1
|
Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf B Biointerfaces 2020; 190:110951. [DOI: 10.1016/j.colsurfb.2020.110951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
2
|
Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Kostanova EA, Biryukova MI, Sultimova NB, Konstantinova ML. Fibrin self-assembly is adapted to oxidation. Free Radic Biol Med 2016; 95:55-64. [PMID: 26969792 DOI: 10.1016/j.freeradbiomed.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Fibrinogen is extremely susceptible to attack by reactive oxygen species (ROS). Having been suffered an oxidative modification, the fibrinogen molecules, now with altered spatial structure and function of fibrin network, affect hemostasis differently. However, the potential effects of the oxidative stress on the early stages of the fibrin self-assembly process remain unexplored. To clarify the damaging influence of ROS on the knob 'A': hole 'a' and the D:D interactions, the both are operating on the early stages of the fibrin polymerization, we have used a novel approach based on exploration of FXIIIa-mediated self-assembly of the cross-linked fibrin oligomers dissolved in the moderately concentrated urea solutions. The oligomers were composed of monomeric desA fibrin molecules created by cleaving the fibrinopeptides A off the fibrinogen molecules with a thrombin-like enzyme, reptilase. According to the UV-absorbance and fluorescence measurements data, the employed low ozone/fibrinogen ratios have induced only a slight fibrinogen oxidative modification that was accompanied by modest chemical transformations of the aromatic amino acid residues of the protein. Else, a slight consumption of the accessible tyrosine residues has been observed due to intermolecular dityrosine cross-links formation. The set of experimental data gathered with the aid of electrophoresis, elastic light scattering and analytical centrifugation has clearly witnessed that the oxidation can serve as an effective promoter for the observed enhanced self-assembly of the covalently cross-linked oligomers. At urea concentration of 1.20M, the pristine and oxidized fibrin oligomers were found to comprise a heterogeneous set of the double-stranded protofibrils that are cross-linked only by γ-γ dimers and the fibers consisting on average of four strands that are additionally linked by α polymers. The amounts of the oxidized protofibrils and the fibers accumulated in the system were higher than those of the non-oxidized counterparts. Moreover, the γ and α polypeptide chains of the oxidized molecules were more readily crosslinked by the FXIIIa. Upon increasing the urea solution concentration to 4.20M, the cross-linked double-stranded desA fibrin protofibrils have dissociated into the single-stranded fibrin oligomers, whereas the fibers dissociated into both the double-stranded desA fibrin oligomers, the structural integrity of the latter being maintained by means of the intermolecular α polymers, and the single-stranded fibrin oligomers cross-linked only by γ-γ dimers. The data we have obtained in this study indicate that the FXIIIa-mediated process of assembling the cross-linked protofibrils and the fibers constructed from the oxidized monomeric fibrin molecules was facilitated due to the strengthening of D:D interactions. The findings infer that the enhanced longitudinal D:D interactions become more essential in the assembly of soluble protofibrils when the interactions knobs 'A': holes 'a' are injured by oxidation. The new experimental findings presented here could be of help for elucidating the essential adaptive molecular mechanisms capable of mitigating the detrimental action of ROS in the oxidatively damaged fibrin self-assemblage processes.
Collapse
Affiliation(s)
- Mark A Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia.
| | - Anna V Bychkova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Alexander N Shchegolikhin
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Vera B Leonova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Elizaveta A Kostanova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Marina I Biryukova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Natalia B Sultimova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| | - Marina L Konstantinova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., 119334 Moscow, Russia
| |
Collapse
|
3
|
Zhou J, Ding Q, Chen Y, Ouyang Q, Jiang L, Dai J, Lu Y, Wu X, Liang Q, Wang H, Wang X. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells Mol Dis 2015; 55:308-15. [PMID: 26460252 DOI: 10.1016/j.bcmd.2015.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2015] [Accepted: 06/10/2015] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Congenital dysfibrinogenemia (CD) is a rare qualitative disorder of fibrinogen (Fg) with heterogeneous clinical manifestations. We aimed to analyze clinical phenotype and molecular basis of 102 Chinese CD patients and to evaluate the application of thromboelastography (TEG). MATERIALS AND METHODS Clinical manifestations were recorded and quantified using the consensus ISTH bleeding assessment tool. Kaolin activated TEG and functional Fg TEG were applied in 30 patients. Genetic analysis of Fg genes were performed by direct sequencing. RESULTS 27.5% patients experienced bleeding, 3.9% had thrombosis and 68.6% were asymptomatic. Females were more prone to experience bleeding (P=0.01). Significant difference (P<0.05) in TEG results were found between patients with hot-spot mutations at AαArg35(16) and γArg301(275), but were not identified between patients with and without bleeding. Normal TEG results were found in patients with mutations at AαArg35(16), AαPro37(18) or AαArg38(19). Six novel mutations were identified, including AαGly33(14)del, AαAsp57(38)_Trp60(41)delIVS2+1_+2GTdel, AαPhe742(723)Tyr, γAsn334(308)Thr, γGly335(309)Cys and γTrp395(369)Leu. CONCLUSIONS CD patients have similar clinical manifestations and hot-spot mutations worldwide with no ethnic difference. TEG results could not indicate the bleeding risk in patients, but priority of mutation screening at thrombin cleavage site or polymerization site on Aа chain may be given if TEG results are normal.
Collapse
Affiliation(s)
- Jingyi Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yaopeng Chen
- Department of Laboratory Medicine, The 303 Hospital of Chinese People's Liberation Army, China
| | - Qi Ouyang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Linlin Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Hongli Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
4
|
Two novel mutations in the fibrinogen γ nodule. Thromb Res 2014; 134:901-8. [PMID: 25074738 DOI: 10.1016/j.thromres.2014.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Congenital dysfibrinogenemia and hypofibrinogenemia are rare diseases characterized by inherited abnormality in the fibrinogen molecule, resulting in functional defects (dysfibrinogenemia) or low fibrinogen plasma levels (hypofibrinogenemia). MATERIALS AND METHODS We have described two abnormal fibrinogens - fibrinogen Hranice (γ Phe204Val) and Praha IV (γ Ser313Gly). The carrier of the Hranice mutation was a 40-year-old female with low fibrinogen levels. The carrier of the Praha IV mutation was a 42-year-old man with a history of idiopathic thrombosis, low functional fibrinogen levels, and a prolonged thrombin time. RESULTS Fibrin polymerization kinetics measurement was normal in both cases (after the addition of either thrombin or reptilase), as well as was fibrinolysis. Scanning electron microscopy and confocal microscopy revealed significantly wider fibers in both cases, when compared with fibers prepared from healthy control samples. Although both cases are situated in the γ-nodule, they manifested differently. While the γ Ser313Gly mutation manifested as dysfibrinogenemia with a thrombotic background, the γ Phe204Val mutation manifested as hypofibrinogenemia without clinical symptoms. The mutation sites of both fibrinogens are in highly conserved regions of the fibrinogen γ chains. γ Ser313 is situated in a class 16:18 β hairpin and is involved in hydrogen bonding with γ Asp320. γ Phe204 is situated in an inverse γ turn and may be involved in π-π interactions. CONCLUSIONS Both mutations cause conformational changes in fibrinogen, which lead either to impaired fibrinogen assembly (fibrinogen Hranice) or abnormal fibrinogen function (fibrinogen Praha IV).
Collapse
|
5
|
Ikeda M, Kobayashi T, Arai S, Mukai S, Takezawa Y, Terasawa F, Okumura N. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole 'A' and calcium binding sites. Thromb Res 2014; 134:518-25. [PMID: 24968960 DOI: 10.1016/j.thromres.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION We examined a 6-month-old girl with inherited fibrinogen abnormality and no history of bleeding or thrombosis. Routine coagulation screening tests showed a markedly low level of plasma fibrinogen determined by functional measurement and also a low level by antigenic measurement (functional/antigenic ratio=0.295), suggesting hypodysfibrinogenemia. MATERIALS AND METHODS DNA sequence analysis was performed, and γT305A fibrinogen was synthesized in Chinese hamster ovary cells based on the results. We then functionally analyzed and compared with that of nearby recombinant γN308K fibrinogen. RESULTS DNA sequence analysis revealed a heterozygous γT305A substitution (mature protein residue number). The γT305A fibrinogen indicated markedly impaired thrombin-catalyzed fibrin polymerization both in the presence or absence of 1mM calcium ion compared with that of γN308K fibrinogen. Protection of plasmin degradation in the presence of calcium ion or Gly-Pro-Arg-Pro peptide (analogue for so-called knob 'A') and factor XIIIa-catalyzed fibrinogen crosslinking demonstrated that the calcium binding sites, hole 'a' and D:D interaction sites were all markedly impaired, whereas γN308Kwas impaired at the latter two sites. Molecular modeling demonstrated that γT305 is localized at a shorter distance than γN308 from the high affinity calcium binding site and hole 'a'. CONCLUSION Our findings suggest that γT305 might be important for construction of the overall structure of the γ module of fibrinogen. Substitution of γT305A leads to both dysfibrinogenemic and hypofibrinogenemic characterization, namely hypodysfibrinogenemia. We have already reported that recombinant γT305A fibrinogen was synthesized normally and secreted slightly, but was significantly reduced.
Collapse
Affiliation(s)
- Minami Ikeda
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Tamaki Kobayashi
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinpei Arai
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan; Department of Laboratory Medicine, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Saki Mukai
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan; Department of Laboratory Medicine, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yuka Takezawa
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan; Department of Laboratory Medicine, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Fumiko Terasawa
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan; Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Nobuo Okumura
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan; Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
6
|
Abstract
Research on all stages of fibrin polymerization, using a variety of approaches including naturally occurring and recombinant variants of fibrinogen, x-ray crystallography, electron and light microscopy, and other biophysical approaches, has revealed aspects of the molecular mechanisms involved. The ordered sequence of fibrinopeptide release is essential for the knob-hole interactions that initiate oligomer formation and the subsequent formation of 2-stranded protofibrils. Calcium ions bound both strongly and weakly to fibrin(ogen) have been localized, and some aspects of their roles are beginning to be discovered. Much less is known about the mechanisms of the lateral aggregation of protofibrils and the subsequent branching to yield a 3-dimensional network, although the αC region and B:b knob-hole binding seem to enhance lateral aggregation. Much information now exists about variations in clot structure and properties because of genetic and acquired molecular variants, environmental factors, effects of various intravascular and extravascular cells, hydrodynamic flow, and some functional consequences. The mechanical and chemical stability of clots and thrombi are affected by both the structure of the fibrin network and cross-linking by plasma transglutaminase. There are important clinical consequences to all of these new findings that are relevant for the pathogenesis of diseases, prophylaxis, diagnosis, and treatment.
Collapse
|
7
|
Dear A, Dempfle CE, Brennan SO, Kirschstein W, George PM. Fibrinogen Mannheim II: a novel gamma307 His-->Tyr substitution in the gammaD domain causes hypofibrinogenemia. J Thromb Haemost 2004; 2:2194-9. [PMID: 15613026 DOI: 10.1111/j.1538-7836.2004.00973.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In recent years it has become clear that the molecular investigation of hypofibrinogenemia provides unique insight into regions of the fibrinogen molecule that are important in molecular assembly, secretion and stability. OBJECTIVES To investigate a case of hypofibrinogenemia at the molecular level. PATIENTS AND METHODS The study was conducted on a 37-year-old woman from Mannheim, Germany, who had an antigenic plasma fibrinogen concentration of 0.86 g L(-1). Mutation screening was performed by DNA sequencing and the effect of the identified mutation was investigated at the protein level. RESULTS Analysis of exon 8 of the fibrinogen gamma gene identified a heterozygous CAT-->TAT transition at codon 307. This novel His-->Tyr substitution was not detected when plasma fibrinogen was analyzed by electrospray ionization mass spectrometry. The mutation predicts a mass increase of 26 Da in the gamma chain, but purified gamma chains had a normal mass, indicating non-expression of the gamma(Tyr307) chain in plasma fibrinogen. CONCLUSIONS This work reports a novel gamma307 His-->Tyr mutation (fibrinogen Mannheim II) that causes hypofibrinogenemia. Crystal structures show that His307 is located immediately adjacent to three residues that have been implicated in fibrin polymerization at the D:D interface. However, the histidine residue appears critical in maintaining structure of the fibrinogen gammaD domain, rather than in determining function.
Collapse
Affiliation(s)
- A Dear
- Molecular Pathology Laboratory, Christchurch School of Medicine and Health Sciences, University of Otago, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Lefebvre P, Velasco PT, Dear A, Lounes KC, Lord ST, Brennan SO, Green D, Lorand L. Severe hypodysfibrinogenemia in compound heterozygotes of the fibrinogen AαIVS4 + 1G>T mutation and an AαGln328 truncation (fibrinogen Keokuk). Blood 2004; 103:2571-6. [PMID: 14615374 DOI: 10.1182/blood-2003-07-2316] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTwo siblings with hypofibrinogenemia have lifelong trauma-related bleeding. Recently, the brother experienced recurrent thrombosis after cryoprecipitate infusions following surgery. The sister had 6 miscarriages. Plasma clots in each were resistant to compression and fibrinolysis and were soluble in 5 M urea. Examination by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) revealed only the presence of crosslinked γ–γ fibrin chain dimers without high polymers of αn. Fibrin clots contained an abnormal 35-kDa constituent recognized by an antibody to the mature fibrinogen Aα–chain residues 241-476 but not by antibodies to Aα219-348 or Aα349-406. DNA analysis revealed a heterozygous CAA → TAA mutation at the codon for amino acid 328 of the Aα gene in these siblings and 2 asymptomatic family members. The Gln328stop mutation (fibrinogen Keokuk) predicted a 46% truncation and the production of a 35-kDa Aα chain. Analysis of purified fibrinogen revealed expression of the abnormal Aα chain in 4 family members but found no normal fibrinogen in the 2 hypofibrinogenemic patients. This paradox was resolved when they and their asymptomatic mother were found to be heterozygous for a second Aα mutation, a GT → TT splice site mutation in intron 4 (IVS4 + 1 G> T). However, compound heterozygosity for both mutations was required for the expression of severe hypodysfibrinogenemia and for clinical symptoms.
Collapse
Affiliation(s)
- Phil Lefebvre
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Okumura N, Gorkun OV, Terasawa F, Lord ST. Substitution of the gamma-chain Asn308 disturbs the D:D interface affecting fibrin polymerization, fibrinopeptide B release, and FXIIIa-catalyzed cross-linking. Blood 2004; 103:4157-63. [PMID: 14764520 DOI: 10.1182/blood-2003-12-4296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crystallographic structures indicate that gamma-chain residue Asn308 participates in D:D interactions and indeed substitutions of gammaAsn308 with lysine or isoleucine have been identified in dysfibrinogens with impaired polymerization. To probe the role of Asn308 in polymerization, we synthesized 3 variant fibrinogens: gammaAsn308 changed to lysine (gammaN308K), isoleucine (gammaN308I), and alanine (gammaN308A). We measured thrombin-catalyzed polymerization by turbidity, fibrinopeptide release by high-performance liquid chromatography, and factor XIIIa-catalyzed cross-linking by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the absence of added calcium, polymerization was clearly impaired with all 3 variants. In contrast, at 0.1 mM calcium, only polymerization of gammaN308K remained markedly abnormal. The release of thrombin-catalyzed fibrinopeptide B (FpB) was delayed in the absence of calcium, whereas at 1 mM calcium FpB release was delayed only with gammaN308K. Factor XIIIa-catalyzed gamma-gamma dimer formation was delayed with fibrinogen (in absence of thrombin), whereas with fibrin (in presence of thrombin) gamma-gamma dimer formation of only gammaN308K was delayed. These data corroborate the recognized link between FpB release and polymerization. They show fibrin cross-link formation likely depends on the structure of protofibrils. Together, our results show substitution of Asn308 with a hydrophobic residue altered neither polymer formation nor polymer structure at physiologic calcium concentrations, whereas substitution with lysine altered both.
Collapse
Affiliation(s)
- Nobuo Okumura
- Laboratory of Clinical Chemistry, Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | |
Collapse
|