1
|
Singhal D, Kutyna MM, Hahn CN, Shah MV, Hiwase DK. Therapy-Related Myeloid Neoplasms: Complex Interactions among Cytotoxic Therapies, Genetic Factors, and Aberrant Microenvironment. Blood Cancer Discov 2024; 5:400-416. [PMID: 39422544 DOI: 10.1158/2643-3230.bcd-24-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Therapy-related myeloid neoplasm (t-MN), characterized by its association with prior exposure to cytotoxic therapy, remains poorly understood and is a major impediment to long-term survival even in the era of novel targeted therapies due to its aggressive nature and treatment resistance. Previously, cytotoxic therapy-induced genomic changes in hematopoietic stem cells were considered sine qua non in pathogenesis; however, recent research demonstrates a complex interaction between acquired and hereditary genetic predispositions, along with a profoundly senescent bone marrow (BM) microenvironment. We review emerging data on t-MN risk factors and explore the intricate interplay among clonal hematopoiesis, genetic predisposition, and the abnormal BM microenvironment. Significance: t-MN represents a poorly understood blood cancer with extremely poor survival and no effective therapies. We provide a comprehensive review of recent preclinical research highlighting complex interaction among emerging therapies, hereditary and acquired genetic factors, and BM microenvironment. Understanding the risk factors associated with t-MN is crucial for clinicians, molecular pathologists, and cancer biologists to anticipate and potentially reduce its incidence in the future. Moreover, better understanding of the molecular pathogenesis of t-MN may enable preemptive screening and even intervention in high-risk patients.
Collapse
Affiliation(s)
- Deepak Singhal
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Monika M Kutyna
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Christopher N Hahn
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | | | - Devendra K Hiwase
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
2
|
Kim M, Kang D, Kim HS, Lee JM, Park S, Kwag D, Lee C, Hong Y, Na D, Koh Y, Sun CH, An H, Kim YJ, Kim Y. Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. Int J Mol Sci 2024; 25:10258. [PMID: 39408588 PMCID: PMC11477089 DOI: 10.3390/ijms251910258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential cure for myelodysplastic neoplasms (MDSs) and other hematologic malignancies. This study investigates post-transplantation genetic evolution and telomere dynamics in hematopoietic cells, with a focus on clonal hematopoiesis (CH). We conducted a longitudinal analysis of 21 MDS patients who underwent allo-HSCT between September 2009 and February 2015. Genetic profiles of hematopoietic cells from both recipients and donors were compared at equivalent pre- and post-transplantation time points. Targeted sequencing identified CH-associated mutations, and real-time quantitative PCR measured telomere length. Furthermore, we compared CH incidence between recipients and age-matched controls from the GENIE cohort from routine health checkups. Post-allo-HSCT, 38% of recipients developed somatic mutations not detected before transplantation, indicating de novo CH originating from donor cells. Compared to age-matched healthy controls, recipients showed a significantly higher incidence of CH, suggesting increased susceptibility to genetic changes post-transplant. Telomere length analysis also revealed accelerated shortening in transplanted cells, highlighting the heightened stress and proliferation demands in the new microenvironment. Our findings reveal a notable incidence of donor-derived CH in allo-HSCT recipients, alongside significant telomere attrition. This suggests the potential influence of the marrow microenvironment on genetic and molecular changes in hematopoietic cells.
Collapse
Affiliation(s)
- Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chaeyeon Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duyeon Na
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Choong Hyun Sun
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Hongyul An
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Sandhow L, Cai H, Leonard E, Xiao P, Tomaipitinca L, Månsson A, Kondo M, Sun X, Johansson AS, Tryggvason K, Kasper M, Järås M, Qian H. Skin mesenchymal niches maintain and protect AML-initiating stem cells. J Exp Med 2023; 220:e20220953. [PMID: 37516911 PMCID: PMC10373345 DOI: 10.1084/jem.20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/10/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Leukemia cutis or leukemic cell infiltration in skin is one of the common extramedullary manifestations of acute myeloid leukemia (AML) and signifies a poorer prognosis. However, its pathogenesis and maintenance remain understudied. Here, we report massive AML cell infiltration in the skin in a transplantation-induced MLL-AF9 AML mouse model. These AML cells could regenerate AML after transplantation. Prospective niche characterization revealed that skin harbored mesenchymal progenitor cells (MPCs) with a similar phenotype as BM mesenchymal stem cells. These skin MPCs protected AML-initiating stem cells (LSCs) from chemotherapy in vitro partially via mitochondrial transfer. Furthermore, Lama4 deletion in skin MPCs promoted AML LSC proliferation and chemoresistance. Importantly, more chemoresistant AML LSCs appeared to be retained in Lama4-/- mouse skin after cytarabine treatment. Our study reveals the characteristics and previously unrecognized roles of skin mesenchymal niches in maintaining and protecting AML LSCs during chemotherapy, meriting future exploration of their impact on AML relapse.
Collapse
Affiliation(s)
- Lakshmi Sandhow
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Huan Cai
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elory Leonard
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Pingnan Xiao
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Luana Tomaipitinca
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alma Månsson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Makoto Kondo
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaoyan Sun
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Järås
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Hong Qian
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Falconi G, Galossi E, Hajrullaj H, Fabiani E, Voso MT. Bone Marrow Microenvironment Involvement in t-MN: Focus on Mesenchymal Stem Cells. Mediterr J Hematol Infect Dis 2023; 15:e2023055. [PMID: 37705521 PMCID: PMC10497308 DOI: 10.4084/mjhid.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) are a late complication of cytotoxic therapy (CT) used in the treatment of both malignant and non-malignant diseases. Historically, t-MN has been considered to be a direct consequence of DNA damage induced in normal hematopoietic stem or progenitor cells (HSPC) by CT. However, we now know that treatment-induced mutations in HSC are not the only players involved in t-MN development, but additional factors may contribute to the onset of t-MN. One of the known drivers involved in this field is the bone marrow microenvironment (BMM) and, in particular, bone marrow mesenchymal stem cells (BM-MSC), whose role in t-MN pathogenesis is the topic of this mini-review. BM-MSCs, physiologically, support HSC maintenance, self-renewal, and differentiation through hematopoietic-stromal interactions and the production of cytokines. In addition, BM-MSCs maintain the stability of the BM immune microenvironment and reduce the damage caused to HSC by stress stimuli. In the t-MN context, chemo/radiotherapy may induce damage to the BM-MSC and likewise alter BM-MSC functions by promoting pro-inflammatory response, clonal selection and/or the production of factors that may favor malignant hematopoiesis. Over the last decade, it has been shown that BM-MSC isolated from patients with de novo and therapy-related MN exhibit decreased proliferative and clonogenic capacity, altered morphology, increased senescence, defective osteogenic differentiation potential, impaired immune-regulatory properties, and reduced ability to support HSC growth and differentiation, as compared to normal BM-MSC. Although the understanding of the genetic and gene expression profile associated with ex vivo-expanded t-MN-MSCs remains limited and debatable, its potential role in prognostic and therapeutic terms is acting as a flywheel of attraction for many researchers.
Collapse
Affiliation(s)
- Giulia Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Galossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - H Hajrullaj
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
6
|
Dolinska M, Cai H, Månsson A, Shen J, Xiao P, Bouderlique T, Li X, Leonard E, Chang M, Gao Y, Medina JP, Kondo M, Sandhow L, Johansson AS, Deneberg S, Söderlund S, Jädersten M, Ungerstedt J, Tobiasson M, Östman A, Mustjoki S, Stenke L, Le Blanc K, Hellström-Lindberg E, Lehmann S, Ekblom M, Olsson-Strömberg U, Sigvardsson M, Qian H. Characterization of the bone marrow niche in patients with chronic myeloid leukemia identifies CXCL14 as a new therapeutic option. Blood 2023; 142:73-89. [PMID: 37018663 PMCID: PMC10651879 DOI: 10.1182/blood.2022016896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 04/07/2023] Open
Abstract
Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.
Collapse
MESH Headings
- Animals
- Mice
- Bone Marrow/metabolism
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Chemokines, CXC/therapeutic use
- Cytokines/metabolism
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Neoplastic Stem Cells/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Monika Dolinska
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Huan Cai
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alma Månsson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jingyi Shen
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xidan Li
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Chang
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yuchen Gao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Pablo Medina
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Makoto Kondo
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Deneberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Söderlund
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Martin Jädersten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Leif Stenke
- Division of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology & Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Marja Ekblom
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Ulla Olsson-Strömberg
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Lund, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Tomasoni C, Pievani A, Rambaldi B, Biondi A, Serafini M. A Question of Frame: The Role of the Bone Marrow Stromal Niche in Myeloid Malignancies. Hemasphere 2023; 7:e896. [PMID: 37234820 PMCID: PMC10208717 DOI: 10.1097/hs9.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.
Collapse
Affiliation(s)
- Chiara Tomasoni
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Benedetta Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
8
|
Tian C, Li Y, Wang L, Si J, Zheng Y, Kang J, Wang Y, You MJ, Zheng G. Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia. Cell Death Dis 2022; 13:922. [PMID: 36333298 PMCID: PMC9636388 DOI: 10.1038/s41419-022-05377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The development of acute lymphoblastic leuakemia (ALL) is partly attributed to the effects of bone marrow (BM) microenvironment, especially mesenchymal stromal cells (MSCs), which interact bilaterally with leukaemia cells, leading to ALL progression. In order to find MSCs-based microenvironment targeted therapeutic strategies, Notch1-induced T-cell ALL (T-ALL) mice models were used and dynamic alterations of BM-MSCs with increased cell viability during T-ALL development was observed. In T-ALL mice derived stroma-based condition, leukaemia cells showed significantly elevated growth capacity indicating that MSCs participated in leukaemic niche formation. RNA sequence results revealed that T-ALL derived MSCs secreted fibroblast growth factor 2 (FGF2), which combined with fibroblast growth factor receptor 2 (FGFR2) on leukaemia cells, resulting in activation of PI3K/AKT/mTOR signalling pathway in leukaemia cells. In vitro blocking the interaction between FGF2 and FGFR2 with BGJ398 (infigratinib), a FGFR1-3 kinase inhibitor, or knockdown FGF2 in MSCs by interference caused deactivation of PI3K/AKT/mTOR pathway and dysregulations of genes associated with cell cycle and apoptosis in ALL cells, leading to decrease of leukaemia cells. In mouse model received BGJ398, overall survival was extended and dissemination of leukaemia cells in BM, spleen, liver and peripheral blood was decreased. After subcutaneous injection of primary human T-ALL cells with MSCs, tumour growth was suppressed when FGF2/FGFR2 was interrupted. Thus, inhibition of FGF2/FGFR2 interaction appears to be a valid strategy to overcome BM-MSCs mediated progression of T-ALL, and BGJ398 could indeed improve outcomes in T-ALL, which provide theoretical basis of BGJ398 as a BM microenvironment based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yueyang Li
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Lina Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Junqi Si
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yaxin Zheng
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Junnan Kang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Yafei Wang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - M. James You
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77479 USA
| | - Guoguang Zheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
9
|
Xiang Y, Feng L, Liu H, Liu Y, Li J, Su L, Liao X. SIPA1 Regulates LINC01615 to Promote Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14194815. [PMID: 36230738 PMCID: PMC9562673 DOI: 10.3390/cancers14194815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Breast cancer is a malignant tumor that often endangers women. After undergoing surgery and supplementary chemotherapy, however, tumor recurrence has not been well researched. The primary cause is high metastatic rates. Hence, bioinformatic and functional analyses were performed to indicate the effect of LINC01615 on breast cancer. We revealed that LINC01615 is regulated by the transcription factor SIPA1 in promoting breast cancer cell malignancy. Abstract Long non-coding RNAs (lncRNAs) are reported to play an important regulatory effect in carcinogenesis and malignancy. We found by high-throughput sequencing that LINC01615 is upregulated in breast cancer patients and reduces patients’ overall survival. In vivo and in vitro experiments, we clarified that overexpression of LINC01615 can promote breast cancer cell metastasis ability. The expression of LINC01615 is regulated by the transcriptional activator SIPA1, thereby promoting carcinogenesis in breast cancer cells. Our research clarified that LINC01615 can act as an oncogenic factor in promoting the development of breast cancer.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Hui Liu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhuan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Jiapeng Li
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| |
Collapse
|
10
|
Cai H, Kondo M, Sandhow L, Xiao P, Johansson AS, Sasaki T, Zawacka-Pankau J, Tryggvason K, Ungerstedt J, Walfridsson J, Ekblom M, Qian H. Critical role of Lama4 for hematopoiesis regeneration and acute myeloid leukemia progression. Blood 2022; 139:3040-3057. [PMID: 34958665 PMCID: PMC11022969 DOI: 10.1182/blood.2021011510] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Impairment of normal hematopoiesis and leukemia progression are 2 well-linked processes during leukemia development and are controlled by the bone marrow (BM) niche. Extracellular matrix proteins, including laminin, are important BM niche components. However, their role in hematopoiesis regeneration and leukemia is unknown. Laminin α4 (Lama4), a major receptor-binding chain of several laminins, is altered in BM niches in mice with acute myeloid leukemia (AML). So far, the impact of Lama4 on leukemia progression remains unknown. We here report that Lama4 deletion in mice resulted in impaired hematopoiesis regeneration following irradiation-induced stress, which is accompanied by altered BM niche composition and inflammation. Importantly, in a transplantation-induced MLL-AF9 AML mouse model, we demonstrate accelerated AML progression and relapse in Lama4-/- mice. Upon AML exposure, Lama4-/- mesenchymal stem cells (MSCs) exhibited dramatic molecular alterations, including upregulation of inflammatory cytokines that favor AML growth. Lama4-/- MSCs displayed increased antioxidant activities and promoted AML stem cell proliferation and chemoresistance to cytarabine, which was accompanied by increased mitochondrial transfer from the MSCs to AML cells and reduced reactive oxygen species in AML cells in vitro. Similarly, we detected lower levels of reactive oxygen species in AML cells from Lama4-/- mice post-cytarabine treatment. Notably, LAMA4 inhibition or knockdown in human MSCs promoted human AML cell proliferation and chemoprotection. Together, our study for the first time demonstrates the critical role of Lama4 in impeding AML progression and chemoresistance. Targeting Lama4 signaling pathways may offer potential new therapeutic options for AML.
Collapse
Affiliation(s)
- Huan Cai
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Makoto Kondo
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Takako Sasaki
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Joanna Zawacka-Pankau
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marja Ekblom
- Division of Molecular Hematology, Lund University, Lund, Sweden
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
A senescence stress secretome is a hallmark of therapy-related myeloid neoplasm stromal tissue occurring soon after cytotoxic exposure. Leukemia 2022; 36:2678-2689. [PMID: 36038666 PMCID: PMC9613466 DOI: 10.1038/s41375-022-01686-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Therapy-related myeloid neoplasm (tMN) is considered a direct consequence of DNA damage in hematopoietic stem cells. Despite increasing recognition that altered stroma can also drive leukemogenesis, the functional biology of the tMN microenvironment remains unknown. We performed multiomic (transcriptome, DNA damage response, cytokine secretome and functional profiling) characterization of bone marrow stromal cells from tMN patients. Critically, we also compared (i) patients with myeloid neoplasm and another cancer but without cytotoxic exposure, (ii) typical primary myeloid neoplasm, and (iii) age-matched controls to decipher the microenvironmental changes induced by cytotoxics vs. neoplasia. Strikingly, tMN exhibited a profoundly senescent phenotype with induction of CDKN1A and β-Galactosidase, defective phenotype, and proliferation. Moreover, tMN stroma showed delayed DNA repair and defective adipogenesis. Despite their dormant state, tMN stromal cells were metabolically highly active with a switch toward glycolysis and secreted multiple pro-inflammatory cytokines indicative of a senescent-secretory phenotype that inhibited adipogenesis. Critically, senolytics not only eliminated dormant cells, but also restored adipogenesis. Finally, sequential patient sampling showed senescence phenotypes are induced within months of cytotoxic exposure, well prior to the onset of secondary cancer. Our data underscores a role of senescence in the pathogenesis of tMN and provide a valuable resource for future therapeutics.
Collapse
|
12
|
Mu D, Long S, Guo L, Liu W. High Expression of VAV Gene Family Predicts Poor Prognosis of Acute Myeloid Leukemia. Technol Cancer Res Treat 2021; 20:15330338211065877. [PMID: 34894858 PMCID: PMC8679409 DOI: 10.1177/15330338211065877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objectives: VAV family genes (VAV1, VAV2, and
VAV3) are associated with prognosis in various cancers;
however, they have not been evaluated in acute myeloid leukemia (AML). In this
study, the prognostic value of VAV expression in AML was evaluated by a
single-center study in combination with bioinformatics analyses.
Methods: The expression and prognostic value of VAVs in
patients with AML were investigated using various databases, including GEPIA,
CCLE, EMBL-EBI, UALCAN, cBioPortal, STRING, and DAVID. Blood samples from 35
patients with AML (non-M3 subtype) and 13 benigh individuals were collected at
our center. VAV expression levels were detected by real-time quantitative PCR
(RT-qPCR) and western blotting. Clinical data were derived from medical records.
Results: Based on data from multiple databases, the expression
levels of VAV1, VAV2, and VAV3 were significantly higher in AML than in control
tissues (P < 0.05). RT-qPCR and western blotting results
showed that VAV expression in mRNA and protein levels were
higher in patients with AML that in the control group (P <
0.05). Complete remission rates were lower and risks were higher in patients
with AML with high VAV1 expression than with low
VAV1 expression (P < 0.05). High levels
of VAV2, VAV3, and VAV1 were related to a poor overall survival, and this
relationship was significant for VAV1 (P < 0.05). High
expression levels of genes correlated with VAV1, such as
SIPA1, SH2D3C, and HMHA1
were also related to a poor prognosis in AML. Functional and pathways enrichment
analyses indicated that the contribution of the VAV family to AML may be
mediated by the NF-κB, cAMP, and other pathways. Conclusion: VAVs
were highly expressed in AML. In particular, VAV1 has prognostic value and is a
promising therapeutic target for AML.
Collapse
Affiliation(s)
- Dan Mu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Sili Long
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Ling Guo
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| |
Collapse
|
13
|
Jann JC, Mossner M, Riabov V, Altrock E, Schmitt N, Flach J, Xu Q, Nowak V, Obländer J, Palme I, Weimer N, Streuer A, Jawhar A, Darwich A, Jawhar M, Metzgeroth G, Nolte F, Hofmann WK, Nowak D. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat Commun 2021; 12:6170. [PMID: 34697318 PMCID: PMC8546146 DOI: 10.1038/s41467-021-26424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022] Open
Abstract
The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients. Bone marrow-derived mesenchymal stroma cells (MSCs) in myeloid neoplasia have been hypothesized to carry somatic mutations and contribute to pathogenesis. Here the authors analyse ex-vivo cultures and primary MSCs derived from patients with myelodysplastic syndromes, finding functional alterations but no evidence of clonal mutations.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Mohammad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| |
Collapse
|
14
|
Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Adv 2021; 4:3795-3803. [PMID: 32780848 DOI: 10.1182/bloodadvances.2020002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
The bone marrow is a complex tissue in which heterogeneous populations of stromal cells interact with hematopoietic cells to dynamically respond to organismal needs in defense, hemostasis, and oxygen delivery. Physiologic challenges modify stromal/hematopoietic cell interactions to generate changes in blood cell production. When either stroma or hematopoietic cells are impaired, the system distorts. The distortions associated with myeloid malignancy are reviewed here and may provide opportunities for therapeutic intervention.
Collapse
|
15
|
Banjanin B, Schneider RK. Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the Genome Editing of Stromal Alterations. Front Genome Ed 2021; 2:618308. [PMID: 34713241 PMCID: PMC8525402 DOI: 10.3389/fgeed.2020.618308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The contribution of bone marrow stromal cells to the pathogenesis and therapy response of myeloid malignancies has gained significant attention over the last decade. Evidence suggests that the bone marrow stroma should not be neglected in the design of novel, targeted-therapies. In terms of gene-editing, the focus of gene therapies has mainly been on correcting mutations in hematopoietic cells. Here, we outline why alterations in the stroma should also be taken into consideration in the design of novel therapeutic strategies but also outline the challenges in specifically targeting mesenchymal stromal cells in myeloid malignancies caused by somatic and germline mutations.
Collapse
Affiliation(s)
- Bella Banjanin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Rebekka K. Schneider
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Teodorescu P, Pasca S, Dima D, Tomuleasa C, Ghiaur G. Targeting the Microenvironment in MDS: The Final Frontier. Front Pharmacol 2020; 11:1044. [PMID: 32742264 PMCID: PMC7364152 DOI: 10.3389/fphar.2020.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of hematopoietic stem and progenitor cells (HSPC), mainly characterized by ineffective hematopoiesis leading to peripheral cytopenias and progressive bone marrow failure. While clonal dominance is nearly universal at diagnosis, most genetic mutations identified in patients with MDS do not provide a conspicuous advantage to the malignant cells. In this context, malignant cells alter their adjacent bone marrow microenvironment (BME) and rely on cell extrinsic factors to maintain clonal dominance. The profoundly disturbed BME favors the myelodysplastic cells and, most importantly is detrimental to normal hematopoietic cells. Thus, the MDS microenvironment not only contributes to the observed cytopenias seen in these patients but could also negatively impact the engraftment of normal, allogeneic HSPCs in patients with MDS undergoing bone marrow transplant. Therefore, successful therapies in MDS should not only target the malignant cells but also reprogram their bone marrow microenvironment. Here, we will provide a synopsis of how drugs currently used or on the verge of being approved for the treatment of MDS may achieve this goal.
Collapse
Affiliation(s)
- Patric Teodorescu
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Affiliation(s)
- Eric Solary
- INSERM U1287 Gustave Roussy Cancer Center Villejuif France
- Faculté de Médecine Université Paris‐Saclay Le Kremlin‐Bicêtre France
| | - Lucie Laplane
- INSERM U1287 Gustave Roussy Cancer Center Villejuif France
- CNRS U8590 Institut d'Histoire et Philosophie des Sciences et des Techniques Université Paris I Panthéon‐Sorbonne Paris France
| |
Collapse
|
19
|
Åhsberg J, Xiao P, Okuyama K, Somasundaram R, Strid T, Qian H, Sigvardsson M. Progression of progenitor B-cell leukemia is associated with alterations of the bone marrow micro-environment. Haematologica 2019; 105:e102-e106. [PMID: 31296580 DOI: 10.3324/haematol.2018.214031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Josefine Åhsberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm
| | - Kazuki Okuyama
- Department of Clinical and Experimental Medicine, Linköping University, Linköping
| | - Rajesh Somasundaram
- Department of Clinical and Experimental Medicine, Linköping University, Linköping
| | - Tobias Strid
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping .,Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Sharma M, Ross C, Srivastava S. Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell Int 2019; 19:139. [PMID: 31139016 PMCID: PMC6530176 DOI: 10.1186/s12935-019-0855-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSC) are the key regulators of hematopoiesis. Owing to their dynamic nature; MSC differentiate into various lineages that further constitute the niche which are required for maintenance of the hematopoietic stem cells (HSC). A plethora of growth factors and cytokines secreted by MSC are essential for regulating the homeostasis within the niche in terms of cycling and quiescence of HSC. Additionally, there is a strong evidence suggesting the role of MSC in transformation of the niche to favour survival of leukemic cells. Regulation of HSC by MSC via BMP, Wnt, Notch and Sonic Hedgehog signalling has been well elaborated, however the modulation of MSC by HSC/LSC is yet unresolved. The cross talk between the HSC and MSC via paracrine or autocrine mechanisms is essential for the transformation. There are some reports implicating cell adhesion molecules, growth factors and cytokines; in modulation of MSC function and differentiation. The role of exosome mediated modulation has also been reported in the context of MSC transformation however, much needs to be done to understand this phenomenon in the present context. Similarly, the role of circulating nucleic acids, a well-studied molecular phenomenon in other tumours, requires attention in their potential role in crosstalk between MSC and HSC. This review underlines the current understanding of the physiological and pathophysiological roles of MSC and its transformation in diseased state, laying stress on developing further understanding of MSC regulation for development of the latter as therapeutic targets.
Collapse
Affiliation(s)
- Mugdha Sharma
- 1Department of Medicine, St. John's Medical College Hospital, Bangalore, India
| | - Cecil Ross
- 1Department of Medicine, St. John's Medical College Hospital, Bangalore, India
| | - Sweta Srivastava
- 2Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital, Bangalore, India
| |
Collapse
|
21
|
Distinct roles of mesenchymal stem and progenitor cells during the development of acute myeloid leukemia in mice. Blood Adv 2019; 2:1480-1494. [PMID: 29945938 DOI: 10.1182/bloodadvances.2017013870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Despite increasing evidence for the involvement of bone marrow (BM) hematopoietic stem cell niche in leukemogenesis, how BM mesenchymal stem and progenitor cells (MSPCs) contribute to leukemia niche formation and progression remains unclear. Using an MLL-AF9 acute myeloid leukemia (AML) mouse model, we demonstrate dynamic alterations of BM cellular niche components, including MSPCs and endothelial cells during AML development and its association with AML engraftment. Primary patient AML cells also induced similar niche alterations in xenografted mice. AML cell infiltration in BM causes an expansion of early B-cell factor 2+ (Ebf2+) MSPCs with reduced Cxcl12 expression and enhanced generation of more differentiated mesenchymal progenitor cells. Importantly, in vivo fate-mapping indicates that Ebf2+ MSPCs participated in AML niche formation. Ebf2+ cell deletion accelerated the AML development. These data suggest that native BM MSPCs may suppress AML. However, they can be remodeled by AML cells to form leukemic niche that might contribute to AML progression. AML induced dysregulation of hematopoietic niche factors like Angptl1, Cxcl12, Kitl, Il6, Nov, and Spp1 in AML BM MSPCs, which was associated with AML engraftment and partially appeared before the massive expansion of AML cells, indicating the possible involvement of the niche factors in AML progression. Our study demonstrates distinct dynamic features and roles of BM MSPCs during AML development.
Collapse
|
22
|
Imai T, Tanaka H, Hamazaki Y, Minato N. Rap1 signal modulators control the maintenance of hematopoietic progenitors in bone marrow and adult long-term hematopoiesis. Cancer Sci 2019; 110:1317-1330. [PMID: 30767320 PMCID: PMC6447830 DOI: 10.1111/cas.13974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023] Open
Abstract
Adult long‐term hematopoiesis depends on sustaining hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) niches, where their balance of quiescence, self‐renewal, and hematopoietic differentiation is tightly regulated. Although various BM stroma cells that produce niche factors have been identified, regulation of the intrinsic responsiveness of HSPC to the niche factors remains elusive. We previously reported that mice deficient for Sipa1, a Rap1 GTPase‐activating protein, develop diverse hematopoietic disorders of late onset. Here we showed that transplantation of BM cells expressing membrane‐targeted C3G (C3G‐F), a Rap1 GTP/GDP exchanger, resulted in the progressive decline of the numbers of HSPC repopulated in BM with time and impaired long‐term hematopoiesis of all cell lineages. C3G‐F/HSPC were sustained for months in spleen retaining hematopoietic potential, but these cells inefficiently contributed to overall hematopoietic reconstitution. C3G‐F/HSPC showed enhanced proliferation and differentiation with accelerated progenitor cell exhaustion in response to stem cell factor (SCF). Using a Ba/F3 cell line, we confirmed that the increased basal Rap1GTP levels with C3G‐F expression caused a markedly prolonged activation of c‐Kit receptor and downstream signaling through SCF ligation. A minor population of C3G‐F/HSPC also showed enhanced proliferation in the presence of thrombopoietin (TPO) compared to Vect/HSPC. Current results suggest an important role of basal Rap1 activation status of HSPC in their maintenance in BM for sustaining long‐term adult hematopoiesis.
Collapse
Affiliation(s)
- Takahiko Imai
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Tanaka
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Center for iPS Research and Application, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Abstract
Abstract
Myelodysplastic syndrome (MDS) is characterized by bone marrow failure and a strong propensity for leukemic evolution. Somatic mutations are critical early drivers of the disorder, but the factors enabling the emergence, selection, and subsequent leukemic evolution of these “leukemia-poised” clones remain incompletely understood. Emerging data point at the mesenchymal niche as a critical contributor to disease initiation and evolution. Disrupted inflammatory signaling from niche cells may facilitate the occurrence of somatic mutations, their selection, and subsequent clonal expansion. This review summarizes the current concepts about “niche-facilitated” bone marrow failure and leukemic evolution, their underlying molecular mechanisms, and clinical implications for future innovative therapeutic targeting of the niche in MDS.
Collapse
|
24
|
Stem cell damage after chemotherapy- can we do better? Best Pract Res Clin Haematol 2019; 32:31-39. [DOI: 10.1016/j.beha.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
|
25
|
Newton PT, Li L, Zhou B, Schweingruber C, Hovorakova M, Xie M, Sun X, Sandhow L, Artemov AV, Ivashkin E, Suter S, Dyachuk V, El Shahawy M, Gritli-Linde A, Bouderlique T, Petersen J, Mollbrink A, Lundeberg J, Enikolopov G, Qian H, Fried K, Kasper M, Hedlund E, Adameyko I, Sävendahl L, Chagin AS. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 2019; 567:234-238. [PMID: 30814736 DOI: 10.1038/s41586-019-0989-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.
Collapse
Affiliation(s)
- Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Artem V Artemov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Evgeny Ivashkin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Suter
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Vyacheslav Dyachuk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Maha El Shahawy
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Thibault Bouderlique
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
26
|
Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia 2018; 33:1487-1500. [PMID: 30575819 PMCID: PMC6756222 DOI: 10.1038/s41375-018-0310-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/15/2018] [Accepted: 10/16/2018] [Indexed: 01/13/2023]
Abstract
The study of myelodysplastic syndromes (MDS) in murine models has now indicated the possible involvement of the bone marrow microenvironment in the generation of dysplastic hematopoietic cells. However, there is scant work on patient samples and the role of hypomethylating agents on the bone marrow stromal cells of MDS patients is unclear. We show that human MDS-MSCs exhibit phenotypic, transcriptomic and epigenetic abnormalities. Stimuli provided by MDS-MSCs impaired the growth and function of healthy HSPCs, which is further sustained autonomously in HSPCs for significant periods of time resulting in a failure for active hematopoietic engraftment across primary and secondary transplant recipients (chimerism: 0.34–91% vs 2.78%, engraftment frequencies: at 0.06 ± 0.02 vs full engraftment for MDS-MSC vs healthy groups, respectively). Hypomethylation of MDS-MSCs improved overall engraftment in most of the MDS-MSC groups tested (2/7 with p < 0.01, 3/7 with p < 0.05 and 2/7 with no significant difference). MDS-MSCs that fail to respond to hypomethylating therapy are associated with patients with rapid adverse disease transformation and this further suggests that MDS-MSCs may be an integral part of disease progression and have prognostic value as well as potential as a therapeutic target.
Collapse
|
27
|
Abstract
Purpose of review In this review, we aim to discuss the role of the bone marrow microenvironment in supporting hematopoiesis, with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate. Recent findings Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation. Summary Several groups have contributed to the characterization of the different cell types that comprise the complex bone marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the microenvironmental support to malignant cells while sparing normal HSCs.
Collapse
|