1
|
Dean ST, Ishikawa C, Zhu X, Walulik S, Nixon T, Jordan JK, Henderson S, Wyder M, Salomonis N, Wunderlich M, Greis KD, Starczynowski DT, Volk AG. Repression of TRIM13 by chromatin assembly factor CHAF1B is critical for AML development. Blood Adv 2023; 7:4822-4837. [PMID: 37205848 PMCID: PMC10469560 DOI: 10.1182/bloodadvances.2022009438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.
Collapse
Affiliation(s)
- Sarai T. Dean
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Xiaoqin Zhu
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Sean Walulik
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Timothy Nixon
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Jessica K. Jordan
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Samantha Henderson
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Michael Wyder
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Nathan Salomonis
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kenneth D. Greis
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Daniel T. Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Andrew G. Volk
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
2
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
3
|
Pan-cancer driver copy number alterations identified by joint expression/CNA data analysis. Sci Rep 2020; 10:17199. [PMID: 33057153 PMCID: PMC7566486 DOI: 10.1038/s41598-020-74276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
AbstractAnalysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifications and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas.
Collapse
|
4
|
Park JH, Lee C, Han D, Lee JS, Lee KM, Song MJ, Kim K, Lee H, Moon KC, Kim Y, Jung M, Moon JH, Lee H, Ryu HS. Moesin ( MSN) as a Novel Proteome-Based Diagnostic Marker for Early Detection of Invasive Bladder Urothelial Carcinoma in Liquid-Based Cytology. Cancers (Basel) 2020; 12:cancers12041018. [PMID: 32326232 PMCID: PMC7225967 DOI: 10.3390/cancers12041018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder urothelial carcinoma (BUC) is the most lethal malignancy of the urinary tract. Treatment for the disease highly depends on the invasiveness of cancer cells. Therefore, a predictive biomarker needs to be identified for invasive BUC. In this study, we employed proteomics methods on urine liquid-based cytology (LBC) samples and a BUC cell line library to determine a novel predictive biomarker for invasive BUC. Furthermore, an in vitro three-dimensional (3D) invasion study for biological significance and diagnostic validation through immunocytochemistry (ICC) were also performed. The proteomic analysis suggested moesin (MSN) as a potential biomarker to predict the invasiveness of BUC. The in vitro 3D invasion study showed that inhibition of MSN significantly decreased invasiveness in BUC cell lines. Further validation using ICC ultimately confirmed moesin (MSN) as a potential biomarker to predict the invasiveness of BUC (p = 0.023). In conclusion, we suggest moesin as a potential diagnostic marker for early detection of BUC with invasion in LBC and as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul 07061, Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Dohyun Han
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Kyung Min Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
| | - Heonyi Lee
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Ji Hye Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
- Correspondence: (H.L.); (H.S.R.)
| | - Han Suk Ryu
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
- Correspondence: (H.L.); (H.S.R.)
| |
Collapse
|
5
|
Li H, Qu L, Zhou R, Wu Y, Zhou S, Zhang Y, Cheng B, Ni J, Huang H, Hou J. TRIM13 inhibits cell migration and invasion in clear-cell renal cell carcinoma. Nutr Cancer 2019; 72:1115-1124. [PMID: 31762344 DOI: 10.1080/01635581.2019.1675721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TRIM13, a member of the TRIM family, is a RING domain containing E3 ubiquitin ligase which plays critical roles in diverse cellular processes including cell death, cancer and antiviral immunity. However, its expression and molecular mechanism on renal cell carcinoma (RCC) have not been characterized. This study explored the clinical significance and biological function of TRIM13 in human RCC. Western blot analyses and Immunohistochemical were performed in RCC tissues. The clinical relevance of TRIM13 in RCC was evaluated by immunohistochemical staining using tissue microarray. The role of TRIM13 in migration was studied in renal cell carcinoma cell lines of 786-O through knocking down TRIM13 with siRNA and over-expression of TRIM13. The regulation of TRIM13 on migration and invasion were determined by wound-healing and transwell assays. Western blot analyses showed that TRIM13 expression was dramatically decreased in RCC tissues compared with adjacent non-tumorous tissues. Up-regulation of TRIM13 in 786-O cells resulted in decreased NF-kB, MMP-9 and p-AKT levels and the capability for migration and invasion. In contrast, the ectopic expression of TRIM13 decreased the migration and invasion ability of 786-O cells. These findings indicate that TRIM13 decreases RCC metastasis and invasion may serve as a candidate RCC prognostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Hualei Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu Province, China.,Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Lili Qu
- Department of Operating Room, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Rui Zhou
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - You Wu
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Shujun Zhou
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Yueping Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Bing Cheng
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Jian Ni
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Hua Huang
- Department of Urology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Hu B, Cheng JW, Hu JW, Li H, Ma XL, Tang WG, Sun YF, Guo W, Huang A, Zhou KQ, Gao PT, Cao Y, Qiu SJ, Zhou J, Fan J, Yang XR. KPNA3 Confers Sorafenib Resistance to Advanced Hepatocellular Carcinoma via TWIST Regulated Epithelial-Mesenchymal Transition. J Cancer 2019; 10:3914-3925. [PMID: 31417635 PMCID: PMC6692625 DOI: 10.7150/jca.31448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Sorafenib, a multikinase inhibitor, is a new standard treatment for patients with advanced hepatocellular carcinoma (HCC). However, resistance to this regimen is frequently observed in clinical practice, and the molecular basis of this resistance remains largely unknown. Herein, the antitumor activity of sorafenib was assessed in 16 patient-derived xenograft (PDX) models of HCC. Gene expression analysis was conducted to identify factors that promote sorafenib resistance. Quantitative RT-PCR and immunoblotting were used to determine gene expression and activation of signaling pathways. Cell proliferation, clone formation, and transwell assays were conducted to evaluate drug-sensitivity, proliferation, and invasiveness, respectively. Kaplan-Meier analysis was used to evaluate the predictive power of biomarkers for sorafenib response. Differential gene expression analysis suggested that sorafenib resistance correlated with high karyopherin subunit alpha 3 (KPNA3) expression. Overexpression of KPNA3 in HCC cells enhanced tumor cell growth and invasiveness. Interestingly, KPNA3 was found to trigger epithelial-mesenchymal transition (EMT), a key process mediating drug resistance. On a mechanistic level, KPNA3 increased phosphorylation of AKT, which then phosphorylated ERK, and ultimately promoted TWIST expression to induce EMT and sorafenib resistance. Moreover, retrospective analysis revealed that HCC patients with low KPNA3 expression had remarkably longer survival after sorafenib treatment. Finally, we have identified a novel KPNA3-AKT-ERK-TWIST signaling cascade that promotes EMT and mediates sorafenib resistance in HCC. These findings suggest that KPNA3 is a promising biomarker for predicting patient responsiveness to sorafenib. Targeting KPNA3 may also contribute to resolving sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Jian-Wen Cheng
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Jin-Wu Hu
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Hong Li
- Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University
| | - Wei-Guo Tang
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Yun-Fan Sun
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University
| | - Ao Huang
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Kai-Qian Zhou
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Ping-Ting Gao
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| | - Jian Zhou
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Jia Fan
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xin-Rong Yang
- Department of Liver Surgery and transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R.China
| |
Collapse
|
7
|
Pekarsky Y, Croce CM. Noncoding RNA genes in cancer pathogenesis. Adv Biol Regul 2018; 71:219-223. [PMID: 30611710 DOI: 10.1016/j.jbior.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
By using chronic lymphocytic leukemia as target for discovery in cancer pathogenesis we discovered that the great majority of CLLs (75-85%) carry a deletion of miR-15a and miR-16-1 at 13q14. We also discovered that miR-15/16 are negative regulators of the BCL2 oncogene. Thus the loss of the two negative regulators causes BCL2 overexpression and leukemia. A corollary of this is that CLL is very sensitive to the anti BCL2 drug venetoclax that can induce complete remission in CLL patients. Since leukemia patients may carry billions of leukemia cells, it is quite likely that some (few) of the leukemic cells are resistant to venetoclax. Thus, since microRNAs have multiple targets, we looked for other proteins that may be overexpressed in CLL because of the low of miR-15/16. We discovered that ROR1 an embryonal antigen expressed on most (∼ 90%) CLL, but not on normal B cell, is also regulated by miR-15/16. Thus CLL cells are also sensitive to monoclonal antibodies against ROR1. Venetoclax and monoclonal antibodies against ROR1 act synergistically in killing CLL cells.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ 2017; 25:21-26. [PMID: 28984869 DOI: 10.1038/cdd.2017.159] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/09/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023] Open
Abstract
In 1984, we investigated the t(14;18) chromosomal translocations that frequently occur in patients with follicular lymphoma. We first identified a locus on chromosome 18 involved in these translocations with the chromosome 14 containing the immunoglobulin heavy chain locus. Within this region on chromosome 18, we then discovered a gene that we called BCL2, which was activated by the translocations. Since that time, many studies determined that BCL2 is one of the most important oncogenes involved in cancer by inhibiting apoptosis. In 2002, we studied 13q deletions in chronic lymphocytic leukemia (CLL) and found that the microRNA cluster miR-15a/miR-16-1 (miR-15/16) is deleted by 13q deletions. In 2005, we discovered that miR-15/16 function as tumor suppressors by directly targeting BCL2. Thus the loss of two negative regulators of BCL2 expression results in overexpression of BCL2. Very recently, a specific BCL2 inhibitor ABT-199 (Venetoclax) was developed and approved by FDA for CLL treatment. Thus it took 32 years from fundamental discovery of a critical oncogene to the development of a drug capable to cure CLL. In this review, we discuss the discovery, functions and clinical relevance of miR-15/16 and BCL2.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
9
|
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease and has a highly variable clinical course with survival ranging from a couple of months to several decades. MicroRNAs (miRNAs), small non-coding RNAs that regulate transcription and translation of genes, have been found to be involved in CLL initiation, progression, and resistance to therapy. In addition, they can be used as prognostic biomarkers and as targets for novel therapies. In this review, we describe the association between miRNAs and the cytogenetic aberrations commonly found in CLL, as well as with other prognostic factors. We describe the presence of miRNAs as extracellular entities in the plasma and serum of CLL patients and discuss their role in resistance to therapy. Finally, we will explore the potential of targeted miRNA therapy for the treatment of CLL, with a special emphasis on MRX34, the first miRNA mimic that is currently being evaluated for clinical use.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosome Aberrations
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Genetic Therapy/methods
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Prognosis
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
10
|
Abstract
Recent investigations have provided an increasingly complete picture of the genetic landscape of chronic lymphocytic leukaemia (CLL). These analyses revealed that the CLL genome displays a high degree of heterogeneity between patients and within the same patient. In addition, they highlighted molecular mechanisms and functionally relevant biological programmes that may be important for the pathogenesis and therapeutic targeting of this disease. This Review focuses on recent insights into the understanding of CLL biology, with emphasis on the role of genetic lesions in the initiation and clinical progression of CLL. We also consider the translation of these findings into the development of risk-adapted and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Fabbri
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
- Department of Pathology and Cell Biology and New York, New York 10032, USA
- Departments of Genetics and Development and Microbiology and Immunology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
11
|
Erdem M, Tekiner TA, Fejzullahu A, Akan G, Anak S, Saribeyoglu ET, Ozbek U, Atalar F. herg1b expression as a potential specific marker in pediatric acute myeloid leukemia patients with HERG 897K/K genotype. Pediatr Hematol Oncol 2015; 32:182-92. [PMID: 25247487 DOI: 10.3109/08880018.2014.949941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human ether-a-go-go related gene (herg) encoding HERG K(+) channel has been demonstrated in many previous studies with its association to cell cycle progression and growth in tumor cells. The upregulated expression of HERG K+ channels was determined in different tumor types. Furthermore, not only full-length transcript herg1 but also a truncated isoform herg1b was shown to be expressed in cancer cells. In this study, the expression levels of herg1 and herg1b and the impact of K897T mutation on their expressions were investigated in pediatric acute myeloid leukemia (pAML). Expression levels of herg1 and herg1b isoforms were analyzed by quantitative real time polymerase chain reaction (PCR) in pAML patients together with healthy donors, and their expressions were confirmed by western blotting. The 2690 A>C nucleotide variation in KCNH2 gene corresponding to K897T amino acid change was analyzed by PCR followed by restriction enzyme digestion. herg1b overexpression was observed in tumor cells compared to healthy controls (P = .0024). However, herg1 expression was higher in healthy control cells than tumor cells (P = .001). The prevalence of polymorphic allele 897T was 26% in our patient group and 897T carriers showed increased herg1b expression compared to wild-type allele carriers. Our results demonstrate the presence of the increased levels of herg1b expression in pAML. In addition, we report for the first time that, pAML subgroup with HERG 897K/K genotype compared to 897K/T and T/T genotypes express increased levels of herg1b. In conclusion, HERG 897K/K genotype with increased level of herg1b expression might well be a prognostic marker for pAML.
Collapse
Affiliation(s)
- Merve Erdem
- Department of Growth-Development and Pediatric Endocrinology, Child Health Institute, Istanbul University , Capa, Istanbul , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Atypical spindle cell lipoma: a clinicopathologic, immunohistochemical, and molecular study emphasizing its relationship to classical spindle cell lipoma. Virchows Arch 2014; 465:97-108. [PMID: 24659226 DOI: 10.1007/s00428-014-1568-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/22/2014] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
We studied a series of spindle cell lipomas arising in atypical sites and showing unusual morphologic features (which we called atypical spindle cell lipoma) to assess if these lesions have the same chromosomal alterations as classical spindle cell lipoma but different from those found in atypical lipomatous tumor/well-differentiated liposarcoma. We investigated alterations of different genes in the 13q14 region and the amplification status of the MDM2 and CDK4 genes at 12q14-15 by multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) analysis. In the atypical spindle cell lipomas, MLPA revealed deletions in the two nearest flanking genes of RB1 (ITM2B and RCBTB2) and in multiple important exons of RB1. In contrast, in classical spindle cell lipomas, a less complex loss of RB1 exons was found but no deletion of ITM2B and RCBTB2. Moreover, MLPA identified a deletion of the DLEU1 gene, a finding which has not been reported earlier. We propose an immunohistochemical panel for lipomatous tumors which comprises of MDM2, CDK4, p16, Rb, which we have found useful in discriminating between atypical or classical spindle cell lipomas and other adipocytic neoplasms, especially atypical lipomatous tumor/well-differentiated liposarcoma. Our findings strengthen the link between atypical spindle cell lipoma and classical spindle cell lipoma, and differentiate them from atypical lipomatous tumor/well-differentiated liposarcoma.
Collapse
|
13
|
Role of miR-15/16 in CLL. Cell Death Differ 2014; 22:6-11. [PMID: 24971479 DOI: 10.1038/cdd.2014.87] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia. The most common chromosomal abnormalities detectable by cytogenetics include deletion at 13q (55%), 11q (18%), trisomy 12 (12-16%) and 17p (8%). In 2002, we discovered that a microRNA cluster miR-15a/miR-16-1 (miR-15/16) is the target of 13q deletions in CLL. MicroRNAs encoded by the miR-15/16 locus (miR-15 and miR-16) function as tumor suppressors. Expression of these miRNAs downregulated in CLL, melanoma, colorectal cancer, bladder cancer and other solid tumors. miR-15/16 cluster targets multiple oncogenes, including BCL2, Cyclin D1, MCL1 and others. The most important target of miR-15/16 in CLL is arguably BCL2, as BCL2 is overexpressed in almost all CLLs. In this review, we discuss the discovery, functions, clinical relevance and treatment opportunities related to miR-15/16.
Collapse
|
14
|
Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 2013; 28:98-107. [PMID: 23974981 DOI: 10.1038/leu.2013.246] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022]
Abstract
The MIR-15A/-16-1 tumor suppressor microRNAs (miRNAs) are deleted in leukemic cells from more than 50% of patients with chronic lymphocytic leukemia (CLL). As these miRNAs are also less abundant in patients without genomic deletion, their downregulation in CLL is likely to be caused by additional mechanisms. We found the primary transcripts (pri-miRNAs) of MIR-15a/-16/-15b to be elevated and processing intermediates (precursor miRNAs) to be reduced in cells from CLL patients (22/38) compared with non-malignant B-cells (n=14), indicating a block of miRNA maturation at the DROSHA processing step. Using a luciferase reporter assay for pri-miR processing we validated the defect in primary CLL cells. The block of miRNA maturation is restricted to specific miRNAs and can be found in the cell line MEC-2, but not in MEC-1, even though both are derived from the same CLL patient. In these cells, the RNA-specific deaminase ADARB1 leads to reduced pri-miRNA processing, but full processing efficiency is recovered upon deletion of the RNA-binding domains or nuclear localization of ADARB1. Thus, we show that, apart from genomic deletion or transcriptional downregulation, aberrant processing of miRNA leads to specific reduction of miRNAs in leukemic cells. This represents a novel oncogenic mechanism in the pathogenesis of CLL.
Collapse
|
15
|
Enjuanes A, Albero R, Clot G, Navarro A, Beà S, Pinyol M, Martín-Subero JI, Klapper W, Staudt LM, Jaffe ES, Rimsza L, Braziel RM, Delabie J, Cook JR, Tubbs RR, Gascoyne R, Connors JM, Weisenburger DD, Greiner TC, Chan WC, López-Guillermo A, Rosenwald A, Ott G, Campo E, Jares P. Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. Int J Cancer 2013; 133:2852-63. [PMID: 23754783 DOI: 10.1002/ijc.28321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/23/2013] [Indexed: 01/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a B-cell neoplasm with an aggressive clinical behavior characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. To clarify the potential contribution of altered DNA methylation in the development and/or progression of MCL, we performed genome-wide methylation profiling of a large cohort of primary MCL tumors (n = 132), MCL cell lines (n = 6) and normal lymphoid tissue samples (n = 31), using the Infinium HumanMethylation27 BeadChip. DNA methylation was compared to gene expression, chromosomal alterations and clinicopathological parameters. Primary MCL displayed a heterogeneous methylation pattern dominated by DNA hypomethylation when compared to normal lymphoid samples. A total of 454 hypermethylated and 875 hypomethylated genes were identified as differentially methylated in at least 10% of primary MCL. Annotation analysis of hypermethylated genes recognized WNT pathway inhibitors and several tumor suppressor genes as frequently methylated, and a substantial fraction of these genes (22%) showed a significant downregulation of their transcriptional levels. Furthermore, we identified a subset of tumors with extensive CpG methylation that had an increased proliferation signature, higher number of chromosomal alterations and poor prognosis. Our results suggest that a subset of MCL displays a dysregulation of DNA methylation characterized by the accumulation of CpG hypermethylation highly associated with increased proliferation that may influence the clinical behavior of the tumors.
Collapse
Affiliation(s)
- Anna Enjuanes
- Genomics Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gatt ME, Takada K, Mani M, Lerner M, Pick M, Hideshima T, Carrasco DE, Protopopov A, Ivanova E, Sangfelt O, Grandér D, Barlogie B, Shaughnessy JD, Anderson KC, Carrasco DR. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity. Br J Haematol 2013; 162:210-20. [PMID: 23647456 DOI: 10.1111/bjh.12365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/18/2013] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is an incurable neoplasm caused by proliferation of malignant plasma cells in the bone marrow (BM). MM is characterized frequently by a complete or partial deletion of chromosome 13q14, seen in more than 50% of patients at diagnosis. Within this deleted region the tripartite motif containing 13 (TRIM13, also termed RFP2) gene product has been proposed to be a tumour suppressor gene (TSG). Here, we show that low expression levels of TRIM13 in MM are associated with chromosome 13q deletion and poor clinical outcome. We present a functional analysis of TRIM13 using a loss-of-function approach, and demonstrate that TRIM13 downregulation decreases tumour cell survival as well as cell cycle progression and proliferation of MM cells. In addition, we provide evidence for the involvement of TRIM13 downregulation in inhibiting the NF kappa B pathway and the activity of the 20S proteasome. Although this data does not support a role of TRIM13 as a TSG, it substantiates important roles of TRIM13 in MM tumour survival and proliferation, underscoring its potential role as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Moshe E Gatt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet 2013; 9:e1003373. [PMID: 23593011 PMCID: PMC3616974 DOI: 10.1371/journal.pgen.1003373] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/28/2013] [Indexed: 01/07/2023] Open
Abstract
Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA-mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.
Collapse
|
18
|
Rodríguez-Vicente AE, Díaz MG, Hernández-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 2013; 206:49-62. [DOI: 10.1016/j.cancergen.2013.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/11/2022]
|
19
|
Balatti V, Pekarky Y, Rizzotto L, Croce CM. miR deregulation in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:309-25. [PMID: 24014303 DOI: 10.1007/978-1-4614-8051-8_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most frequent human leukemia and it occurs in two forms, indolent and aggressive. Although clinical features and genetic abnormalities in CLL are well documented, molecular details underlying the disease are still under investigation.MicroRNAs are small noncoding RNAs involved in a variety of cellular processes and expressed in a tissue-specific manner. MicroRNAs have the ability to regulate gene expression. In physiological conditions, microRNAs act as gene expression controllers by targeting the mRNA or inhibiting its translation. Their deregulation can lead to an alteration of the expression level of many genes which can induce the development or promote the progression of tumors.In CLL, microRNAs can function as oncogenes, tumor suppressor genes, and/or can be used as markers for disease onset/progression. For example, in indolent CLL, 13q14 deletions targeting miR-15/16 initiate the disease, while in aggressive CLL miR-181 targets the critical TCL1 oncogene and can also be used as a progression marker.Here we discuss the foremost findings about the role of microRNAs in CLL pathogenesis, and how this knowledge can be used to identify new approaches to treat CLL.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and the Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
20
|
Kiefer Y, Schulte C, Tiemann M, Bullerdiek J. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation. APPLICATION OF CLINICAL GENETICS 2012; 5:21-8. [PMID: 23776377 PMCID: PMC3681189 DOI: 10.2147/tacg.s18669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM) in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH). Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL.
Collapse
Affiliation(s)
- Yvonne Kiefer
- Center for Human Genetics, University of Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
21
|
Mian M, Scandurra M, Chigrinova E, Shen Y, Inghirami G, Greiner TC, Chan WC, Vose JM, Testoni M, Chiappella A, Baldini L, Ponzoni M, Ferreri AJM, Franceschetti S, Gaidano G, Montes-Moreno S, Piris MA, Facchetti F, Tucci A, Nomdedeu JF, Lazure T, Uccella S, Tibiletti MG, Zucca E, Kwee I, Bertoni F. Clinical and molecular characterization of diffuse large B-cell lymphomas with 13q14.3 deletion. Ann Oncol 2012; 23:729-735. [PMID: 21693768 DOI: 10.1093/annonc/mdr289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deletions at 13q14.3 are common in chronic lymphocytic leukemia and are also present in diffuse large B-cell lymphomas (DLBCL) but never in immunodeficiency-related DLBCL. To characterize DLBCL with 13q14.3 deletions, we combined genome-wide DNA profiling, gene expression and clinical data in a large DLBCL series treated with rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone repeated every 21 days (R-CHOP21). PATIENTS AND METHODS Affymetrix GeneChip Human Mapping 250K NspI and U133 plus 2.0 gene were used. MicroRNA (miRNA) expression was studied were by real-time PCR. Median follow-up of patients was 4.9 years. RESULTS Deletions at 13q14.3, comprising DLEU2/MIR15A/MIR16, occurred in 22/166 (13%) cases. The deletion was wider, including also RB1, in 19/22 cases. Samples with del(13q14.3) had concomitant specific aberrations. No reduced MIR15A/MIR16 expression was observed, but 172 transcripts were significantly differential expressed. Among the deregulated genes, there were RB1 and FAS, both commonly deleted at genomic level. No differences in outcome were observed in patients treated with R-CHOP21. CONCLUSIONS Cases with 13q14.3 deletions appear as group of DLBCL characterized by common genetic and biologic features. Deletions at 13q14.3 might contribute to DLBCL pathogenesis by two mechanisms: deregulating the cell cycle control mainly due RB1 loss and contributing to immune escape, due to FAS down-regulation.
Collapse
Affiliation(s)
- M Mian
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Division of Hematology, Azienda Ospedaliera S. Maurizio, Bolzano/Bozen, Italy
| | - M Scandurra
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - E Chigrinova
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Y Shen
- Department of Pathology and Microbiology, University of Nebraska, Omaha, USA
| | - G Inghirami
- Department of Pathology and Center for Experimental Research and Medical Studies, University of Turin, Turin
| | - T C Greiner
- Department of Pathology and Microbiology, University of Nebraska, Omaha, USA
| | - W C Chan
- Department of Pathology and Microbiology, University of Nebraska, Omaha, USA
| | - J M Vose
- Department of Pathology and Microbiology, University of Nebraska, Omaha, USA
| | - M Testoni
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - A Chiappella
- Department of Pathology and Center for Experimental Research and Medical Studies, University of Turin, Turin
| | - L Baldini
- Hematology/Bone Marrow Transplantation Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, University of Milan, Milan
| | - M Ponzoni
- Pathology Unit and Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan
| | - A J M Ferreri
- Pathology Unit and Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan
| | - S Franceschetti
- Division of Hematology, Department of Clinical and Experimental Medicine & Centro di Biotecnologie per la Ricerca Medica Applicata, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - G Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine & Centro di Biotecnologie per la Ricerca Medica Applicata, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - S Montes-Moreno
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - M A Piris
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - F Facchetti
- Department of Pathology, University of Brescia, I Servizio di Anatomia Patologica, Spedali Civili di Brescia, Brescia; Division of Hematology, Spedali Civili di Brescia, Brescia, Italy
| | - A Tucci
- Department of Pathology, University of Brescia, I Servizio di Anatomia Patologica, Spedali Civili di Brescia, Brescia; Division of Hematology, Spedali Civili di Brescia, Brescia, Italy
| | - J Fr Nomdedeu
- Department of Hematology and Laboratori d'Hematologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - T Lazure
- Departments of Internal Medicine and Pathology, University Hospital of Bicêtre, AP/HP, Le Kremlin Bicêtre, France
| | - S Uccella
- Anatomic Pathology Unit, University of Insubria, Ospedale di Circolo, Varese, Italy
| | - M G Tibiletti
- Anatomic Pathology Unit, University of Insubria, Ospedale di Circolo, Varese, Italy
| | - E Zucca
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - I Kwee
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - F Bertoni
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
22
|
Cheung KF, Lam CNY, Wu K, Ng EKO, Chong WWS, Cheng ASL, To KF, Fan D, Sung JJY, Yu J. Characterization of the gene structure, functional significance, and clinical application of RNF180, a novel gene in gastric cancer. Cancer 2011; 118:947-59. [PMID: 21717426 DOI: 10.1002/cncr.26189] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND By using genome-wide methylation screening, the authors identified ring finger protein 180 (RNF180) as preferentially methylated in cancer. This study was undertaken to clarify its structure and functional role in gastric cancer. METHODS The transcription start site and core functional promoter region of RNF180 were revealed by 5' rapid amplification of cDNA ends and luciferase activity assays. Promoter methylation was detected by combined bisulfite restriction analysis and bisulfite genomic sequencing. Cell growth was detected by colony formation assay, apoptosis by annexin V assay, and RNF180 target genes by cDNA microarray. RESULTS The authors revealed the transcription start site of RNF180 gene and identified the functional core promoter region (-202/+372) in the CpG island, which could be silenced by in vitro methylation assay. RNF180 was silenced in 6 of 7 gastric cancer cell lines and significantly down-regulated in primary gastric cancers compared with adjacent normal tissues (P = .001). Loss of gene expression was associated with promoter methylation. Re-expression of RNF180 suppressed cell growth (P < .001) and induced apoptosis (P < .05), which were mediated by up-regulating the antiproliferation regulators MTSS1 and CDKN2A and the proapoptotic mediator TIMP3. Promoter methylation of RNF180 was detected in 76% (150 of 198) of primary gastric cancers and 55% (11 of 20) of intestinal metaplasia, but in none of 23 normal gastric tissues. Methylated RNF180 DNA was detected in the plasma of 56% of gastric cancer patients, but not in healthy controls (P = .003). Patients with low or loss of RNF180 expression had significantly poorer overall survival. CONCLUSIONS RNF180 is a novel potential tumor suppressor in gastric carcinogenesis and has potential clinical utility as a biomarker for gastric cancer patients.
Collapse
Affiliation(s)
- Kin-Fai Cheung
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bartuma H, Nord KH, Macchia G, Isaksson M, Nilsson J, Domanski HA, Mandahl N, Mertens F. Gene expression and single nucleotide polymorphism array analyses of spindle cell lipomas and conventional lipomas with 13q14 deletion. Genes Chromosomes Cancer 2011; 50:619-32. [DOI: 10.1002/gcc.20884] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 01/07/2023] Open
|
24
|
Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I, Palumbo G, Nanni M, Rinaldi A, Kwee I, Tissino E, Corradini G, Gozzetti A, Cencini E, Ladetto M, Coletta AM, Luciano F, Bulian P, Pozzato G, Laurenti L, Forconi F, Di Raimondo F, Marasca R, Del Poeta G, Gaidano G, Foà R, Guarini A, Gattei V. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2011; 50:633-43. [PMID: 21563234 DOI: 10.1002/gcc.20885] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 01/27/2023] Open
Abstract
Deletion at 13q14 is detected by fluorescence in situ hybridization (FISH) in about 50% of chronic lymphocytic leukemia (CLL). Although CLL with 13q deletion as the sole cytogenetic abnormality (del13q-only) usually have good prognosis, more aggressive clinical courses are documented for del13q-only CLL carrying higher percentages of 13q deleted nuclei. Moreover, deletion at 13q of different sizes have been described, whose prognostic significance is still unknown. In a multi-institutional cohort of 342 del13q-only cases and in a consecutive unselected cohort of 265 CLL, we investigated the prognostic significance of 13q deletion, using the 13q FISH probes locus-specific identifier (LSI)-D13S319 and LSI-RB1 that detect the DLEU2/MIR15A/MIR16-1 and RB1 loci, respectively. Results indicated that both percentage of deleted nuclei and presence of larger deletions involving the RB1 locus cooperated to refine the prognosis of del13q-only cases. In particular, CLL carrying <70% of 13q deleted nuclei with deletions not comprising the RB1 locus were characterized by particularly long time-to-treatment. Conversely, CLL with 13q deletion in <70% of nuclei but involving the RB1 locus, or CLL carrying 13q deletion in ≥70% of nuclei, with or without RB1 deletions, collectively experienced shorter time-to-treatment. A revised flowchart for the prognostic FISH assessment of del13q-only CLL, implying the usage of both 13q probes, is proposed.
Collapse
Affiliation(s)
- Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Joo HM, Kim JY, Jeong JB, Seong KM, Nam SY, Yang KH, Kim CS, Kim HS, Jeong M, An S, Jin YW. Ret finger protein 2 enhances ionizing radiation-induced apoptosis via degradation of AKT and MDM2. Eur J Cell Biol 2011; 90:420-31. [PMID: 21333377 DOI: 10.1016/j.ejcb.2010.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 12/17/2022] Open
Abstract
Ret finger protein 2 (RFP2), a gene frequently deleted in multiple tumor types, encodes a protein with a RING finger, B-box, and coiled-coil domain that belongs to the RBCC/TRIM protein family. Although RBCC proteins are involved in diverse cellular processes such as apoptosis, proliferation, differentiation, and transcriptional regulation, the biological function of RFP2 has not been well defined. Here, we demonstrate that overexpression of RFP2 in cells induced apoptosis through proteasomal degradation of MDM2 and AKT. The expression of RFP2, which possesses RING domain-dependent E3 ubiquitin ligase activity, was increased by ionizing radiation dose- and time-dependently, and RFP2 overexpression induced cell death with increased expression of apoptotic molecules (p53, p21, and Bax). These results depended on the E3 ubiquitin ligase activity of RFP2 because mutant RFP2, which contains a mutated RING domain, failed to drive apoptosis compared with wild-type RFP2. We observed that RFP2 formed a complex with MDM2, a negative regulator of the p53 tumor suppressor, and AKT, a regulator of apoptosis inhibition at the cellular level. Additionally, we found that the interaction of RFP2 with MDM2 and AKT resulted in ubiquitination and proteasomal degradation of MDM2 and AKT in vivo and in vitro. Thus, these data suggest that irradiation causes RFP2 overexpression, which enhances ionizing radiation-induced apoptosis by increasing p53 stability and decreasing AKT kinase activity through MDM2 and AKT degradation.
Collapse
Affiliation(s)
- Hae Mi Joo
- Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., Ltd., Seoul 132-703, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 2010; 25:489-97. [PMID: 21151023 DOI: 10.1038/leu.2010.288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, genes targeted by recurrent chromosomal deletions have been identified within the smallest genomic region shared in all patients, the minimally deleted region (MDR). However, deletions this small do not occur in all patients and are a simplification of the impact larger heterogeneous deletions have during carcinogenesis. We use the example of 13q14 deletions in chronic lymphocytic leukemia to show that genes outside MDRs are associated with disease progression. Genomic profiling of 224 patients identified 205 copy number alterations on chromosome 13 in 132 cases. Deletions including DLEU2 were heterogeneous (845 Kb-96.2 Mb) and identified two breakpoint cluster regions within short interspersed nuclear elements proximal to DLEU2 and within long interspersed nuclear elements/L1 repeats distal to GUCY1B2. After defining a deletion class on the basis of size and location, we show that (a) at diagnosis, larger deletions (class II) were associated with a significantly increased risk of disease progression (odds ratio=12.3; P=0.005), (b) in progressive patients, class II deletions were enriched (P=0.02) and (c) this association was independent of IgVH mutational status, ZAP70 expression and ATM/TP53 deletion. Deletion of a 1 Mb gene cluster (48.2-49.2 Mb), including SETDB2, PHF11 and RCBTB1, was significantly associated (P<0.01) with disease progression. Here, we show that the deletion of genes outside MDRs can influence clinical outcome.
Collapse
|
27
|
Abstract
B-cell chronic lymphocytic leukemia (CLL), the most common leukemia in the Western world, results from an expansion of a rare population of CD5+ mature B-lymphocytes. CLL occurs in two forms, aggressive and indolent. For the most part indolent CLL is characterized by low ZAP-70 expression and mutated IgH V(H); aggressive CLL shows high ZAP-70 expression and unmutated IgH V(H). Although clinical features and genomic abnormalities in CLL have been studied extensively, molecular mechanisms underlying disease development are still emerging. In the last few years, several important insights were reported in this area. MiR-15/16 targeting BCL2 and MCL1 and DLEU7 targeting TNF pathway were proposed as tumor suppressors at 13q14, a commonly deleted region in indolent CLL. Molecular details of how activation of TCL1, a critical oncogene in aggressive CLL, results in the initiation of this malignancy were clarified. Importance of these pathways was supported by investigations of several mouse models of CLL. Here, we present what has been learned from these new pathways, discuss mouse CLL models and how these mouse models recapitulate the molecular mechanisms of this common leukemia.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
28
|
Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro and present at abnormally high levels in vivo. Blood 2010; 116:4223-30. [DOI: 10.1182/blood-2010-05-284505] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Accumulation of leukemic cells in patients with chronic lymphocytic leukemia (CLL) is due to prolonged cell survival rather than increased proliferation. Survival of CLL cells depends on microenvironmental factors. Even though long-lived in vivo, CLL cells rapidly die by spontaneous apoptosis in vitro unless cocultured with stromal cells or their conditioned medium. In the present study, we show that survival of CLL cells is maintained in high cell density cultures, where the main prosurvival activity is delivered by monocytes. Cytokine array and enzyme-linked immunosorbent assay studies revealed increased expression of soluble CD14 by monocytes in the presence of CLL cells. The addition of recombinant soluble CD14 to primary CLL cells resulted in significantly increased cell survival rates, which were associated with higher activity nuclear factor κB. Quantification of serum levels of soluble CD14 revealed abnormally high levels of this protein in CLL patients, indicating a potential role of soluble CD14 in vivo. In summary, the presented data show that monocytes help in the survival of CLL cells by secreting soluble CD14, which induces nuclear factor κB activation in these cells, and that CLL cells actively shape their microenvironment by inducing CD14 secretion in accessory monocytes.
Collapse
|
29
|
New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol 2010; 20:377-83. [PMID: 21029776 DOI: 10.1016/j.semcancer.2010.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023]
Abstract
Chronic lymphocytic leukemia (CLL), an incurable disease of the elderly, stands out as unique among the malignancies derived from mature B lymphocytes. The histology, immunophenotype, immunoglobulin variable region (IgV) gene somatic hypermutation status, and the pattern of genetic alterations of the tumor cells are markedly distinct from that of any other B-cell tumor. Most notably, CLL cases can have somatically mutated as well as unmutated IgV genes which largely correlate with a favorable and unfavorable clinical prognosis, respectively. Moreover, recent evidence suggests that 6% of the normal elderly population develops a monoclonal B-cell lymphocytosis (MBL) that appears as the precursor to CLL in 1-2% of cases. Over the last decade, global gene expression profile analysis was instrumental in defining CLL as a malignancy originating from the oncogenic transformation of a common cellular precursor that resembles an antigen-experienced B cell. These findings were complemented by the realization that all CLL, independent of their IgV gene somatic mutation status, express B-cell receptors (BCRs) that show evidence of antigen-experience. Indeed, the BCRs of CLL cases among different individuals can be similar to the extent that one was able to define subsets of stereotyped receptors based on the homology in the antigen-binding regions. Together, these observations strongly support the notion that antigen plays a critical role in CLL pathogenesis. This role is complemented by genetic alterations that, analogous to most cancer types, represent the initiating pathogenetic event. In fact, CLL cases display recurrent genetic aberrations including trisomy 12 and monoallelic or biallelic deletion/inactivation of chromosomal regions 17p, 11q and 13q14. However, virtually all CLL cases lack balanced reciprocal chromosomal translocations, the genetic hallmark of germinal center (GC)-derived lymphomas. The most frequent genetic aberration in CLL, deletion of chromosomal region 13q14, was recently shown to have a specific role in CLL pathogenesis. This region encodes a tumor suppressor locus comprising a microRNA cluster embedded in a long sterile RNA gene, whose deletion in the mouse leads to lymphoproliferative syndromes recapitulating the human CLL-associated spectrum, including MBL, CLL and B-cell non-Hodgkin lymphoma (B-NHL). This review will focus on the cellular origin of CLL, its relationship to the mechanisms of generating CLL-associated genetic lesions and on the role of the 13q14 deletion in CLL pathogenesis as emerging from the analysis of a newly generated mouse model.
Collapse
|
30
|
Zhou X, Münger K. Clld7, a candidate tumor suppressor on chromosome 13q14, regulates pathways of DNA damage/repair and apoptosis. Cancer Res 2010; 70:9434-43. [PMID: 20926398 DOI: 10.1158/0008-5472.can-10-1960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia deletion gene 7 (Clld7) is a candidate tumor suppressor on chromosome 13q14. Clld7 encodes an evolutionarily conserved protein that contains an RCC1 domain plus broad complex, tramtrack, bric-a-brac (BTB), and POZ domains. In this study, we investigated the biological functions of Clld7 protein in inducible osteosarcoma cell lines. Clld7 induction inhibited cell growth, decreased cell viability, and increased γ-H2AX staining under conditions of caspase inhibition, indicating activation of the DNA damage/repair pathway. Real-time PCR analysis in tumor cells and normal human epithelial cells revealed Clld7 target genes that regulate DNA repair responses. Furthermore, depletion of Clld7 in normal human epithelial cells conferred resistance to apoptosis triggered by DNA damage. Taken together, the biological actions of Clld7 are consistent with those of a tumor suppressor.
Collapse
Affiliation(s)
- Xiaobo Zhou
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17:28-40. [PMID: 20060366 DOI: 10.1016/j.ccr.2009.11.019] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/07/2009] [Accepted: 11/09/2009] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of B cells of unknown etiology. Deletions of the chromosomal region 13q14 are commonly associated with CLL, with monoclonal B cell lymphocytosis (MBL), which occasionally precedes CLL, and with aggressive lymphoma, suggesting that this region contains a tumor-suppressor gene. Here, we demonstrate that deletion in mice of the 13q14-minimal deleted region (MDR), which encodes the DLEU2/miR-15a/16-1 cluster, causes development of indolent B cell-autonomous, clonal lymphoproliferative disorders, recapitulating the spectrum of CLL-associated phenotypes observed in humans. miR-15a/16-1-deletion accelerates the proliferation of both human and mouse B cells by modulating the expression of genes controlling cell-cycle progression. These results define the role of 13q14 deletions in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Ulf Klein
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Birerdinc A, Nohelty E, Marakhonov A, Manyam G, Panov I, Coon S, Nikitin E, Skoblov M, Chandhoke V, Baranova A. Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region. Tumour Biol 2009; 31:33-45. [PMID: 20237900 PMCID: PMC2803748 DOI: 10.1007/s13277-009-0005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Elizabeth Nohelty
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Andrey Marakhonov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Ganiraju Manyam
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ivan Panov
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Stephanie Coon
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Eugene Nikitin
- Hematology Research Center of Russia, Moscow, Russian Federation
| | - Mikhail Skoblov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vikas Chandhoke
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ancha Baranova
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| |
Collapse
|
33
|
Mertens D, Philippen A, Ruppel M, Allegra D, Bhattacharya N, Tschuch C, Wolf S, Idler I, Zenz T, Stilgenbauer S. Chronic lymphocytic leukemia and 13q14: miRs and more. Leuk Lymphoma 2009; 50:502-5. [PMID: 19347735 DOI: 10.1080/10428190902763509] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Loss of a critical region in 13q14.3 [del(13q)] is the most common genomic aberration in chronic lymphocytic leukemia (CLL), occurring in more than 50% of patients (Stilgenbauer et al., Oncogene 1998;16:1891 - 1897, Dohner et al., N Engl J Med 2000;343:1910 - 1916). Despite extensive investigations, no point mutations have been found in the remaining allele that would inactivate one of the candidate tumor suppressor genes and explain the pathomechanism postulated for this region. However, the genes in the region are significantly down-regulated in CLL cells, more than would be expected by gene dosage, and recently a complex epigenetic regulatory mechanism was identified for 13q14.3 in non-malignant cells that involves asynchronous replication timing and monoallelic expression of candidate tumor suppressor genes. Here, we propose a model of a multigenic pathomechanism in 13q14.3, where several tumor suppressor genes, including the miRNA genes miR-16-1 and miR-15a, are co-regulated by the two long non-coding RNA genes DLEU1 and DLEU2 that span the critical region. Furthermore, we propose these co-regulated genes to be involved in the same molecular pathways, thereby also forming a functional gene cluster. Elucidating the molecular and cellular function of the 13q14.3 candidate genes will shed light on the underlying pathomechanism of CLL.
Collapse
Affiliation(s)
- Daniel Mertens
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a heterogeneous malignant disease, both in terms of molecular abnormalities and clinical course. The most frequent chromosomal aberrations in B-CLL are deletions on 13q, 11q, and 17p, and trisomy 12, all of which are of prognostic significance. These aberrations can be detected by conventional cytogenetic analysis and fluorescence in situ hybridization (FISH), but cytogenetics are hampered by the low mitotic index of B-CLL cells, and FISH depends on genetic information of candidate regions. Microsatellites are unique highly polymorphic and informative genetic markers dispersed in the human genome. They have become the most commonly used markers to trace loss of heterozygosity in tumors. Their detection by PCR is rapid and can be semi-automated with maximal robustness and reproducibility. In this review, we discuss the implications of a recent genome-wide analysis in B-CLL with 400 microsatellite markers. This analysis led to the detection of new aberrant loci in B-CLL which are not visible in the leukemic conventional karyotype. We conclude that microsatellite allelotyping provides a complementary comprehensive view of genetic alterations in B-CLL, and it may identify new loci with candidate genes relevant in the molecular biology of B-CLL.
Collapse
Affiliation(s)
- Urban Novak
- Department of Medical Oncology and Haematology, University and Inselspital Berne, Switzerland
| | | | | |
Collapse
|
35
|
Zenz T, Mertens D, Döhner H, Stilgenbauer S. Molecular diagnostics in chronic lymphocytic leukemia – Pathogenetic and clinical implications. Leuk Lymphoma 2009; 49:864-73. [DOI: 10.1080/10428190701882955] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Jania LA, Chandrasekharan S, Backlund MG, Foley NA, Snouwaert J, Wang IM, Clark P, Audoly LP, Koller BH. Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis. Prostaglandins Other Lipid Mediat 2008; 88:73-81. [PMID: 19010439 DOI: 10.1016/j.prostaglandins.2008.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 01/27/2023]
Abstract
Prostaglandin E(2) (PGE(2)) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE(2) from the cyclooxygenase metabolite PGH(2) have been described. Here, we examine the contribution of one of these enzymes to PGE(2) production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE(2) levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE(2) synthase.
Collapse
Affiliation(s)
- Leigh A Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: From genes, to function, to disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1467-79. [DOI: 10.1016/j.bbamcr.2008.03.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 02/07/2023]
|
38
|
Meuleman N, Stamatopoulos B, Dejeneffe M, El Housni H, Lagneaux L, Bron D. Doubling time of soluble CD23: a powerful prognostic factor for newly diagnosed and untreated stage A chronic lymphocytic leukemia patients. Leukemia 2008; 22:1882-90. [DOI: 10.1038/leu.2008.190] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, Hotz-Wagenblatt A, Barrionuevo LS, Lichter P, Mertens D. Off-target effects of siRNA specific for GFP. BMC Mol Biol 2008; 9:60. [PMID: 18577207 PMCID: PMC2443166 DOI: 10.1186/1471-2199-9-60] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/24/2008] [Indexed: 12/14/2022] Open
Abstract
Background Gene knock down by RNAi is a highly effective approach to silence gene expression in experimental as well as therapeutic settings. However, this widely used methodology entails serious pitfalls, especially concerning specificity of the RNAi molecules. Results We tested the most widely used control siRNA directed against GFP for off-target effects and found that it deregulates in addition to GFP a set of endogenous target genes. The off-target effects were dependent on the amount of GFP siRNA transfected and were detected in a variety of cell lines. Since the respective siRNA molecule specific for GFP is widely used as negative control for RNAi experiments, we studied the complete set of off-target genes of this molecule by genome-wide expression profiling. The detected modulated mRNAs had target sequences homologous to the siRNA as small as 8 basepairs in size. However, we found no restriction of sequence homology to 3'UTR of target genes. Conclusion We can show that even siRNAs without a physiological target have sequence-specific off-target effects in mammalian cells. Furthermore, our analysis defines the off-target genes affected by the siRNA that is commonly used as negative control and directed against GFP. Since off-target effects can hardly be avoided, the best strategy is to identify false positives and exclude them from the results. To this end, we provide the set of false positive genes deregulated by the commonly used GFP siRNA as a reference resource for future siRNA experiments.
Collapse
Affiliation(s)
- Cordula Tschuch
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, Hotz-Wagenblatt A, Barrionuevo LS, Lichter P, Mertens D. Off-target effects of siRNA specific for GFP. BMC Mol Biol 2008. [PMID: 18577207 DOI: 10.1186/1471-2199-9-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Gene knock down by RNAi is a highly effective approach to silence gene expression in experimental as well as therapeutic settings. However, this widely used methodology entails serious pitfalls, especially concerning specificity of the RNAi molecules. RESULTS We tested the most widely used control siRNA directed against GFP for off-target effects and found that it deregulates in addition to GFP a set of endogenous target genes. The off-target effects were dependent on the amount of GFP siRNA transfected and were detected in a variety of cell lines. Since the respective siRNA molecule specific for GFP is widely used as negative control for RNAi experiments, we studied the complete set of off-target genes of this molecule by genome-wide expression profiling. The detected modulated mRNAs had target sequences homologous to the siRNA as small as 8 basepairs in size. However, we found no restriction of sequence homology to 3'UTR of target genes. CONCLUSION We can show that even siRNAs without a physiological target have sequence-specific off-target effects in mammalian cells. Furthermore, our analysis defines the off-target genes affected by the siRNA that is commonly used as negative control and directed against GFP. Since off-target effects can hardly be avoided, the best strategy is to identify false positives and exclude them from the results. To this end, we provide the set of false positive genes deregulated by the commonly used GFP siRNA as a reference resource for future siRNA experiments.
Collapse
Affiliation(s)
- Cordula Tschuch
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68:1012-21. [PMID: 18281475 DOI: 10.1158/0008-5472.can-07-3105] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a biologically heterogeneous illness with a variable clinical course. Loss of chromosomal material on chromosome 13 at cytoband 13q14 is the most frequent genetic abnormality in CLL, but the molecular aberrations underlying del13q14 in CLL remain incompletely characterized. We analyzed 171 CLL cases for loss of heterozygosity and subchromosomal copy loss on chromosome 13 in DNA from fluorescence-activated cell sorting-sorted CD19(+) cells and paired buccal cells using the Affymetrix XbaI 50k SNP array platform. The resulting high-resolution genomic maps, together with array-based measurements of expression levels of RNA in CLL cases with and without del13q14 and quantitative PCR-based expression analysis of selected genes, support the following conclusions: (a) del13q14 is heterogeneous and composed of multiple subtypes, with deletion of Rb or the miR15a/miR16 loci serving as anatomic landmarks, respectively; (b) del13q14 type Ia deletions are relatively uniform in length and extend from breakpoints close to the miR15a/miR16 cluster to a newly identified telomeric breakpoint cluster at the approximately 50.2 to 50.5 Mb physical position; (c) LATS2 RNA levels are approximately 2.6-fold to 2.8-fold lower in cases with del13q14 type I that do not delete Rb, as opposed to del13q14 type II or all other CLL cases; (d) PHLPP RNA is absent in approximately 50% of CLL cases with del13q14; and (e) approximately 15% of CLL cases display marked reductions in miR15a/miR16 expression that are often but not invariably associated with bi-allelic miR15a/miR16 loss. These data should aid future investigations into biological differences imparted on CLL by different del13q14 subtypes.
Collapse
Affiliation(s)
- Peter Ouillette
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kretz-Rommel A, Bowdish KS. Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin Biol Ther 2008; 8:5-15. [PMID: 18081533 DOI: 10.1517/14712598.8.1.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immune evasion in cancer is increasingly recognized as a contributing factor in the failure of a natural host antitumor immune response as well as in the failure of cancer vaccine trials. Immune evasion may be the result of a number of factors, including expansion of regulatory T cells, production of immunosuppressive cytokines, downregulation of HLA class I and tumor-associated antigens and upregulation of immunosuppressive molecules on the surface of tumor cells. CD200, a cell surface ligand that plays a role in regulating the immune system, has been shown to be upregulated on the surface of some hematologic and solid tumor malignancies. This review characterizes the role of CD200 in immune suppression, and describes strategies to target this molecule in the oncology setting, thus directly modulating immune regulation and potentially altering tolerance to tumor antigens.
Collapse
|
43
|
Udayakumar AM, Alkindi S, Pathare AV, Raeburn JA. Complex t(8;13;21)(q22;q14;q22)–A Novel Variant of t(8;21) in a Patient with Acute Myeloid Leukemia (AML–M2). Arch Med Res 2008; 39:252-6. [DOI: 10.1016/j.arcmed.2007.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
|
44
|
Cotter FE, Auer RL. Genetic alteration associated with chronic lymphocytic leukemia. Cytogenet Genome Res 2007; 118:310-9. [PMID: 18000385 DOI: 10.1159/000108315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 03/14/2007] [Indexed: 12/19/2022] Open
Abstract
The genetics of B-cell chronic lymphocytic leukemia (B-CLL) differ considerably from most other forms of hematologic malignancy which are usually characterized by chromosome translocations. B-CLL typically contains chromosomal deletions and chromosomes 13q14 and 11q22-->q23 are the most common. These two regions appear to share a common ancestral origin (Auer et al., 2007b). Overall, chromosomal abnormalities can be found in the majority of patients with B-CLL when using sensitive techniques (Dohneret al., 2000) and possibly reflects an underlying predisposition, with a small but significant number of familial cases. Although single and consistent abnormalities are most common, multiple rearrangements can occur, often with disease progression (Feganetal., 1995; Dohner et al., 2000). Regions of recurrent deletion suggest the presence of tumor suppressor genes if following Knudson's theoretical 2-hit model. However, despite extensive sequencing analysis over the last decade and lack of pathogenic mutations identified, there has been a move away from this suggested hypothesis and alternative mechanisms of gene inactivation involving epigenetic silencing or haploinsufficiency may be considered as more likely in this disease. This review focuses on the common genetic abnormalities in B-CLL and relates them to some of the more recent hypotheses on inactivation of genes within these regions of deletion.
Collapse
Affiliation(s)
- F E Cotter
- Centre for Haematology, Institute of Cell and Molecular Sciences, Barts and the London Queen Mary School of Medicine, London, UK.
| | | |
Collapse
|
45
|
|
46
|
Evers C, Beier M, Poelitz A, Hildebrandt B, Servan K, Drechsler M, Germing U, Royer HD, Royer-Pokora B. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes Cancer 2007; 46:1119-28. [PMID: 17823930 DOI: 10.1002/gcc.20498] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isolated deletions of the long arm of chromosome 5, del(5q), are observed in 10% of myelodysplastic syndromes (MDS) and are associated with a more favorable prognosis, although the clinical course varies considerably. If one or more additional chromosomal aberrations are present, this correlates with a significantly shorter overall survival. To assess the frequency of hidden abnormalities in cases with an isolated cytogenetic del(5q), we have performed a genome wide high resolution 44 K 60mer oligonucleotide array comparative genomic hybridization (aCGH) study using DNA from bone marrow cells of 12 MDS and one AML patient. In one case a single additional hidden 5.6 Mb deletion of 13q14 and in another case multiple larger aberrations involving many chromosomes were found. Fluorescence in situ hybridization demonstrated that aberrations present in 35% of the bone marrow cells can be detected by aCGH. Furthermore with oligonucleotide aCGH the deletion end points in 5q were mapped precisely, revealing a cluster of proximal breakpoints in band q14.3 (n = 8) and a distal cluster between bands q33.2 and q34 (n = 11). This study shows the high resolution of oligonucleotide CGH arrays for precisely mapping genomic alterations and for refinement of deletion end points. In addition, the high sensitivity of this method enables the study of whole bone marrow cells from MDS patients, a disease with a low blast count.
Collapse
Affiliation(s)
- Christina Evers
- Institute of Human Genetics and Anthropology, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) is a clonal lymphoproliferative disorder characterized by proliferation of morphologically and immunophenotypically mature lymphocytes. CLL/SLL may proceed through different phases: an early phase in which tumor cells are predominantly small in size, with a low proliferation rate and prolonged cell survival, and a transformation phase with the frequent occurrence of extramedullary proliferation and an increase in large, immature cells. Although some patients with CLL have an indolent disease course and die after many years of unrelated causes, others have very rapidly disease progression and die of the disease within a few years of the diagnosis. In the past few years, considerable progress has been made in our ability to diagnose and classify CLL accurately. Through cytogenetics and molecular biology, it has been shown that CLL and variants are associated with a unique genotypic profile and that these genetic lesions often have a direct bearing on the pathogenesis and prognosis of the disease. Similarly, the development of antibodies to new biologic markers has allowed the identification of a unique immunophenotypic profile for CLL and variants. Moreover, accumulating evidence suggests that CLL cells respond to selected microenvironmental signals and that this confers a growth advantage and an extended survival to CLL cells. In this article, we will review the progress in the pathobiology of CLL and give an update on prognostic markers and tools in current pathology practice for risk stratification of CLL.
Collapse
MESH Headings
- Bone Marrow/pathology
- Chromosome Aberrations
- Diagnosis, Differential
- Female
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymph Nodes/pathology
- Male
- Prognosis
Collapse
Affiliation(s)
- Kedar V Inamdar
- Department of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Stamatopoulos B, Meuleman N, Haibe-Kains B, Duvillier H, Massy M, Martiat P, Bron D, Lagneaux L. Quantification of ZAP70 mRNA in B Cells by Real-Time PCR Is a Powerful Prognostic Factor in Chronic Lymphocytic Leukemia. Clin Chem 2007; 53:1757-66. [PMID: 17702857 DOI: 10.1373/clinchem.2007.089326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Chronic lymphocytic leukemia (CLL) is heterogeneous with respect to prognosis and clinical outcome. The mutational status of the immunoglobulin variable heavy chain region (IGHV) has been used to classify patients into 2 groups in terms of overall survival (OS) and clinical characteristics, but the labor-intensive nature and the cost of this time-consuming analysis has prompted investigations of surrogate markers.
Methods: We developed a standardized quantitative real-time reverse transcription-PCR (qPCR) method to measure zeta-chain (TCR)-associated protein kinase (ZAP70) mRNA in purified CD19+ cells. We evaluated this and other methods (flow cytometry analyses of ZAP70 and CD38 proteins and qPCR analysis of lipoprotein lipase mRNA) in a cohort of 108 patients (median follow-up, 82 months) to evaluate any associations with IGHV mutational status, OS, and treatment-free survival (TFS).
Results: The association between qPCR-measured ZAP70 and IGHV mutational status was statistically significant [χ2 (1) = 50.95; P <0.0001], and the value of Cramer’s V statistic (0.72) indicated a very strong relation. This method also demonstrated sensitivity, specificity, and positive and negative predictive values of 87.8%, 85.7%, 87.5%, and 86%, respectively. ZAP70 expression was significantly associated with OS (P = 0.0021) and TFS (P <0.0001). ZAP70+ patients had significantly shorter median TFS (24 months) than ZAP70− patients (157 months) (P <0.0001). Moreover, qPCR-measured ZAP70 expression has greater prognostic power than IGHV mutational status and the other prognostic markers tested.
Conclusions: ZAP70 mRNA quantification via qPCR is a strong surrogate marker of IGHV mutational status and a powerful prognostic factor.
Collapse
Affiliation(s)
- Basile Stamatopoulos
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ, Lin TS, Kipps TJ, Murray F, Weisenburger D, Sanger W, Lynch J, Watson P, Jansen M, Yoshinaga Y, Rosenquist R, de Jong PJ, Coggill P, Beck S, Lynch H, de la Chapelle A, Plass C. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 2007; 129:879-90. [PMID: 17540169 PMCID: PMC4647864 DOI: 10.1016/j.cell.2007.03.043] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/15/2007] [Accepted: 03/12/2007] [Indexed: 11/30/2022]
Abstract
The heritability of B cell chronic lymphocytic leukemia (CLL) is relatively high; however, no predisposing mutation has been convincingly identified. We show that loss or reduced expression of death-associated protein kinase 1 (DAPK1) underlies cases of heritable predisposition to CLL and the majority of sporadic CLL. Epigenetic silencing of DAPK1 by promoter methylation occurs in almost all sporadic CLL cases. Furthermore, we defined a disease haplotype, which segregates with the CLL phenotype in a large family. DAPK1 expression of the CLL allele is downregulated by 75% in germline cells due to increased HOXB7 binding. In the blood cells from affected family members, promoter methylation results in additional loss of DAPK1 expression. Thus, reduced expression of DAPK1 can result from germline predisposition, as well as epigenetic or somatic events causing or contributing to the CLL phenotype.
Collapse
Affiliation(s)
- Aparna Raval
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
| | - Stephan M. Tanner
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
| | - John C. Byrd
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43214, USA
| | - Elizabeth B. Angerman
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
| | - James D. Perko
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
| | - Shih-Shih Chen
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
| | - Björn Hackanson
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
- Department of Hematology/Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | - Michael R. Grever
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43214, USA
| | - David M. Lucas
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43214, USA
| | - Jennifer J. Matkovic
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43214, USA
| | - Thomas S. Lin
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43214, USA
| | - Thomas J. Kipps
- Department of Internal Medicine, University of California at San Diego, San Diego, CA, 92093, USA
| | - Fiona Murray
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dennis Weisenburger
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Warren Sanger
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Jane Lynch
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Patrice Watson
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Mary Jansen
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Richard Rosenquist
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Pieter J. de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Stephan Beck
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Henry Lynch
- Department of Preventive Medicine and Public Health, Creighton University, Omaha, NB 68178, USA
| | - Albert de la Chapelle
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
- Corresponding author
| | - Christoph Plass
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, The Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43214, USA
- Corresponding author
| |
Collapse
|
50
|
Auer RL, Riaz S, Cotter FE. The 13q and 11q B-cell chronic lymphocytic leukaemia-associated regions derive from a common ancestral region in the zebrafish. Br J Haematol 2007; 137:443-53. [PMID: 17488487 DOI: 10.1111/j.1365-2141.2007.06600.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Loss of the long arm of chromosomes 11 and 13 is the most consistent cytogenetic abnormalities for patients with B-cell chronic lymphocytic leukaemia (B-CLL). They suggest the presence of as yet unidentified tumour suppressor genes within well-defined minimal-deleted regions (MinDRs). We have identified 38 orthologues of the human genes in MinDRs in zebrafish cDNA and syntenic regions for the human deletions in the zebrafish genome. One region on chromosome 9 in the zebrafish genome is of potential interest. Within chromosome 9, five genes and two microRNAs were identified with shared synteny to the MinDRs in B-CLL (two genes to human chromosome 11, three to human chromosome 13 and two chromosome 13 microRNAs). The critical region on zebrafish chromosome 9 maps to the MinDR for both human chromosomes, suggesting a common ancestry for B-CLL tumour suppressor genes. Target-selected mutagenesis to identify zebrafish mutants with knock-outs of genes in this region will allow analysis of their in vivo potential for lymphoproliferation and may define causative genes for B-CLL within human chromosomes 11q and 13q. Our study provides an explanation for involvement of both 11q and 13q in B-CLL and the potential to develop animal models for this common lymphoproliferative disorder.
Collapse
Affiliation(s)
- Rebecca L Auer
- Centre for Haematology, Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine, 4 Newark Street, London, UK
| | | | | |
Collapse
|