1
|
Chen XP, Yang ZT, Yang SX, Li EM, Xie L. PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochim Biophys Acta Rev Cancer 2024; 1880:189246. [PMID: 39694422 DOI: 10.1016/j.bbcan.2024.189246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited. This review provides a comprehensive overview of PAK2's role in cancer, focusing on its involvement in processes such as angiogenesis, metastasis, cell survival, metabolism, immune response, and drug resistance. We also explore its function in key cancer signaling pathways and the potential of small-molecule inhibitors targeting PAK2 for therapeutic purposes. Despite promising preclinical data, no PAK2 inhibitors have reached clinical practice, underscoring challenges related to their specificity and therapeutic application. This review highlights the biological significance of PAK2 in cancer and its interactions with critical signaling pathways, offering valuable insights for future research. We also discuss the major obstacles in developing PAK inhibitors and propose strategies to overcome these barriers, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Xin-Pan Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zi-Tao Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shang-Xin Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; The Laboratory for Cancer Molecular Biology, Shantou Academy Medical Sciences, Shantou 515041, Guangdong, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515041, Guangdong, China.
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
3
|
Chikkamenahalli LL, Jessen E, Bernard CE, Ip WE, Breen-Lyles M, Cipriani G, Pullapantula SR, Li Y, AlAsfoor S, Wilson L, Koch KL, Kuo B, Shulman RJ, Chumpitazi BP, McKenzie TJ, Kellogg TA, Tonascia J, Hamilton FA, Sarosiek I, McCallum R, Parkman HP, Pasricha PJ, Abell TL, Farrugia G, Dasari S, Grover M. Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis. iScience 2024; 27:108991. [PMID: 38384852 PMCID: PMC10879712 DOI: 10.1016/j.isci.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with T cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis.
Collapse
Affiliation(s)
| | - Erik Jessen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E. Bernard
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - W.K. Eddie Ip
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Breen-Lyles
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Suraj R. Pullapantula
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Shefaa AlAsfoor
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Laura Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Braden Kuo
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Irene Sarosiek
- Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | | | | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - the NIDDK Gastroparesis Clinical Research Consortium (GpCRC)
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wake Forest University, Winston-Salem, NC, USA
- Massachusetts General Hospital, Boston, MA, USA
- Baylor College of Medicine, Houston, TX, USA
- Duke University, Durham, NC, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Texas Tech University Health Sciences Center, El Paso, TX, USA
- Temple University, Philadelphia, PA, USA
- Mayo Clinic, Scottsdale, AZ, USA
- University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
5
|
A study of the mechanisms responsible for the action of new immunosuppressants and their effects on rat small intestinal transplantation. Transpl Immunol 2021; 70:101497. [PMID: 34785307 DOI: 10.1016/j.trim.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.
Collapse
|
6
|
Molina MS, Hoffman EA, Stokes J, Kummet N, Smith KA, Baker F, Zúñiga TM, Simpson RJ, Katsanis E. Regulatory Dendritic Cells Induced by Bendamustine Are Associated With Enhanced Flt3 Expression and Alloreactive T-Cell Death. Front Immunol 2021; 12:699128. [PMID: 34249005 PMCID: PMC8264365 DOI: 10.3389/fimmu.2021.699128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning was also associated with greater Flt3 expression among host DCs and an accumulation of pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs (moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s. While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and heightened Flt3 signaling are associated with a distinct regulatory phenotype, with increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed greater levels of PD-1 and underwent increased programmed cell death as the concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI conditioning limits GvHD and yields T-cells tolerant to host antigen.
Collapse
Affiliation(s)
- Megan S Molina
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Nicole Kummet
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Kyle A Smith
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Forrest Baker
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Tiffany M Zúñiga
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Medicine, University of Arizona, Tucson, AZ, United States.,Department of Pathology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
8
|
Kramer ED, Abrams SI. Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Front Immunol 2020; 11:1963. [PMID: 32983128 PMCID: PMC7481329 DOI: 10.3389/fimmu.2020.01963] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
The immune system plays a critical role in cancer progression and response to therapy. However, the immune system can be compromised during the neoplastic process. Notably, the myeloid lineage, which gives rise to granulocytic cells, including neutrophils, is a well-recognized target of tumor-mediated immune suppression. Ordinarily, granulocytic cells are integral for host defense, but in neoplasia the normal process of granulocyte differentiation (i.e., granulopoiesis) can be impaired leading instead to the formation of granulocytic (or PMN)-myeloid-derived suppressor cells (MDSCs). Such cells comprise various stages of myeloid differentiation and are defined functionally by their highly pro-tumorigenic and immune suppressive activities. Thus, considerable interest has been devoted to impeding the negative contributions of PMN-MDSCs to the antitumor response. Understanding their biology has the potential to unveil novel therapeutic opportunities to hamper PMN-MDSC production in the bone marrow, their mobilization, or their effector functions within the tumor microenvironment and, therefore, bolster anticancer therapies that require a competent myeloid compartment. In this review, we will highlight mechanisms by which the neoplastic process skews granulopoiesis to produce PMN-MDSCs, summarize mechanisms by which they execute their pro-tumorigenic activities and, lastly, underscore strategies to obstruct their role as negative regulators of antitumor immunity.
Collapse
Affiliation(s)
- Elliot D Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
9
|
Stokes J, Hoffman EA, Molina MS, Kummet N, Simpson RJ, Zeng Y, Katsanis E. Bendamustine with total body irradiation conditioning yields tolerant T-cells while preserving T-cell-dependent graft-versus-leukemia. Oncoimmunology 2020; 9:1758011. [PMID: 32391190 PMCID: PMC7199810 DOI: 10.1080/2162402x.2020.1758011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Graft-versus-host disease (GvHD) remains a significant impediment to allogeneic hematopoietic cell transplantation (HCT) success, necessitating studies focused on alleviating GvHD, while preserving the graft-versus-leukemia (GvL) effect. Based on our previous studies showing bendamustine with total body irradiation (BEN-TBI) conditioning reduces GvHD compared to the current clinical standard of care cyclophosphamide (CY)-TBI in a murine MHC-mismatched bone marrow transplantation (BMT) model, this study aimed to evaluate the role and fate of donor T-cells following BEN-TBI conditioning. We demonstrate that BEN-TBI reduces GvHD compared to CY-TBI independently of T regulatory cells (Tregs). BEN-TBI conditioned mice have a smaller proportion and less activated donor T-cells, with lower CD47 expression, early post-transplant, but no sustained phenotypic differences in T-cells. In BEN-TBI conditioned mice, donor T-cells gain tolerance specific to host MHC antigens. Though these T-cells are tolerant to host antigens, we demonstrate that BEN-TBI preserves a T-cell-dependent GvL effect. These findings indicate that BEN-TBI conditioning reduces GvHD without compromising GvL, warranting its further investigation as a potentially safer and more efficacious clinical alternative to CY-TBI.
Collapse
Affiliation(s)
- Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Megan S Molina
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Nicole Kummet
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, University of Arizona, Tucson, AZ, USA.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Yi Zeng
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pathology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
A Strategy for Suppressing Macrophage-mediated Rejection in Xenotransplantation. Transplantation 2020; 104:675-681. [DOI: 10.1097/tp.0000000000003024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
The effect of a novel immunosuppressive drug, a PAK-2 inhibitor, on macrophage differentiation/polarization in a rat small intestinal transplantation model. Transpl Immunol 2019; 57:101246. [DOI: 10.1016/j.trim.2019.101246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023]
|
12
|
Lo PC, Maeda A, Kodama T, Takakura C, Yoneyama T, Sakai R, Noguchi Y, Matsuura R, Eguchi H, Matsunami K, Okuyama H, Miyagawa S. The novel immunosuppressant prenylated quinolinecarboxylic acid-18 (PQA-18) suppresses macrophage differentiation and cytotoxicity in xenotransplantation. Immunobiology 2019; 224:575-584. [PMID: 30967296 DOI: 10.1016/j.imbio.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Innate immunity plays a major role in xenograft rejection. However, the majority of immunosuppressants focus on inhibiting acquired immunity and not innate immunity. Therefore, a novel immunosuppressant suitable for use in conjunction with xenografts continues to be needed. It has been reported that prenylated quinolinecarboxylic acid-18 (PQA-18), a p21-activated kinase 2 (PAK2) inhibitor, exerts an immunosuppressive function on T cells. Hence, the possibility exists that PQA-18 might be used in conjunction with xenografts, which prompted us to investigate the efficacy of PQA-18 on macrophages compared with Tofacitinib, a janus kinase (JAK) inhibitor. Initial experiments confirmed that PQA-18 is non-toxic to swine endothelial cells (SECs) and human monocytes. Both PQA-18 and Tofacitinib suppressed macrophage-mediated cytotoxicity in both the differentiation and effector phases. Both PQA-18 and tofacitinib suppressed the expression of HLA-ABC by macrophages. However, contrary to Tofacitinib, PQA-18 also significantly suppressed the expression of CD11b, HLA-DR and CD40 on macrophages. PQA-18 significantly suppressed CCR7 expression on day 3 and on day 6, but Tofacitinib-induced suppression only on day 6. In a mixed lymphocyte reaction (MLR) assay, PQA-18 was found to suppress Interleukin-2 (IL-2)-stimulated T cell proliferation to a lesser extent than Tofacitinib. However, PQA-18 suppressed xenogeneic-induced T cell proliferation more strongly than Tofacitinib on day 3 and the suppression was similar on day 7. In conclusion, PQA-18 has the potential to function as an immunosuppressant for xenotransplantation.
Collapse
Affiliation(s)
- Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine Japan.
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Tomohisa Yoneyama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Yuki Noguchi
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | | | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| |
Collapse
|
13
|
Stokes J, Hoffman EA, Molina MS, Eremija J, Larmonier N, Zeng Y, Katsanis E. Bendamustine with Total Body Irradiation Limits Murine Graft-versus-Host Disease in Part Through Effects on Myeloid-Derived Suppressor Cells. Biol Blood Marrow Transplant 2018; 25:405-416. [PMID: 30326280 DOI: 10.1016/j.bbmt.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
Graft-versus-host disease (GVHD) remains a significant challenge in allogeneic hematopoietic cell transplantation (HCT). An underinvestigated strategy to reduce GVHD is the modification of the preparative conditioning regimen. In the present study, we aimed to evaluate GVHD associated with bendamustine (BEN) conditioning in conjunction with total body irradiation (TBI) as an alternative to the standard myeloablative regimen of cyclophosphamide (CY) and TBI. We demonstrate that BEN-TBI conditioning, although facilitating complete donor chimerism, results in significantly less GVHD compared with CY-TBI. In BEN-TBI-conditioned mice, suppressive CD11b+Gr-1high myeloid cells are increased in the blood, bone marrow, spleen, and intestines. When Gr-1high cells are depleted before transplantation, the beneficial effects of BEN-TBI are partially lost. Alternatively, administration of granulocyte colony-stimulating factor, which promotes CD11b+Gr-1+ myeloid cell expansion, is associated with a trend toward increased survival in BEN-TBI-conditioned mice. These findings indicate a potential role of myeloid-derived suppressor cells in the mechanism by which BEN allows engraftment with reduced GVHD. BEN-TBI conditioning may present a safer alternative to CY-TBI conditioning for allogeneic HCT.
Collapse
Affiliation(s)
- Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Megan S Molina
- Department of Pediatrics, University of Arizona, Tucson, Arizona; Department of Immunobiology, University of Arizona, Tucson, Arizona
| | - Jelena Eremija
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Yi Zeng
- Department of Pediatrics, University of Arizona, Tucson, Arizona; University of Arizona Cancer Center, Tucson, Arizona
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, Arizona; Department of Immunobiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Arizona, Tucson, Arizona; Department of Pathology, University of Arizona, Tucson, Arizona; University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|