapy, and monitoring for development of secondary mutations that confer drug resistance is necessary. However, it is unlikely that KIT inhibitors alone can lead to cure. KIT mutations alone do not seem to be sufficient for transformation; thus identification and co-targeting of synergistic oncogenic pathways should lead to improved outcomes.
Collapse
|
22
|
Lee MMK, Chui RKS, Tam IYS, Lau AHY, Wong YH. CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Gα(14/16) signaling and IL-6 release. THE JOURNAL OF IMMUNOLOGY 2012; 189:5266-76. [PMID: 23125416 DOI: 10.4049/jimmunol.1103359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of CCR1 contribute to hypersensitivity reactions and atherosclerotic lesions, possibly via the regulation of the transcription factor STAT3. CCR1 was demonstrated to use pertussis toxin-insensitive Gα(14/16) to stimulate phospholipase Cβ and NF-κB, whereas both Gα(14) and Gα(16) are also capable of activating STAT3. The coexpression of CCR1 and Gα(14/16) in human THP-1 macrophage-like cells suggests that CCR1 may use Gα(14/16) to induce STAT3 activation. In this study, we demonstrated that a CCR1 agonist, leukotactin-1 (CCL15), could indeed stimulate STAT3 Tyr(705) and Ser(727) phosphorylation via pertussis toxin-insensitive G proteins in PMA-differentiated THP-1 cells, human erythroleukemia cells, and HEK293 cells overexpressing CCR1 and Gα(14/16). The STAT3 Tyr(705) and Ser(727) phosphorylations were independent of each other and temporally distinct. Subcellular fractionation and confocal microscopy illustrated that Tyr(705)-phosphorylated STAT3 translocated to the nucleus, whereas Ser(727)-phosphorylated STAT3 was retained in the cytosol after CCR1/Gα(14) activation. CCL15 was capable of inducing IL-6 and IL-8 (CXCL8) production in both THP-1 macrophage-like cells and HEK293 cells overexpressing CCR1 and Gα(14/16). Neutralizing Ab to IL-6 inhibited CCL15-mediated STAT3 Tyr(705) phosphorylation, whereas inhibition of STAT3 activity abolished CCL15-activated CXCL8 release. The ability of CCR1 to signal through Gα(14/16) provides a linkage for CCL15 to regulate IL-6/STAT3-signaling cascades, leading to expression of CXCL8, a cytokine that is involved in inflammation and the rupture of atherosclerotic plaque.
Collapse
Affiliation(s)
- Maggie M K Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
23
|
Kim SY, Kang JJ, Lee HH, Kang JJ, Kim B, Kim CG, Park TK, Kang H. Mechanism of activation of human c-KIT kinase by internal tandem duplications of the juxtamembrane domain and point mutations at aspartic acid 816. Biochem Biophys Res Commun 2011; 410:224-8. [DOI: 10.1016/j.bbrc.2011.05.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
|
24
|
Ustun C, DeRemer DL, Akin C. Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 2011; 35:1143-52. [PMID: 21641642 DOI: 10.1016/j.leukres.2011.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/25/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Systemic mastocytosis (SM) is a heterogeneous disease, vast majority of these patients have a gain of function mutation in the gene encoding the tyrosine kinase KIT (KIT(D816V)). A small subset of SM patients with KIT(D816V) mutation require cytoreductive therapy. In these patients, tyrosine kinase inhibitors (TKIs) have been actively investigated over the last decade because of codon 816 KIT mutations causing constitutive activation of tyrosine kinase activity of the molecule. The main question has been whether the success story with imatinib in chronic myeloid leukemia (CML), another disease associated with a constitutively active tyrosine kinase, could be mimicked in mastocytosis. However, the results from various TKIs in SM with KIT(D816V) mutation have been disappointing to date. Only a few of the TKIs sufficiently block KIT(D816V) activity and have shown promising clinical results. The data from these studies indicate that, apart from KIT(D816V), other kinase targets and target pathways may play a role in disease evolution and progression, especially in patients with SM with an associated clonal hematological non-mast cell lineage disease (SM-AHNMD). Imatinib is effective in patients with increased mast cells and eosinophils associated with FIP1L1/PDGFRA+ (e.g., myeloid neoplasm with eosinophilia and rearrangement of PDGFRA) or rare patients with SM associated with KIT mutations outside of exon 17. This review will focus on the KIT receptor, KIT mutations, and the effects of the mutations in SM. The preclinical and clinical activities of FDA approved TKIs (for CML) as well as novel TKIs in SM will be evaluated.
Collapse
Affiliation(s)
- Celalettin Ustun
- Division of Hematology Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
25
|
Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2010; 286:5956-66. [PMID: 21135090 DOI: 10.1074/jbc.m110.182642] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the c-kit gene occur in the vast majority of mastocytosis. In adult patients as well as in the cell line derived from mast cell neoplasms, the mutations occur almost exclusively at amino acid 816 within the kinase domain of KIT. Among the downstream effectors of KIT signaling, STAT3 and STAT5 have been shown to be critical for cell proliferation elicited by the KIT-Asp(816) mutant protein. However, little is known about the mechanisms of activation of STAT proteins. In this study, we identify and clarify the contribution of various STAT kinases in two widely used neoplastic mast cell lines, P815 and HMC-1. We show that STAT1, -3, and -5 proteins are activated downstream of the KIT-Asp(816) mutant. All three STAT proteins are located in the nucleus and are phosphorylated on serine residues. KIT-Asp(816) mutant can directly phosphorylate STATs on the activation-specific tyrosine residues in vitro. However, within cells, SRC family kinases and JAKs diversely contribute to tyrosine phosphorylation of STAT proteins downstream of the KIT mutant. Using a panel of inhibitors, we provide evidence for the implication or exclusion of serine/threonine kinases as responsible for serine phosphorylation of STAT1, -3, and -5 in the two cell lines. Finally, we show that only STAT5 is transcriptionally active in these cells. This suggests that the contribution of STAT1 and STAT3 downstream of KIT mutant is independent of their transcription factor function.
Collapse
Affiliation(s)
- Amandine Chaix
- INSERM, U891, Centre de Recherche en Cancérologie de Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Cheng L, Roth LM, Zhang S, Wang M, Morton MJ, Zheng W, Abdul Karim FW, Montironi R, Lopez-Beltran A. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer 2010; 117:2096-103. [DOI: 10.1002/cncr.25794] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/09/2010] [Accepted: 10/15/2010] [Indexed: 01/04/2023]
|
27
|
Zadjali F, Pike ACW, Vesterlund M, Sun J, Wu C, Li SSC, Rönnstrand L, Knapp S, Bullock AN, Flores-Morales A. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem 2010; 286:480-90. [PMID: 21030588 DOI: 10.1074/jbc.m110.173526] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor of cytokine signaling 6 (SOCS6) is a member of the SOCS family of E3 ubiquitin ligases that can interact with c-KIT and suppress c-KIT-dependent pathways. Here, we analyzed the molecular mechanisms that determine SOCS6 substrate recognition. Our results show that the SH2 domain of SOCS6 is essential for its interaction with c-KIT pY568. The 1.45-Å crystal structure of SOCS6 SH2 domain bound to the c-KIT substrate peptide (c-KIT residues 564-574) revealed a highly complementary and specific interface giving rise to a high affinity interaction (K(d) = 0.3 μm). Interestingly, the SH2 binding pocket extends to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6 as a feedback inhibitor of SCF-dependent signaling and provides molecular data to account for target specificity within the SOCS family of ubiquitin ligases.
Collapse
Affiliation(s)
- Fahad Zadjali
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Acute myelogenous leukemia (AML) is a difficult disease to treat. Novel treatment strategies, including molecular targeted therapy, are being explored. The c-kit receptor represents a potential therapeutic target for AML. The receptor is expressed on more than 10% of blasts in 64% of patients with de novo AML and 95% of those with relapsed AML. It mediates proliferation and anti-apoptotic effects in AML. This review discusses the biology of c-kit in normal and malignant hematopoiesis and the recent clinical trials targeting c-kit in AML.
Collapse
|
29
|
New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010; 116:2429-37. [PMID: 20581310 DOI: 10.1182/blood-2010-04-279752] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of alterations in genes encoding receptor tyrosine kinase (RTK), namely FLT3, c-KIT, platelet-derived growth factor (PDGF) receptors, fibroblast growth factor (FGF) receptors, and the anaplastic large cell lymphoma kinase (ALK), have been found in hematopoietic malignancies. They have drawn much attention after the development of tyrosine kinase inhibitors. RTK gene alterations include point mutations and gene fusions that result from chromosomal rearrangements. In both cases, they activate the kinase domain in the absence of ligand, producing a permanent signal for cell proliferation. Recently, this simple model has been refined. First, by contrast to wild-type RTK, many mutated RTK do not seem to signal from the plasma membrane, but from various locations inside the cell. Second, their signal transduction properties are altered: the pathways that are crucial for cell transformation, such as signal transducer and activator of transcription (STAT) factors, do not necessarily contribute to the physiologic functions of these receptors. Finally, different mechanisms prevent the termination of the signal, which normally occurs through receptor ubiquitination and degradation. Several mutations inactivating CBL, a key RTK E3 ubiquitin ligase, have been recently described. In this review, we discuss the possible links among RTK trafficking, signaling, and degradation in leukemic cells.
Collapse
|
30
|
Malik AI, Storey KB. Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis. J Exp Biol 2009; 212:2595-603. [DOI: 10.1242/jeb.030627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In its native environment the African clawed frog, Xenopus laevis,can experience seasonally arid conditions that impose dehydration stress. Activation of intracellular signal transduction cascades can mediate and coordinate biochemical responses to ameliorate dehydration stress. This study examines the extracellular signal-regulated kinase (ERK) signaling cascade,analyzing responses of both upstream and downstream components in six tissues of X. laevis experiencing medium and high levels of dehydration,16.6±1.59 and 28.0±1.6% of total body water lost, respectively. Immunoblotting was used to assess the three tiers in this mitogen-activated protein kinase (MAPK) cascade: the initiating MAPK kinase kinases (c-Raf,MEKK), the MAPK kinase (MEK1/2), and finally the MAPK (ERK1/2). The amount of active phosphorylated c-RafSer338 rose by 2- to 2.5-fold under high dehydration in muscle, lung and skin whereas MEKK protein levels rose in these organs and also increased 4-fold in liver. As a result, phosphorylated active MEK1/2Ser217/221 increased significantly by 2- to 6-fold during dehydration which, in turn, led to 2- to 6-fold increases in phospho-ERKThr202/Tyr204 content in all tissues except skin. Given this clear demonstration of ERK cascade activation, two downstream targets of ERK2 were then evaluated. The amount of phosphorylated active transcription factor, STAT3Ser727 and p90 ribosomal S6 kinase(RSKSer380) increased particularly in muscle, lung and kidney. Furthermore, RSK activation was correlated with a 5- to 8-fold increase in phosphorylation of its target, S6 ribosomal protein. Overall, the results show a strong conserved activation of the ERK cascade in X. laevis tissues in response to dehydration.
Collapse
Affiliation(s)
- Amal Idris Malik
- Institute of Biochemistry and Department of Biology, Carleton University,1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University,1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
31
|
Mori S, Cortes J, Kantarjian H, Zhang W, Andreef M, Ravandi F. Potential role of sorafenib in the treatment of acute myeloid leukemia. Leuk Lymphoma 2009; 49:2246-55. [PMID: 19052971 DOI: 10.1080/10428190802510349] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of aberrant cellular pathways and dysfunctional molecules important in neoplastic transformation has begun to provide us with a number of targets for drug development. It is likely that many of these agents will be incorporated into our existing treatment strategies that include cytotoxic agents. Sorafenib, a multi-kinase inhibitor has been approved in the United States for the treatment of renal cell carcinoma as well as hepatocellular cancer. Its potential role in hematological malignancies, particularly acute myeloid leukemia (AML) is under evaluation. Here we describe the biological pathways in AML that are the potential targets of sorafenib action and discuss the early clinical data with the agent in solid tumors and AML.
Collapse
Affiliation(s)
- Shahram Mori
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Translational research in complex etiopathogenesis and therapy of hematological malignancies: the specific role of tyrosine kinases signaling and inhibition. Med Oncol 2008; 26:437-44. [PMID: 19051068 DOI: 10.1007/s12032-008-9143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
During the recent genomics and proteomics era, high-resolution, genome-wide approaches have revealed numerous promising new drug targets and disease biomarkers, accelerating and emphasizing the need for targeted molecular therapy compounds. Significant progress has been made in understanding the pathogenesis of hematological malignancies there by, revealing new drug targets. Introduction of multiple new technologies in cancer research have significantly improved the drug discovery process, leading to key success in targeted cancer therapeutics, including tyrosine kinase inhibitors. The studies of receptor tyrosine kinases and their role in malignant transformation are already translated from the preclinical level (cell-based and animal models) to clinical studies, enabling the more complete understanding of tumor cell biology and improvement of tumor therapy.
Collapse
|
33
|
KIT activation in uterine cervix adenosquamous carcinomas by KIT/SCF autocrine/paracrine stimulation loops. Gynecol Oncol 2008; 111:350-5. [DOI: 10.1016/j.ygyno.2008.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 06/26/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
|
34
|
Abstract
In acute myeloid leukemia (AML), aberrant signal transduction enhances the survival and proliferation of hematopoietic progenitor cells. Activation of signal transduction in AML may occur through a variety of genetic alterations affecting different signaling molecules, such as the FLT3 and KIT receptor tyrosine kinases (RTKs) and members of the RAS family of guanine nucleotide-binding proteins. These mutant signaling proteins are attractive therapeutic targets; however, developing targeted therapies for each genotypic variant and determining the relationships between different genotypes and critical functional dependencies of the leukemic cells remain major challenges. As the large number of mutant signaling proteins that have been identified in AML are likely to reflect activation of a more limited number of downstream effector pathways, such as the RAF/MEK/ERK and PI3K/AKT cascades, targeting these unifying pathways may represent a more broadly applicable therapeutic strategy. Furthermore, integrative genomic studies combining DNA sequencing, DNA copy number analysis, transcriptional profiling, and functional genetic approaches hold great promise for identifying additional signaling abnormalities in AML that are relevant to leukemogenesis and can be exploited therapeutically. Eventually, it may become possible to use pathogenesis-oriented combinations of signal transduction inhibitors to improve the cure rate in AML patients.
Collapse
Affiliation(s)
- Claudia Scholl
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
Abstract
Mast cells are the progeny of hematopoietic stem cells, and murine mast cells are usually divided into two distinct populations, mucosal mast cells (MMCs) and connective tissue-type mast cells (CTMCs). We previously reported that CTMCs expressed signal transducer and activator of transcription (Stat) 4, but MMCs did not. Stat4 is also expressed in T cells and plays important roles in their homeostasis. In the present study, we show that Stat4 is involved in the homeostasis of CTMCs. The number of skin CTMCs increased in Stat4-deficient Balb/c mice, but that of gastric MMCs did not, when compared to those in control Balb/c(+/+) mice. The comparison between cultured Stat4-deficient CTMCs and cultured Balb/c(+/+) CTMCs revealed that cell cycle progression and cyclin D3 expression in the cultured Stat4-deficient CTMCs were enhanced in a Stat3 activation-dependent manner. This phenotype was explained by upregulation of KitL-induced interleukin (IL)-6 acting in an autocrine manner in cultured Stat4-deficient CTMCs. These results show that Stat4 suppresses the proliferation of CTMCs by controlling IL-6 via an autocrine mechanism.
Collapse
|
36
|
Palmisano M, Grafone T, Renzulli M, Ottaviani E, Testoni N, Paolini S, Papayannidis C, Baccarani M, Martinelli G. Molecular and chromosomal alterations: new therapies for relapsed acute myeloid leukemia. ACTA ACUST UNITED AC 2008; 13:1-12. [PMID: 18534059 DOI: 10.1179/102453308x315753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acute myeloid leukemia (AML) remains the most common form of leukemia and the most common cause of leukemia death. Although conventional chemotherapy can cure between 25 and 45% of AML patients, the majority of patients die after relapse or of complications associated with treatment. Thus, more specific and less toxic treatments for AML patients are needed, especially for elderly patients. An indispensable prerequisite to investigate tailored approaches for AML is the recent progress in the understanding the molecular features that distinguish leukemia progenitors from normal hematopoietic counterparts and the identification of a variety of dysregulated molecular pathways. This in turn would allow the identification of tumor-specific characteristics that provide a rational basis for the development of more tailored, and hence potentially more effective and less toxic, therapeutic approaches. In this review, we describe some of the signaling pathways that are aberrantly regulated in AML, with a specific focus on their pathogenetic and therapeutic significance, and we examine some recent therapies directed against these targets, used in clinical trial for relapsed patients or unfit for conventional chemotherapy.
Collapse
Affiliation(s)
- Michela Palmisano
- Institute of Hematology and Medical Oncology L. e A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matsumura I, Mizuki M, Kanakura Y. Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies. Cancer Sci 2008; 99:479-85. [PMID: 18177485 PMCID: PMC11158847 DOI: 10.1111/j.1349-7006.2007.00717.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/25/2007] [Indexed: 11/30/2022] Open
Abstract
Growth, survival and differentiation of hematopoietic cells are regulated by the interactions between hematopoietic growth factors and their receptors. The defect in these interactions results in a failure of hematopoiesis, while aberrantly elevated and/or sustained activation of these signals cause hematologic malignancies. Among them, constitutively activating mutations of the receptor tyrosine kinases (RTKs), such as c-Kit, platelet-derived growth factor receptor (PDGFR) and FLT3, are often involved in the pathogenesis of various types of hematologic malignancies. Constitutive activation of RTKs is provoked by several mechanisms including chromosomal translocations and various mutations involving their regulatory regions. Chromosomal translocations commonly generate chimeric proteins consisting of the cytoplasmic domain of RTKs and the dimerization or multimerization motif of the fusion partner, resulting in the constitutive dimerization of RTKs. On the other hand, missense, insertion or deletion mutations in the regulatory regions, such as juxtamembrane domain, activation loop, and extracellular domain, also cause constitutive activation of RTKs mainly by preventing the auto-inhibitory regulation. Oncogenic RTKs activate downstream signaling molecules such as Ras/MAPK, PI3-K/Akt/mTOR, and STATs as well as ligand-activated wild type RTKs. However, their signals are quantitatively and qualitatively different from wild type RTKs. Based on these findings, several agents that target oncogenic RTKs or their downstream molecules have been developed: imatinib and FLT3 inhibitors for RTKs themselves, farnesyltransferase inhibitors, mTOR inhibitors and MEK inhibitors for the downstream signaling molecules. As promising results have been obtained in several clinical trials using these agents, the establishment of these molecular targeted agents is expected.
Collapse
Affiliation(s)
- Itaru Matsumura
- Department of Hematology/Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
38
|
Munugalavadla V, Sims EC, Chan RJ, Lenz SD, Kapur R. Requirement for p85alpha regulatory subunit of class IA PI3K in myeloproliferative disease driven by an activation loop mutant of KIT. Exp Hematol 2008; 36:301-8. [PMID: 18179858 DOI: 10.1016/j.exphem.2007.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Oncogenic activation loop mutations of KIT are observed in acute myeloid leukemia (AML) and in myeloproliferative disorders (MPD); however, the signaling pathways that contribute to transformation via these mutations in vivo are not known. Previous studies have demonstrated hyperactivation of p85alpha regulatory subunit of class IA phosphatidylinositol-3-kinase (PI3K) in cell lines expressing the activation loop mutant of KIT (KITD816V [human] and KITD814V [murine]). Although p85alpha is hyperphosphorylated and constitutively bound to KITD814V in cell-line models; the physiologic significance of this biochemical phenomenon in KITD814V-induced transformation is not known. MATERIALS AND METHODS Here, we describe the generation of a new mouse model to study KITD814V-induced transformation in myeloid cells as opposed to previously described models that primarily result in the generation of disease resembling acute lymphocytic leukemia. RESULTS Our results show that transplantation of KITD814V expressing bone marrow cells from C57/BL6 strain of mice into syngeneic recipients results in a fatal MPD. Importantly, in this model, transplantation of KITD814V expressing p85alpha-deficient bone marrow cells rescues the MPD phenotype. CONCLUSIONS Our results describe the generation of a new murine transplant model to study KITD814V-induced transformation and identify p85alpha as potential therapeutic target for the treatment of KITD814V-bearing diseases.
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
39
|
Voisset E, Lopez S, Dubreuil P, De Sepulveda P. The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood 2007; 110:2593-9. [PMID: 17595334 DOI: 10.1182/blood-2007-02-076471] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KIT is a tyrosine kinase receptor that is aberrantly activated in several neoplasms. In human pathologies, the most frequent mutation of KIT occurs at codon 816. The resulting KIT mutant protein is activated in the absence of ligand and is resistant to the clinically available inhibitors of KIT. In this report, we provide evidence for an essential function of the cytoplasmic tyrosine kinase FES downstream of KITD816V. FES is phosphorylated on tyrosine residues in cells that carry KITD816V mutation, and this phosphorylation is KIT dependent. Reduction of FES expression using RNA interference results in decreased cell proliferation in human or murine cells harboring KITD816V or the homologous mouse mutation KITD814Y. The reduced cell growth can be rescued using another cytokine (granulocyte-macrophage colony-stimulating factor [GM-CSF]) and is not observed when the closely related fer gene is targeted. Finally, signaling downstream of KITD816V is altered in cells lacking FES expression. This study shows a major function of FES downstream of activated KIT receptor and thereby points to FES as a novel target in KIT-related pathologies.
Collapse
Affiliation(s)
- Edwige Voisset
- Institut National de la Santé et de la Rècherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 599, Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Hématopoïèse Moléculaire et Fonctionnelle, Marseille, France
| | | | | | | |
Collapse
|
40
|
Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R. Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 2007; 110:1612-20. [PMID: 17483298 PMCID: PMC1975845 DOI: 10.1182/blood-2006-10-053058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 04/28/2007] [Indexed: 12/26/2022] Open
Abstract
Oncogenic activation loop KIT mutations are observed in acute myeloid leukemia (AML) and systemic mastocytosis (SM); however, unlike the KIT juxtamembrane mutants, the activation loop mutants are insensitive to imatinib mesylate. Furthermore, as prior studies primarily used heterologous cell lines, the molecular mechanism(s) underlying oncogenic KIT-induced transformation in primary cells is poorly understood. We demonstrate that expression of KITD814V in primary hematopoietic stem/progenitor cells (HSC/Ps) and mast cell progenitors (MCps) induces constitutive KIT autophosphorylation, supports ligand-independent hyperproliferation, and promotes promiscuous cooperation with multiple cytokines. Genetic disruption of p85 alpha, the regulatory subunit of class IA lipid kinase phosphoinositol-3-kinase (PI3K), but not of p85 beta, or genetic disruption of the hematopoietic cell-specific Rho GTPase, Rac2, normalizes KITD814V-induced ligand-independent hyperproliferation. Additionally, deficiency of p85 alpha or Rac2 corrects the promiscuous hyperproliferation observed in response to multiple cytokines in both KITD814V-expressing HSC/Ps and MCps. Treatment of KITD814V-expressing HSC/Ps with a Rac inhibitor (NC23766) or with rapamycin showed a dose-dependent suppression in ligand-independent growth. Taken together, our results identify p85 alpha and Rac2 as potential novel therapeutic targets for the treatment of KITD814V-bearing AML and SM.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Benzamides
- Cell Proliferation
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cytokines/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/pathology
- Imatinib Mesylate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mastocytosis, Systemic/drug therapy
- Mastocytosis, Systemic/enzymology
- Mastocytosis, Systemic/genetics
- Mastocytosis, Systemic/pathology
- Mice
- Mice, Knockout
- Mutation, Missense
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Subunits/genetics
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Pyrimidines/pharmacology
- Sirolimus/pharmacology
- rac GTP-Binding Proteins/antagonists & inhibitors
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
41
|
Doepfner KT, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol 2007; 63:215-30. [PMID: 17658267 DOI: 10.1016/j.critrevonc.2007.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 05/11/2007] [Accepted: 05/23/2007] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a quickly progressing, heterogeneous clonal disorder of hematopoietic progenitor cells. Significant progress in understanding the pathogenesis of AML has been achieved in the past few years. Two major types of genetic events are thought to give rise to leukemic transformation: alterations in the activity of transcription factors controlling hematopoietic differentiation and activation of components of receptor tyrosine kinase (RTK) signaling pathways. This has led to the development of promising new therapeutic strategies for the disease. In this article, we will discuss recent developments in the field of molecularly targeted therapies for AML, which involve RTKs such as FMS-like tyrosine kinase 3 (Flt3), c-Kit and signal transduction via the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Initial results imply that targeting RTKs is a very promising approach for AML and that other receptors, such as the insulin-like growth factor receptor (IGF-IR), could also represent new targets in the future.
Collapse
Affiliation(s)
- Kathrin T Doepfner
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
42
|
Zhu MJ, Ou WB, Fletcher CDM, Cohen PS, Demetri GD, Fletcher JA. KIT oncoprotein interactions in gastrointestinal stromal tumors: therapeutic relevance. Oncogene 2007; 26:6386-95. [PMID: 17452978 DOI: 10.1038/sj.onc.1210464] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most gastrointestinal stromal tumors (GISTs) express oncogenic and constitutively active forms of the KIT or platelet-derived growth factor receptor alpha (PDGFRA) receptor tyrosine kinase proteins, and these kinase oncoproteins serve as targets for effective therapies. Given that mutant KIT oncoproteins serve crucial transforming roles in GISTs, we evaluated interactions with the KIT oncoproteins and determined signaling pathways that are dependent on KIT oncogenic activation in GISTs. Tyrosine-phosphorylated KIT oncoproteins interacted with PDGFRA, PDGFRB, phosphatidylinositol 3-kinase (PI3-K) and PKCtheta in GIST cells, and these interactions were abolished by KIT inhibition with imatinib or PKC412 or KIT RNAi. Notably, tyrosine-phosphorylated PDGFRA was prominent in frozen GIST tumors expressing KIT oncoproteins, suggesting that KIT-mediated PDGFRA phosphorylation is an efficient and biologically consequential mechanism in GISTs. Activated signaling intermediates were identified by immunoaffinity purification of tyrosine-phosphorylated proteins in GIST cells before and after treatment with KIT inhibitors, and these analyses show that GRB2, SHC, CBL and MAPK activation are largely KIT dependent in GISTs, whereas PI3-K, STAT1 and STAT3 activation are partially KIT dependent. In addition, we found that phosphorylation of several tyrosine kinase proteins - including JAK1 and EPHA4 - did not depend on KIT activation. Likewise, paxillin activation was independent of the KIT oncogenic signal. These studies identify signaling pathways that can provide both KIT-dependent and KIT-independent therapeutic synergies in GIST, and thereby highlight clinical strategies that might consolidate GIST therapeutic response to KIT/PDGFRA inhibition.
Collapse
Affiliation(s)
- M-J Zhu
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 2007; 15:755-78. [PMID: 17253940 DOI: 10.1089/scd.2006.15.755] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi, India-110054
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kosmider O, Denis N, Dubreuil P, Moreau-Gachelin F. Semaxinib (SU5416) as a therapeutic agent targeting oncogenic Kit mutants resistant to imatinib mesylate. Oncogene 2006; 26:3904-8. [PMID: 17173066 DOI: 10.1038/sj.onc.1210159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activating mutations in the Kit receptor are frequently observed in various malignancies, pointing Kit as a molecule of interest for drug inhibition. When mutated on Asp 816 (corresponding to Asp 814 in the mouse), as preferentially found in human mastocytosis and acute myeloid leukemia, Kit became non-sensitive to imatinib mesylate (Gleevec). Erythroleukemic cells isolated from Spi-1/PU.1 transgenic mice express Kit mutated at codon 814 (Kit(D814Y) or Kit(D814V)) or codon 818 (Kit(D818Y)). Using these cells in vitro, we demonstrate that the tyrosine kinase inhibitor SU5416 (Semaxinib) induces growth arrest and apoptosis independent of the mutation type by inhibiting the functions of Kit, including Kit autophosphorylation and activation of Akt, Erk1/Erk2 and Stat3 downstream signaling pathways. These findings indicate that SU5416 may be a promising tool to kill cancer cells driven by Kit oncogenic mutations that are resistant to treatment with imatinib mesylate.
Collapse
Affiliation(s)
- O Kosmider
- Inserm U528, Institut Curie, Paris cedex 05, France
| | | | | | | |
Collapse
|
45
|
Wang B, Tsukada J, Higashi T, Mizobe T, Matsuura A, Mouri F, Sawamukai N, Ra C, Tanaka Y. Growth suppression of human mast cells expressing constitutively active c-kit receptors by JNK inhibitor SP600125. Genes Cells 2006; 11:983-92. [PMID: 16923120 DOI: 10.1111/j.1365-2443.2006.01005.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of c-jun N-terminal kinase (JNK) through c-kit-mediated phosphatidylinositol 3 (PI3) and Src kinase pathways plays an important role in cell proliferation and survival in mast cells. Gain-of-function mutations in c-kit are found in several human neoplasms. Constitutive activation of c-kit has been observed in human mastocytosis and gastrointestinal stromal tumor. In the present study, we demonstrate that an anthrapyrazole SP600125, a reversible ATP-competitive inhibitor of JNK inhibits proliferation of human HMC-1 showed constitutive activation of JNK/c-Jun, and the inhibitory effect of SP600125 on cell proliferation was associated with cell cycle arrest at the G1 phase and apoptosis accompanied by the cleavage of caspase-3 and PARP. Caspase-3 inhibitor Z-DEVD-FMK almost completely inhibited SP600125-induced apoptosis of HMC-1 cells. In contrast, caspase-9 inhibitor Z-LEHD-FMK failed to block SP600125-induced apoptosis. Following Sp600125 treatment, down-regulation of cyclin D3 protein expression, but not p53 was also observed. Thus, JNK/c-Jun is essential for proliferation and survival of HMC-1 cells. The results obtained from the present study suggest the possibility that JNK/c-Jun may be a therapeutic target in diseases associated with mutations in the catalytic domain of c-kit.
Collapse
Affiliation(s)
- Bin Wang
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Corbacioglu S, Kilic M, Westhoff MA, Reinhardt D, Fulda S, Debatin KM. Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 2006; 108:3504-13. [PMID: 16840725 DOI: 10.1182/blood-2006-05-021691] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractActivating mutations of c-KIT lead to ligand-independent growth. Internal tandem duplications (ITDs) of exon 11, which encodes the juxtamembrane domain (JMD), are constitutively activating mutations found in 7% of gastrointestinal stromal tumors (GISTs) but have not been described in childhood acute myeloid leukemia (AML). DNA and cDNA from 60 children with AML were screened by polymerase chain reaction (PCR) for mutations of the JMD. A complex ITD (kit cITD) involving exon 11 and exon 12 was identified with a relative frequency of 7% (4/60). The human kit cITDs were inserted into the murine c-Kit backbone and expressed in Ba/F3 cells. KIT cITD induced factorindependent growth and apoptosis resistance, and exhibited constitutive autophosphorylation. KIT cITD constitutively activated the PI3K/AKT pathway and phosphorylated STAT1, STAT3, STAT5, and SHP-2. Imatinib (IM) or rapamycin (Rap) led to complete inhibition of growth, with IC50 values at nanomolar levels. IM and Rap synergistically inhibited growth and surmounted KIT cITD-induced apoptosis resistance. IM but not LY294002 inhibited phosphorylation of STAT3 and STAT5, suggesting aberrant cross talk between PI3K- and STAT-activating pathways. The findings presented may have immediate therapeutic impact for a subgroup of childhood AML-expressing c-KIT mutations.
Collapse
Affiliation(s)
- Selim Corbacioglu
- Department of Pediatrics, University of Ulm, Eythstr 24, D-89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Quintas-Cardama A, Aribi A, Cortes J, Giles FJ, Kantarjian H, Verstovsek S. Novel approaches in the treatment of systemic mastocytosis. Cancer 2006; 107:1429-39. [PMID: 16948123 DOI: 10.1002/cncr.22187] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the absence of curative options, therapy for aggressive forms of systemic mastocytosis (SM) has relied in the use of cytoreductive agents, mainly interferon-alpha (IFN-alpha) and cladribine. However, responses are transient and only occur in a subset of patients. Gain-of-function mutations at codon 816 of the KIT protooncogene lead to constitutively active Kit receptor molecules, which are central to the pathogenesis of SM. Recent advances in the understanding of the molecular underpinnings of SM have led to the development of small molecules targeting mutant Kit tyrosine kinase isoforms that significantly have widened the range of therapeutic options for patients with SM. Some of these promising agents, such as dasatinib, AMN107, and PKC412, currently are under investigation in clinical trials whereas, others are at different stages of preclinical development. In addition, monoclonal antibodies directed to neoplastic mast cell-restricted surface antigens constitute a viable option for the treatment of SM that warrants further investigation.
Collapse
Affiliation(s)
- Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
48
|
Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW, Kaufmann SH. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20:971-8. [PMID: 16598306 DOI: 10.1038/sj.leu.2404206] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are phosphorylated and activated by Janus kinases (JAKs). Recently, several groups identified a recurrent somatic point mutation constitutively activating the hematopoietic growth factor receptor-associated JAK2 tyrosine kinase in diverse chronic myeloid disorders - most commonly classic myeloproliferative disorders (MPD), especially polycythemia vera. We hypothesized that the JAK2 V617F mutation might also be present in samples from patients with acute myeloid leukemia (AML), especially erythroleukemia (AML-M6) or megakaryoblastic leukemia (AML-M7), where it might mimic erythropoietin or thrombopoietin signaling. First, we documented STAT3 activation by immunoblotting in AML-M6 and other AML subtypes. Immunoperoxidase staining confirmed phosphorylated STAT3 in malignant myeloblasts (21% of cases, including all AML-M3 samples tested). We then analyzed genomic DNA from 162 AML, 30 B-cell lymphoma, and 10 chronic lymphocytic leukemia (CLL) samples for JAK2 mutations, and assayed a subset for SOCS1 and FLT3 mutations. Janus kinase2 V617F was present in 13/162 AML samples (8%): 10/13 transformed MPD, and three apparent de novo AML (one of 12 AML-M6, one of 24 AML-M7, and one AML-M2 - all mixed clonality). FLT3 mutations were present in 5/32 (16%), while SOCS1 mutations were totally absent. Lymphoproliferative disorder samples were both JAK2 and SOCS1 wild type. Thus, while JAK2 V617F is uncommon in de novo AML and probably does not occur in lymphoid malignancy, unexplained STAT3 activation is common in AML. Janus kinase2 extrinsic regulators and other proteins in the JAK-STAT pathway should be interrogated to explain frequent STAT activation in AML.
Collapse
Affiliation(s)
- D P Steensma
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tefferi A, Gilliland G. Classification of chronic myeloid disorders: From Dameshek towards a semi-molecular system. Best Pract Res Clin Haematol 2006; 19:365-85. [PMID: 16781478 DOI: 10.1016/j.beha.2005.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematological malignancies are phenotypically organized into lymphoid and myeloid disorders, although such a distinction might not be precise from the standpoint of lineage clonality. In turn, myeloid malignancies are broadly categorized into either acute myeloid leukemia (AML) or chronic myeloid disorder (CMD), depending on the presence or absence, respectively, of AML-defining cytomorphologic and cytogenetic features. The CMD are traditionally classified by their morphologic appearances into discrete clinicopathologic entities based primarily on subjective technologies. It has now become evident that most CMD represent clonal stem cell processes where the primary oncogenic event has been characterized in certain instances; Bcr/Abl in chronic myeloid leukemia, FIP1L1-PDGFRA or c-kit(D816V) in systemic mastocytosis, rearrangements of PDGFRB in chronic eosinophilic leukemia, and rearrangements of FGFR1 in stem cell leukemia/lymphoma syndrome. In addition, Bcr/Abl-negative classic myeloproliferative disorders are characterized by recurrent JAK2(V617F) mutations, whereas other mutations affecting the RAS signaling pathway molecules have been associated with juvenile myelomonocytic leukemia. Such progress is paving the way for a transition from a histologic to a semi-molecular classification system that preserves conventional terminology, while incorporating new information on molecular pathogenesis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester 55905, USA.
| | | |
Collapse
|
50
|
Pan J, Quintás-Cardama A, Kantarjian HM, Akin C, Manshouri T, Lamb P, Cortes JE, Tefferi A, Giles FJ, Verstovsek S. EXEL-0862, a novel tyrosine kinase inhibitor, induces apoptosis in vitro and ex vivo in human mast cells expressing the KIT D816V mutation. Blood 2006; 109:315-22. [PMID: 16912224 DOI: 10.1182/blood-2006-04-013805] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gain-of-function mutations of the receptor tyrosine kinase KIT play a key role in the pathogenesis of systemic mastocytosis (SM), gastrointestinal stromal tumors (GISTs), and some cases of acute myeloid leukemia (AML). Whereas KIT juxtamembrane domain mutations seen in most patients with GIST are highly sensitive to imatinib, the kinase activation loop mutant D816V, frequently encountered in SM, hampers the binding ability of imatinib. We investigated the inhibitory activity of the novel tyrosine kinase inhibitor EXEL-0862 against 2 subclones of human mast cell line-1 (HMC-1)-HMC-1.1, harboring the juxtamembrane domain mutation V560G, and HMC-1.2, carrying V560G and the activation loop mutation D816V, found in more than 80% of patients with SM. EXEL-0862 inhibited the phosphorylation of KIT in a dose-dependent manner and decreased cell proliferation in both mast cell lines with higher activity against HMC-1.2 cells. The phosphorylation of KIT-dependent signal transducer and activator of transcription-3 (STAT3) and STAT5 was abrogated upon exposure to nanomolar concentrations of EXEL-0862. In addition, EXEL-0862 induced a time- and dose-dependent proapoptotic effect in both mast cell lines and caused a significant reduction in mast-cell content in bone marrow samples from patients with SM harboring D816V and from those without the D816V mutation. We conclude that EXEL-0862 is active against KIT activation loop mutants and is a promising candidate for the treatment of patients with SM and other KIT-driven malignancies harboring active site mutations.
Collapse
Affiliation(s)
- Jingxuan Pan
- The University of Texas M D Anderson Cancer Center, Unit 428, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|