1
|
Oved JH, Russell A, DeZern A, Prockop SE, Bonfim C, Sharma A, Purtill D, Lakkaraja M, Bidgoli A, Bhoopalan SV, Soni S, Boelens JJ, Abraham A. The role of the conditioning regimen for autologous and ex vivo genetically modified hematopoietic stem cell-based therapies: recommendations from the ISCT stem cell engineering committee. Cytotherapy 2025; 27:78-84. [PMID: 39320295 DOI: 10.1016/j.jcyt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The advent of autologous gene modified cell therapies to treat monogenic disorders has been a major step forward for the field of hematopoietic stem cell transplantation (HCT) and cellular therapies. The need for disease-specific conditioning to enable these products to provide a potential cure has required extrapolation from experience in myeloablative and non-myeloablative HCT for these disorders. METHODS In this manuscript, we review the current datasets and clinical experience using different conditioning regimens for autologous gene therapies in hemoglobinopathies, metabolic and lysosomal disorders, inborn errors of immunity (IEI) and bone marrow failure (BMF) syndromes. RESULTS The disease specific and unique conditioning requirements of each disorder are considered in order to achieve maximal benefit while minimizing associated toxicities. CONCLUSIONS Standardized recommendations based on these data are made for each set of disorders to harmonize treatment. Future directions and the possibility of non-genotoxic conditioning regimens for autologous gene therapies are also discussed. Ethical Statement: The authors followed all relevant ethical considerations in writing this manuscript.
Collapse
Affiliation(s)
- Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA.
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Susan E Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital and PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Madhavi Lakkaraja
- Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandeep Soni
- Pediatrics, University of California, San Francisco, California, USA; Crispr Therapeutics AG, Boston, Massachusetts, USA; ISCT Immune-Gene Therapy Committee, ISCT, Vancouver, California, USA
| | - Jaap Jan Boelens
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Scordo M. The promises and potential pitfalls of pharmacokinetic model-based dosing in cellular therapy. Blood Adv 2024; 8:6015-6016. [PMID: 39368808 PMCID: PMC11635718 DOI: 10.1182/bloodadvances.2024012688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Affiliation(s)
- Michael Scordo
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
3
|
Dvorak CC, Long-Boyle JR, Holbrook-Brown L, Abdel-Azim H, Bertaina A, Vatsayan A, Talano JA, Bunin N, Anderson E, Flower A, Lalefar N, Higham CS, Kapoor N, Klein O, Odinakachukwu MC, Cho S, Jacobsohn DA, Collier W, Pulsipher MA. Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19-depleted pediatric haploidentical HCT for hematologic malignancy. Blood Adv 2024; 8:6003-6014. [PMID: 39042892 PMCID: PMC11629297 DOI: 10.1182/bloodadvances.2024012670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT We hypothesized that the inferior disease-free survival (DFS) seen in older patients who underwent αβ-T-cell/CD19-depleted (AB-TCD) haploidentical hematopoietic cell transplantation (HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13 years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and after HCT were predicted using a validated pharmacokinetic model. Receiver operating characteristic curves were used to identify the optimal target windows for rATG exposure in terms of outcomes. We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52) with a high pre-HCT area under curve (AUC; ≥50 arbitrary units [AU] per day per milliliter) and a low post-HCT AUC (<12 AU per day per liter); quadrant 2 (n = 47) with a low pre- and post-HCT AUC; quadrant 3 (n = 13) with a low pre-HCT and a high post-HCT AUC; and quadrant 4 (n = 51) with a high pre- and post-HCT AUC. Quadrant 1 had a 3-year DFS of 86.5%, quadrant 2 had a DFS of 64.6%, quadrant 3 had a DFS of 32.9%, and for quadrant 4 it was 48.2%. An adjusted regression analysis demonstrated additional factors that were associated with an increased hazard for worse DFS, namely minimal residual disease (MRD) positivity and cytomegalovirus (CMV) R+/D- serostatus. Nonoptimal rATG exposure exhibited the strongest effect in unadjusted and adjusted (MRD status or CMV serostatus) analyses. High exposure to rATG after HCT was associated with inferior DFS following AB-TCD haploidentical HCT for pediatric patients with hematologic malignancies. Model-based dosing of rATG to achieve optimal exposure may improve DFS. These trials were registered at www.ClinicalTrials.gov as #NCT02646839 and #NCT04337515.
Collapse
Affiliation(s)
- Christopher C. Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy, University of California San Francisco Benioff Children’s Hospitals, San Francisco, CA
| | - Janel R. Long-Boyle
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy, University of California San Francisco Benioff Children’s Hospitals, San Francisco, CA
| | - Lucia Holbrook-Brown
- Division of Hematology and Oncology, Section of Transplantation Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at The University of Utah, Salt Lake City, UT
| | - Hisham Abdel-Azim
- Cancer Center, Children’s Hospital and Medical Center, Loma Linda University School of Medicine, Loma Linda, CA
| | - Alice Bertaina
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Anant Vatsayan
- Division of Blood and Marrow Transplantation, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Julie-An Talano
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI
| | - Nancy Bunin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eric Anderson
- Division of Pediatric Hematology-Oncology, Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Allyson Flower
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, New York Medical College, Valhalla, NY
| | - Nahal Lalefar
- Division of Hematology, University of California San Francisco Benioff Children’s Hospitals, Oakland, CA
| | - Christine S. Higham
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy, University of California San Francisco Benioff Children’s Hospitals, San Francisco, CA
| | - Neena Kapoor
- Division of Pediatric Hematology, Oncology, and Transplantation and Cellular Therapy, University of Southern California Children’s Hospital Los Angeles, Los Angeles, CA
| | - Orly Klein
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Maryanne C. Odinakachukwu
- Division of Blood and Marrow Transplantation, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Soohee Cho
- Division of Hematology and Oncology, Section of Transplantation Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at The University of Utah, Salt Lake City, UT
| | - David A. Jacobsohn
- Division of Blood and Marrow Transplantation, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Willem Collier
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Section of Transplantation Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at The University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Boelens JJ, Scordo M. Model-based dosing for better survival after transplantation. Blood Adv 2024; 8:6064-6066. [PMID: 39602148 PMCID: PMC11636124 DOI: 10.1182/bloodadvances.2024014236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Affiliation(s)
- Jaap Jan Boelens
- Department of Pediatrics, Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Michael Scordo
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
5
|
Nath CE, Rosser SPA, Nath KK, Chung J, Larsen S, Gibson J, Gabriel M, Shaw PJ, Keogh SJ. The impact of age and renal function on the pharmacokinetics and protein binding characteristics of fludarabine in paediatric and adult patients undergoing allogeneic haematopoietic stem cell transplantation conditioning. Eur J Clin Pharmacol 2024; 80:1967-1987. [PMID: 39298000 PMCID: PMC11557628 DOI: 10.1007/s00228-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
AIM To evaluate the population pharmacokinetics of unbound F-Ara-A (the circulating metabolite of fludarabine) in 211 patients (age range, 0.1-63.4 years) undergoing allogeneic haematopoietic stem cell transplantation conditioning. METHODS Total (n = 2480) and unbound (n = 1403) F-Ara-A concentrations were measured in blood samples collected at timed intervals after fludarabine doses ranging from 10 to 50 mg/m2 and infused over 0.42-1.5 h. A three-compartment population pharmacokinetic model was developed based on unbound plasma concentrations and used to estimate F-Ara-A unbound pharmacokinetic parameters and fraction unbound (fu). A number of covariates, including glomerular filtration rate (GFR) and post-menstrual age (PMA), were evaluated for inclusion in the model. RESULTS The base population mean estimates ± relative standard error (%RSE) for unbound clearance from the central compartment (CLu) and inter-compartmental clearances (Q2u, Q3u) were 3.42 ± 3%, 6.54 ± 24% and 1.47 ± 16% L/h/70 kg, respectively. The population mean estimates (%RSE) for the unbound volume of distribution into the central (V1u) and peripheral compartments (V2u, V3u) were 9.65 ± 8%, 8.17 ± 9% and 16.4 ± 10% L/70 kg, respectively, and that for fu was 0.877 ± 1%. Covariate model development involved differentiating F-Ara-A CLu into non-renal (1.81 ± 9% L/h/70 kg) and renal components (1.02 ± 9%*GFR L/h/70 kg). A sigmoidal maturation factor was applied to renal CLu, with population mean estimates for the Hill exponent and PMA at 50% mature of 2.97 ± 4% and 69.1 ± 8% weeks, respectively. CONCLUSION Patient age and GFR are predictors of unbound F-Ara-A CLu. This has the potential to impact dose requirements. Dose individualisation by target concentration intervention will be facilitated by this model once it is externally validated.
Collapse
Affiliation(s)
- Christa E Nath
- Department of Biochemistry, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- Sydney Pharmacy School, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Sebastian P A Rosser
- Department of Biochemistry, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The Children's Hospital at Westmead Clinical School, University of Sydney, Westmead, NSW, 2145, Australia
| | - Kiran K Nath
- School of Psychology, Western Sydney University, Kingswood, NSW, 2747, Australia
| | - Jason Chung
- Department of Biochemistry, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Stephen Larsen
- Royal Prince Alfred Hospital, Camperdown, NSW, 2006, Australia
| | - John Gibson
- Royal Prince Alfred Hospital, Camperdown, NSW, 2006, Australia
| | - Melissa Gabriel
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Peter J Shaw
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The Children's Hospital at Westmead Clinical School, University of Sydney, Westmead, NSW, 2145, Australia
| | - Steven J Keogh
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| |
Collapse
|
6
|
Domingos V, Nezvalova-Henriksen K, Dadkhah A, Moreno-Martinez ME, Ben Hassine K, Pires V, Kröger N, Bauters T, Hassan M, Duncan N, Kalwak K, Ansari M, Langebrake C, Admiraal R. A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2024; 59:1641-1653. [PMID: 39271948 DOI: 10.1038/s41409-024-02413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Busulfan (Bu) is an important component of many conditioning regimens for allogeneic hematopoietic cell transplantation. The therapeutic window of Bu is well characterized, with strong associations between Bu exposure and the clinical outcome in adults (strongest evidence in myelo-ablative setting) and children (all settings). We provide an overview of the literature on Bu as well as a step-by-step guide to the implementation of Bu therapeutic drug monitoring (TDM). The guide covers the clinical, pharmacological, laboratory and administrative aspects of the procedure. Through this document, we aim to support centers in implementing TDM for Bu to further enhance the success rates of HCT and improve patient outcomes. The Pharmacist Committee of the European Society for Blood and Marrow Transplantation (EBMT) encourages all centers to perform TDM for Bu in the aforementioned indications.
Collapse
Affiliation(s)
- Vera Domingos
- Department of Pharmacy, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | - Adrin Dadkhah
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Estela Moreno-Martinez
- Pharmacy Department, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, Barcelona, Spain
- School of Health Sciences Blanquerna, University Ramon Lull, Barcelona, Spain
| | - Khalil Ben Hassine
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Vera Pires
- Department of Pharmacy, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tiene Bauters
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Moustapha Hassan
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nick Duncan
- Pharmacy department, Queen Elizabeth Hospital, Birmingham, UK
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Claudia Langebrake
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rick Admiraal
- Department of Stem Cell Transplantation, Princess Maxima Centre for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
7
|
McClory SE, Oved JH. Transplantation for immune dysregulatory disorders: current themes and future expectations. Curr Opin Pediatr 2024; 36:693-701. [PMID: 39345097 DOI: 10.1097/mop.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE OF REVIEW Primary immune regulatory disorders (PIRDs) are an increasing indication for hematopoietic stem cell transplant (HCT) in pediatric patients. Here, we provide an updated overview of HCT for PIRDs, and discuss future avenues for improvement in outcomes. RECENT FINDINGS There are now more than 50 described monogenic PIRDs, which impact all aspects of immune tolerance, regulation, and suppression. Disease characteristics are highly variable, and HCT remains the only option for cure. We review advances in targeted therapies for individual PIRDs, which have significantly improved outcomes and the ability to safely bridge to transplant. Additionally, advances in GVHD prevention, graft manipulation, personalized conditioning regimens, and supportive care have all increased survival after HCT. The high inflammatory state increases the risk of nonengraftment, rejection, and autologous reconstitution. Therapy to reduce the inflammatory state may further improve outcomes. In addition, although younger patients with fewer comorbidities have better outcomes, the clinical courses of these diseases may be extremely variable thereby complicating the decision to proceed to HCT. SUMMARY HCT for PIRDs is a growing consideration in cell therapy. Yet, there remain significant gaps in our understanding of which patients this curative therapy could benefit the most. Here, we review the current data supporting HCT for PIRDs as well as areas for future improvement.
Collapse
Affiliation(s)
- Susan E McClory
- Program for Integrated Immunodeficiency and Cell Therapy, The Children's Hospital of Philadelphia
- Cell Therapy and Transplant, Division of Oncology, The Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Möhlmann J, van der Ploeg L, Langenhorst J, Bognàr T, van der Elst K, Bierings M, Huitema A, de Vries Schultink A, Lindemans C. Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation. Bone Marrow Transplant 2024:10.1038/s41409-024-02467-0. [PMID: 39537781 DOI: 10.1038/s41409-024-02467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Julia Möhlmann
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Lisanne van der Ploeg
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | | | - Tim Bognàr
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Kim van der Elst
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marc Bierings
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Alwin Huitema
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aurelia de Vries Schultink
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Caroline Lindemans
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands.
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Möhlmann JE, Ezzafzafi S, Lindemans CA, Jansen MHA, Nierkens S, Huitema ADR, van Luin M. Pharmacokinetics and Pharmacodynamics of Systemic Corticosteroids in Autoimmune and Inflammatory Diseases: A Review of Current Evidence. Clin Pharmacokinet 2024; 63:1251-1270. [PMID: 39264575 PMCID: PMC11450095 DOI: 10.1007/s40262-024-01419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Systemic corticosteroids have a long history of use in the treatment of autoimmune and inflammatory diseases. Both efficacy and safety show large interindividual variability (IIV), suggesting that corticosteroids may have the potential for individualised dosing strategies to optimise therapy. This systematic review aims to provide an overview of current evidence on the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of systemic corticosteroids in patients with autoimmune and inflammatory diseases. METHODS A systematic literature search was conducted in PubMed and Embase for PK/PD studies of systemic corticosteroids in autoimmune and inflammatory diseases in humans published until December 2023. Studies were scored from 1 to 5 according to criteria for the levels of evidence, as inspired by the Oxford Centre for Evidence-Based Medicine. RESULTS Twelve studies (1981-2016) were included. The majority of these studies had a small sample size. The corticosteroids involved were prednisone, prednisolone, methylprednisolone and budesonide. Substantial IIV of corticosteroid PK was described in all studies. Evidence for a relationship between the PK of corticosteroids and efficacy was inconclusive and limited. However, there was some evidence for a relationship between the PK of prednisolone and the severity of Cushingoid features. CONCLUSION There is insufficient evidence to draw firm conclusions on the potential associations between PK and clinical outcome of systemic corticosteroid treatment in autoimmune and inflammatory diseases. This is remarkable given the many decades that steroid drugs have been used in clinical care. Prospective research is recommended with robust and well-defined cohorts to fully quantify the PK/PD associations of corticosteroids.
Collapse
Affiliation(s)
- Julia E Möhlmann
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands.
| | - Solaiman Ezzafzafi
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Caroline A Lindemans
- Department of Stem Cell Transplantation, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marc H A Jansen
- Department of Paediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Department of Stem Cell Transplantation, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Translational Immunology, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthijs van Luin
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Sánchez-Salinas MA, Miarons M, Troconiz IF, Navarro V, Varela J, Iacoboni G, Barba P. Is estimated exposure an accurate surrogate for measured fludarabine levels in patients with CAR T-cell therapy? Blood Adv 2024; 8:2130-2132. [PMID: 38231085 PMCID: PMC11059335 DOI: 10.1182/bloodadvances.2023011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Affiliation(s)
- Mario Andrés Sánchez-Salinas
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Miarons
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Pharmacy Department, Consorci Hospitalari de Vic, Barcelona, Spain
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Víctor Navarro
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Varela
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Kuriyama K, Fuji S, Ito A, Doki N, Katayama Y, Ohigashi H, Nishida T, Serizawa K, Eto T, Uchida N, Kanda Y, Tanaka M, Matsuoka KI, Nakazawa H, Kanda J, Fukuda T, Atsuta Y, Ogata M. Impact of Different Fludarabine Doses in the Fludarabine-Based Conditioning Regimen for Unrelated Bone Marrow Transplantation. Transplant Cell Ther 2024; 30:514.e1-514.e13. [PMID: 38373522 DOI: 10.1016/j.jtct.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The purine analog fludarabine (Flu) plays a central role in reduced-intensity conditioning and myeloablative reduced-toxicity conditioning regimens because of limited nonhematologic toxicities. Few reports assess the impact of different dose of Flu on the clinical outcomes and the Flu doses vary across reports. To compare the effect of Flu dose, the clinical outcomes of patients who received Flu and busulfan (FB; n = 1647) or melphalan (Flu with melphalan (FM); n = 1162) conditioning for unrelated bone marrow transplantation were retrospectively analyzed using Japanese nationwide registry data. In the FB group, high-dose Flu (180 mg/m2; HFB) and low-dose Flu (150/125 mg/m2; LFB) were given to 1334 and 313 patients, respectively. The 3-year overall survival (OS) rates were significantly higher in the HFB group than in the LFB group (49.5% versus 39.2%, P < .001). In the HFB and LFB groups, the cumulative incidences were 30.4% and 36.6% (P = .058) for 3-year relapse and 25.1% and 28.1% (P = .24) for 3-year nonrelapse mortality (NRM), respectively. In the multivariate analysis for OS and relapse, Flu dose was identified as an independent prognostic factor (hazard ratio: 0.83, P = .03; hazard ratio: 0.80, P = .043). In the FM group, high-dose Flu (180 mg/m2; HFM) and low-dose Flu (150/125 mg/m2; LFM) were given to 118 and 1044 patients, respectively. The OS, relapse, and NRM after 3 years did not differ significantly between the HFM and LFM groups (48.3% versus 48.8%, P = .92; 23.7% versus 27.2%, P = .55; 31.9% versus 30.8%, P = .67). These findings suggest that high-dose Flu was associated with favorable outcomes in the FB group but not in the FM group.
Collapse
Affiliation(s)
- Kodai Kuriyama
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan. kuriyama-_-kodai-@hotmail.co.jp
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Ayumu Ito
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kentaro Serizawa
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osaka, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hideyuki Nakazawa
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Oita, Japan
| |
Collapse
|
12
|
Gharial J, Guilcher G, Truong T, Shah R, Desai S, Rojas-Vasquez M, Kangarloo B, Lewis V. Busulfan with 400 centigray of total body irradiation and higher dose fludarabine: An alternative regimen for hematopoietic stem cell transplantation in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2024; 71:e30844. [PMID: 38217082 DOI: 10.1002/pbc.30844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Hematopoietic stem cell transplantation can be curative for children with difficult-to-treat leukemia. The conditioning regimen utilized is known to influence outcomes. We report outcomes of the conditioning regimen used at the Alberta Children's Hospital, consisting of busulfan (with pharmacokinetic target of 3750 μmol*min/L/day ±10%) for 4 days, higher dose (250 mg/m2 ) fludarabine and 400 centigray (cGy) of total body irradiation. PROCEDURE This retrospective study involved children receiving transplant for acute lymphoblastic leukemia (ALL). It compared children who fell within the target range for busulfan with those who were either not measured or were measured and fell outside this range. All other treatment factors were identical. RESULTS Twenty-nine children (17 within target) were evaluated. All subjects engrafted neutrophils with a median [interquartile range] time of 14 days [8-30 days]. The cumulative incidence of acute graft-versus-host disease was 44.8% [95% confidence interval, CI: 35.6%-54.0%], while chronic graft-versus-host disease was noted in 16.0% [95% CI: 8.7%-23.3%]. At 2 years, the overall survival was 78.1% [95% CI: 70.8%-86.4%] and event-free survival was 74.7% [95% CI: 66.4%-83.0%]. Cumulative incidence of relapse was 11.3% [95% CI: 5.1%-17.5%]. There were no statistically significant differences in between the group that received targeted busulfan compared with the untargeted group. CONCLUSION Our conditioning regiment for children with ALL resulted in outcomes comparable to standard treatment with acceptable toxicities and significant reduction in radiation dose. Targeting busulfan dose in this cohort did not result in improved outcomes.
Collapse
Affiliation(s)
- Jaspreet Gharial
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Gregory Guilcher
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Tony Truong
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Ravi Shah
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Sunil Desai
- Division of Pediatric Hematology/Oncology & Palliative Care, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Marta Rojas-Vasquez
- Division of Pediatric Hematology/Oncology & Palliative Care, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Bill Kangarloo
- Pharmacokinetic Scientist, Alberta Blood and Marrow Transplant Program, Foothills Hospital, and Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Victor Lewis
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Knight E T, Oluwole O, Kitko C. The Implementation of Chimeric Antigen Receptor (CAR) T-cell Therapy in Pediatric Patients: Where Did We Come From, Where Are We Now, and Where are We Going? Clin Hematol Int 2024; 6:96-115. [PMID: 38817691 PMCID: PMC11108586 DOI: 10.46989/001c.94386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 06/01/2024] Open
Abstract
CD19-directed Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized the treatment of patients with B-cell acute lymphoblastic leukemia (B-ALL). Somewhat uniquely among oncologic clinical trials, early clinical development occurred simultaneously in both children and adults. In subsequent years however, the larger number of adult patients with relapsed/refractory (r/r) malignancies has led to accelerated development of multiple CAR T-cell products that target a variety of malignancies, resulting in six currently FDA-approved for adult patients. By comparison, only a single CAR-T cell therapy is approved by the FDA for pediatric patients: tisagenlecleucel, which is approved for patients ≤ 25 years with refractory B-cell precursor ALL, or B-cell ALL in second or later relapse. Tisagenlecleucel is also under evaluation in pediatric patients with relapsed/refractory B-cell non-Hodgkin lymphoma, but is not yet been approved for this indication. All the other FDA-approved CD19-directed CAR-T cell therapies available for adult patients (axicabtagene ciloleucel, brexucabtagene autoleucel, and lisocabtagene maraleucel) are currently under investigations among children, with preliminary results available in some cases. As the volume and complexity of data continue to grow, so too does the necessity of rapid assimilation and implementation of those data. This is particularly true when considering "atypical" situations, e.g. those arising when patients do not precisely conform to the profile of those included in pivotal clinical trials, or when alternative treatment options (e.g. hematopoietic stem cell transplantation (HSCT) or bispecific T-cell engagers (BITEs)) are also available. We have therefore developed a relevant summary of the currently available literature pertaining to the use of CD19-directed CAR-T cell therapies in pediatric patients, and sought to provide guidance for clinicians seeking additional data about specific clinical situations.
Collapse
Affiliation(s)
| | - Olalekan Oluwole
- Medicine Hematology and Oncology, Vanderbilt University Medical Center
| | | |
Collapse
|
14
|
Sidana S, Peres LC, Hashmi H, Hosoya H, Ferreri C, Khouri J, Dima D, Atrash S, Voorhees P, Simmons G, Sborov DW, Kalariya N, Hovanky V, Bharadwaj S, Miklos D, Wagner C, Kocoglu MH, Kaur G, Davis JA, Midha S, Janakiram M, Freeman C, Alsina M, Locke F, Gonzalez R, Lin Y, McGuirk J, Afrough A, Shune L, Patel KK, Hansen DK. Idecabtagene vicleucel chimeric antigen receptor T-cell therapy for relapsed/refractory multiple myeloma with renal impairment. Haematologica 2024; 109:777-786. [PMID: 37731379 PMCID: PMC10905101 DOI: 10.3324/haematol.2023.283940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
We evaluated patients with relapsed multiple myeloma with renal impairment (RI) treated with standard of care idecabtagene vicleucel (ide-cel), as outcomes with chimeric antigen receptor (CAR) T-cell therapy are unknown in this population. RI was defined as creatinine clearance (CrCl) <50 mL/min. CrCl of <30 mL/min or dialysis dependence were defined as severe RI. The study cohort included 214 patients, 28 (13%) patients with RI, including 11 patients severe RI (dialysis, N=1). Patients with RI were older, more likely to be female and had higher likelihood of having Revised International Staging System stage 3 disease. Rates and severity of cytokine release syndrome (89% vs. 84%, grade ≥3: 7% vs. 2%) and immune effector cell-associated neurotoxicity syndrome (23% vs. 20%) were similar in patients with and without RI, respectively. Patients with RI had higher incidence of short-term grade ≥3 cytopenias, although cytopenias were similar by 3 months following CAR T-cell therapy. Renal function did not worsen after CAR T-cell therapy in patients with RI. Response rates (93% vs. 82%) and survival outcomes (median progression-free survival: 9 vs. 8 months; P=0.26) were comparable in patients with and without RI, respectively. Treatment with ide-cel is feasible in patients with RI, with a comparable safety and efficacy profile as patients without RI, with notable exception of higher short-term high-grade cytopenias.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gary Simmons
- Virginia Commonwealth University Massey Cancer Center
| | | | | | | | | | | | | | - Mehmet H Kocoglu
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Gurbakhash Kaur
- UT Southwestern Harold C. Simmons Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | - Aimaz Afrough
- UT Southwestern Harold C. Simmons Comprehensive Cancer Center
| | | | | | | |
Collapse
|
15
|
Hutcherson SM, Schofield RC, Carlow DC. Determination of Treosulfan and Fludarabine in Plasma by Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS). Methods Mol Biol 2024; 2737:453-463. [PMID: 38036846 DOI: 10.1007/978-1-0716-3541-4_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Treosulfan is a structural analog of the alkylating agent busulfan which has been shown in clinical trials to exhibit comparable myeloablative activity while causing fewer serious side effects. Treosulfan is currently being considered for FDA approval in combination with fludarabine, one of the most commonly used myeloablative agents, as a conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Because plasma concentrations of both treosulfan and fludarabine exhibit significant interindividual variability, therapeutic drug monitoring (TDM) is indicated to ensure dosages are administered that maximize efficacy while minimizing toxicity. In this chapter, we describe a rapid, accurate assay to detect treosulfan and fludarabine simultaneously in human plasma using turbulent flow liquid chromatography coupled to electrospray ionization tandem mass spectrometry (TFLC-ESI-MS/MS). Treosulfan and fludarabine are extracted from only 100 μL of acidified plasma via protein precipitation with methanol containing isotope-labeled internal standards. The extract is injected into the TFLC-ESI-MS/MS system, and the analytes are quantified using multiple reaction monitoring and a six-point calibration curve.
Collapse
Affiliation(s)
- Shelby M Hutcherson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan C Schofield
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean C Carlow
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Lickefett B, Chu L, Ortiz-Maldonado V, Warmuth L, Barba P, Doglio M, Henderson D, Hudecek M, Kremer A, Markman J, Nauerth M, Negre H, Sanges C, Staber PB, Tanzi R, Delgado J, Busch DH, Kuball J, Luu M, Jäger U. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front Immunol 2023; 14:1303935. [PMID: 38187393 PMCID: PMC10770848 DOI: 10.3389/fimmu.2023.1303935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Lymphodepletion (LD) or conditioning is an essential step in the application of currently used autologous and allogeneic chimeric antigen receptor T-cell (CAR-T) therapies as it maximizes engraftment, efficacy and long-term survival of CAR-T. Its main modes of action are the depletion and modulation of endogenous lymphocytes, conditioning of the microenvironment for improved CAR-T expansion and persistence, and reduction of tumor load. However, most LD regimens provide a broad and fairly unspecific suppression of T-cells as well as other hematopoietic cells, which can also lead to severe side effects, particularly infections. We reviewed 1271 published studies (2011-2023) with regard to current LD strategies for approved anti-CD19 CAR-T products for large B cell lymphoma (LBCL). Fludarabine (Flu) and cyclophosphamide (Cy) (alone or in combination) were the most commonly used agents. A large number of different schemes and combinations have been reported. In the respective schemes, doses of Flu and Cy (range 75-120mg/m2 and 750-1.500mg/m2) and wash out times (range 2-5 days) differed substantially. Furthermore, combinations with other agents such as bendamustine (benda), busulfan or alemtuzumab (for allogeneic CAR-T) were described. This diversity creates a challenge but also an opportunity to investigate the impact of LD on cellular kinetics and clinical outcomes of CAR-T. Only 21 studies explicitly investigated in more detail the influence of LD on safety and efficacy. As Flu and Cy can potentially impact both the in vivo activity and toxicity of CAR-T, a more detailed analysis of LD outcomes will be needed before we are able to fully assess its impact on different T-cell subsets within the CAR-T product. The T2EVOLVE consortium propagates a strategic investigation of LD protocols for the development of optimized conditioning regimens.
Collapse
Affiliation(s)
- Benno Lickefett
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Lulu Chu
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | | | - Linda Warmuth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Pere Barba
- Hematology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Matteo Doglio
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - David Henderson
- Bayer Aktiengesellschaft (AG), Business Development & Licensing & Open Innovation (OI), Pharmaceuticals, Berlin, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Kremer
- ITTM S.A. (Information Technology for Translational Medicine), Esch-sur-Alzette, Luxembourg
| | - Janet Markman
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | - Magdalena Nauerth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Carmen Sanges
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Rebecca Tanzi
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Julio Delgado
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Dirk H. Busch
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Jürgen Kuball
- Legal and Regulatory Affairs Committee of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Myers RM, Jacoby E, Pulsipher MA, Pasquini MC, Grupp SA, Shah NN, Laetsch TW, Curran KJ, Schultz LM. INSPIRED Symposium Part 1: Clinical Variables Associated with Improved Outcomes for Children and Young Adults treated with Chimeric Antigen Receptor T cells for B cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2023; 29:598-607. [PMID: 37481241 PMCID: PMC11031134 DOI: 10.1016/j.jtct.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy (CAR-T) targeting the CD19 antigen on B cell acute lymphoblastic leukemia (B-ALL) has transitioned from a highly investigational therapy with limited access to a commercial therapy with established toxicities, response and survival rates, and access in numerous countries. With more than a decade of clinical study and 5 years of commercial access, data showing associations with success and failure have emerged. To address functional limitations of CAR-T and overcome constrained sample sizes when studying single-trial or single-center data, collaborative groups, including the Pediatric Real World CAR Consortium, the CAR-Multicenter Analysis, the Center for International Blood and Marrow Transplant Research, and the International BFM Study Group, among others, have been retrospectively interrogating the amassed clinical experience. The high patient numbers and varied clinical experiences compiled by these groups have defined clinical variables impacting CAR-T outcomes. Here we review published CAR-T trials and consortium/collaborative outcomes to establish variables associated with optimal response to CAR-T in children and young adults with B-ALL. We focus on findings with clinical relevance that have emerged, including data implicating pretreatment disease burden, presence of extramedullary disease, nonresponse to prior CD19 antigen targeting (blinatumomab therapy), CAR T cell dose, and fludarabine pharmacokinetics as factors impacting post-CAR-T survival. Additionally, we address the role of collaborative efforts going forward in guiding clinical practice evolution and further optimizing post-CAR-T outcomes.
Collapse
Affiliation(s)
- Regina M Myers
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Michael A Pulsipher
- Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Marcelo C Pasquini
- Medical College of Wisconsin/Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin
| | - Stephan A Grupp
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Theodore W Laetsch
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liora M Schultz
- Department of Pediatrics, Division of Hematology and Oncology, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
18
|
Tamari R, Scordo M, Kunvarjee BM, Proli A, Lin A, Flynn J, Cho C, Devlin S, Klein E, Boulad F, Cancio MI, Curran KJ, Jakubowski AA, Kernan NA, Kung AL, O’Reilly RJ, Papadopoulos EB, Prockop S, Scaradavou A, Shaffer BC, Shah G, Spitzer B, Gyurkocza B, Giralt SA, Perales MA, Boelens JJ. Association between busulfan exposure and survival in patients undergoing a CD34+ selected stem cell transplantation. Blood Adv 2023; 7:5225-5233. [PMID: 37379285 PMCID: PMC10500467 DOI: 10.1182/bloodadvances.2023009708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Busulfan is an alkylating drug routinely used in conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). A myeloablative conditioning regimen, including busulfan, is commonly used in patients undergoing T-cell depletion (TCD) and allo-HCT, but data on optimal busulfan pharmacokinetic (PK) exposure in this setting are limited. Between 2012 and 2019, busulfan PK was performed to target an area under the curve exposure between 55 and 66 mg × h/L over 3 days using a noncompartmental analysis model. We retrospectively re-estimated busulfan exposure following the published population PK (popPK) model (2021) and correlated it with outcomes. To define optimal exposure, univariable models were performed with P splines, wherein hazard ratio (HR) plots were drawn, and thresholds were found graphically as the points at which the confidence interval crossed 1. Cox proportional hazard and competing risk models were used for analyses. 176 patients were included, with a median age of 59 years (range, 2-71). Using the popPK model, the median cumulative busulfan exposure was 63.4 mg × h/L (range, 46.3-90.7). The optimal threshold was at the upper limit of the lowest quartile (59.5 mg × h/L). 5-year overall survival (OS) with busulfan exposure ≥59.5 vs <59.5 mg × h/L was 67% (95% CI, 59-76) vs 40% (95% CI, 53-68), respectively (P = .02), and this association remained in a multivariate analyses (HR, 0.5; 95% CI, 0.29; 0.88; P = .02). In patients undergoing TCD allo-HCT, busulfan exposure is significantly associated with OS. The use of a published popPK model to optimize exposure may significantly improve the OS.
Collapse
Affiliation(s)
- Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael Scordo
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Binni M. Kunvarjee
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Andrew Lin
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessica Flynn
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christina Cho
- Stem Cell Transplantion and Cellular Therapy Program, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
| | - Sean Devlin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Klein
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Farid Boulad
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Maria I. Cancio
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Kevin J. Curran
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Ann A. Jakubowski
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Nancy A. Kernan
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Andrew L. Kung
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Esperanza B. Papadopoulos
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Susan Prockop
- Department of Pediatrics, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA
| | - Andromachi Scaradavou
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Brian C. Shaffer
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Gunjan Shah
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Barbara Spitzer
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Boglarka Gyurkocza
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jaap Jan Boelens
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
19
|
Scordo M, Flynn JR, Gonen M, Devlin SM, Parascondola A, Tomas AA, Shouval R, Brower J, Porter DL, Schuster SJ, Bachanova V, Maakaron J, Maziarz RT, Chen AI, Nastoupil LJ, McGuirk JP, Oluwole OO, Ip A, Leslie LA, Bishop MR, Riedell PA, Perales MA. Identifying an optimal fludarabine exposure for improved outcomes after axi-cel therapy for aggressive B-cell non-Hodgkin lymphoma. Blood Adv 2023; 7:5579-5585. [PMID: 37522731 PMCID: PMC10514205 DOI: 10.1182/bloodadvances.2023010302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Fludarabine is one of the most common agents given for lymphodepletion before CD19 chimeric antigen receptor T cells, but its optimal therapeutic intensity is unknown. Using data from a multicenter consortium, we estimated fludarabine exposure (area under the curve [AUC]) using a population pharmacokinetic (PK) model in 199 adult patients with aggressive B-cell non-Hodgkin lymphomas who received commercial axicabtagene ciloleucel (Axi-cel). We evaluated the association of estimated fludarabine AUC with key outcomes, aiming to find an AUC that optimized efficacy and tolerability. We identified low (<18 mg × hour/L [mgh/L]), optimal (18-20 mgh/L), and high (>20 mgh/L) AUC groups for analyses; the 6-month cumulative incidences of relapse/progression of disease (relapse/POD) by AUC groups were 54% (45%-62%), 28% (15%-44%), and 30% (14%-47%), respectively; and the 1-year progression-free survival (PFS) rates were 39% (31%-48%), 66% (52%-84%), and 46% (30%-70%) and the overall survival (OS) rates were 58% (50%-67%), 77% (64%-92%), and 66% (50%-87%), respectively. In multivariable analyses compared with low AUC, an optimal AUC was associated with the highest PFS (hazard ratio [HR], 0.52; 0.3-0.91; P = .02) and lowest risk of relapse/POD (HR, 0.46; 0.25-0.84; P = .01) without an increased risk of any-grade cytokine release syndrome (HR, 1.1; 0.7-1.6; P = .8) or and immune effector cell-associated neurotoxicity syndrome (ICANS) (HR, 1.36; 0.83-2.3; P = .2). A high AUC was associated with the greatest risk of any-grade ICANS (HR, 1.9; 1.1-3.2; P = .02). Although the main cause of death in all groups was relapse/POD, nonrelapse-related deaths, including 3 deaths from ICANS, were more frequent in the high AUC group. These findings suggest that PK-directed fludarabine dosing to achieve an optimal AUC may result in improved outcomes for patients receiving axi-cel.
Collapse
Affiliation(s)
- Michael Scordo
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jessica R. Flynn
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M. Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Roni Shouval
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jamie Brower
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - David L. Porter
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen J. Schuster
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Joseph Maakaron
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Richard T. Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Andy I. Chen
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph P. McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Olalekan O. Oluwole
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew Ip
- Division of Lymphoma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Lori A. Leslie
- Division of Lymphoma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Michael R. Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Peter A. Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
20
|
Chen RL, Ip PP, Shaw JJ, Wang YH, Fan LH, Shen YL, Joseph NA, Chen TE, Chen LY. Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia. Int J Mol Sci 2022; 23:ijms232315192. [PMID: 36499545 PMCID: PMC9739033 DOI: 10.3390/ijms232315192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Most cases of acquired aplastic anemia (AA) arise from autoimmune destruction of hematopoietic stem and progenitor cells. Human leukocyte antigen (HLA)-haploidentical nonmyeloablative hematopoietic stem cell transplantation (HSCT) plus post-transplantation cyclophosphamide (PTCy) is increasingly applied to salvage AA using bone marrow as graft and anti-thymocyte globulin (ATG) in conditioning. Herein, we characterize a cohort of twelve AA patients clinically and molecularly, six who possessed other immunological disorders (including two also carrying germline SAMD9L mutations). Each patient with SAMD9L mutation also carried an AA-related rare BCORL1 variant or CTLA4 p.T17A GG genotype, respectively, and both presented short telomere lengths. Six of the ten patients analyzed harbored AA-risky HLA polymorphisms. All patients recovered upon non-HSCT (n = 4) or HSCT (n = 8) treatments. Six of the eight HSCT-treated patients were subjected to a modified PTCy-based regimen involving freshly prepared peripheral blood stem cells (PBSC) as graft and exclusion of ATG. All patients were engrafted between post-transplantation days +13 and +18 and quickly reverted to normal life, displaying a sustained complete hematologic response and an absence of graft-versus-host disease. These outcomes indicate most AA cases, including of the SAMD9L-inherited subtype, are immune-mediated and the modified PTCy-based regimen we present is efficient and safe for salvage.
Collapse
Affiliation(s)
- Rong-Long Chen
- Department of Pediatric Hematology and Oncology, Koo Foundation Sun Yat-sen Cancer Center, Taipei 11259, Taiwan
- Correspondence:
| | - Peng Peng Ip
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Jy-juinn Shaw
- School of Law, National Yang Ming Chiao Tung University, Hsinchu City 30093, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251301, Taiwan
| | - Li-Hua Fan
- Department of Pharmacy, Koo Foundation Sun Yat-sen Cancer Center, Taipei 11259, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Nithila A. Joseph
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Tsen-Erh Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| |
Collapse
|
21
|
Wood AC, Perez AP, Arciola B, Patel K, Johnson G, DiMaggio E, Bachmeier CA, Reid K, Carallo S, Vargas MH, Faramand R, Chavez JC, Shah B, Gaballa S, Khimani F, Elmariah H, Nishihori T, Lazaryan A, Freeman C, Davila ML, Locke FL, Mhaskar R, Bassil C, Jain MD. Outcomes of CD19-Targeted Chimeric Antigen Receptor T Cell Therapy for Patients with Reduced Renal Function Including Dialysis. Transplant Cell Ther 2022; 28:829.e1-829.e8. [PMID: 36174934 PMCID: PMC9791940 DOI: 10.1016/j.jtct.2022.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
Patients with renal impairment (RI) are typically excluded from trials evaluating chimeric antigen receptor (CAR) T cell therapies. We evaluated the outcomes of patients with RI receiving standard of care (SOC) CAR T cell therapy for relapsed/refractory (R/R) diffuse large B cell lymphoma (DLBCL). In this retrospective, single-center cohort study of patients with R/R DLBCL treated with SOC axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) after 2 or more prior lines of therapy, renal and survival outcomes were compared based on RI and fludarabine dose reduction (DR) status. RI was defined by an estimated glomerular filtration rate <60 mL/min/1.73 m2 as determined by the Modification of Diet in Renal Disease equation using day -5 creatinine (Cr) values. Acute kidney injury (AKI) was identified and graded using standard Kidney Disease: Improving Global Outcomes criteria. Renal recovery was considered to occur if Cr was within .2 mg/mL of baseline by day +30. Fludarabine was considered DR if given at <90% of the recommended Food and Drug Administration label dose. Among 166 patients treated with CAR T cell therapy were 17 patients (10.2%) with baseline RI and 149 (89.8%) without RI. After CAR T cell infusion, the incidence of any grade AKI was not significantly different between patients with baseline RI and those without RI (42% versus 21%; P = .08). Similarly, severe grade 2/3 AKI was seen in 1 of 17 patients (5.8%) with baseline RI and in 11 of 149 patients (7.3%) without RI (P = 1). Decreased renal perfusion (28 of 39; 72%) was the most common cause of AKI, with cytokine release syndrome (CRS) contributing to 17 of 39 AKIs (44%). Progression-free survival (PFS) and overall survival (OS) did not differ between patients with RI and those without RI or between those who received standard-dose fludarabine and those who received reduced-dose fludarabine. In contrast, patients with AKI had worse clinical outcomes than those without AKI (multivariable PFS: hazard ratio [HR], 2.1; 95% confidence interval [CI], 1.2 to 3.7; OS: HR, 3.9; 95% CI, 2.1 to 7.4). Notably, peak inflammatory cytokine levels were higher in patients who experienced AKI. Finally, we describe 2 patients with end-stage renal disease (ESRD) on dialysis who received lymphodepletion and CAR T cell therapy. Baseline renal function did not affect renal or efficacy outcomes after CAR T cell therapy in DLBCL. On the other hand, patients with AKI went on to experience worse clinical outcomes. AKI was commonly related to CRS and high peak inflammatory cytokine levels. CAR T cell therapy is feasible in patients with ESRD and requires careful planning of lymphodepletion.
Collapse
Affiliation(s)
- Anthony C Wood
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ariel Perez Perez
- Blood and Marrow Transplant Program, Miami Cancer Institute, Miami, Florida
| | - Brian Arciola
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kedar Patel
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Grace Johnson
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Elizabeth DiMaggio
- Department of Pharmacy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christina A Bachmeier
- Department of Pharmacy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kayla Reid
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Salvatore Carallo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melanie H Vargas
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rawan Faramand
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Julio C Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sameh Gaballa
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Farhad Khimani
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hany Elmariah
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ciara Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marco L Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rahul Mhaskar
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Claude Bassil
- Department of Onconephrology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
22
|
Brooks JT, Solans BP, Lu Y, Kharbanda S, Dvorak CC, Lalefar N, Long S, Gupta AO, Horn B, Lamba JK, Huang L, Apsel-Winger B, Keizer RJ, Savic R, Long-Boyle J. Prospective Validation and Refinement of a Population Pharmacokinetic Model of Fludarabine in Children and Young Adults Undergoing Hematopoietic Cell Transplantation. Pharmaceutics 2022; 14:pharmaceutics14112462. [PMID: 36432661 PMCID: PMC9694406 DOI: 10.3390/pharmaceutics14112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fludarabine is a nucleoside analog with antileukemic and immunosuppressive activity commonly used in allogeneic hematopoietic cell transplantation (HCT). Several fludarabine population pharmacokinetic (popPK) and pharmacodynamic models have been published enabling the movement towards precision dosing of fludarabine in pediatric HCT; however, developed models have not been validated in a prospective cohort of patients. In this multicenter pharmacokinetic study, fludarabine plasma concentrations were collected via a sparse-sampling strategy. A fludarabine popPK model was evaluated and refined using standard nonlinear mixed effects modelling techniques. The previously described fludarabine popPK model well-predicted the prospective fludarabine plasma concentrations. Individuals who received model-based dosing (MBD) of fludarabine achieved significantly more precise overall exposure of fludarabine. The fludarabine popPK model was further improved by both the inclusion of fat-free mass instead of total body weight and a maturation function on fludarabine clearance. The refined popPK model is expected to improve dosing recommendations for children younger than 2 years and patients with higher body mass index. Given the consistency of fludarabine clearance and exposure across its multiple days of administration, therapeutic drug monitoring is not likely to improve targeted exposure attainment.
Collapse
Affiliation(s)
- Jordan T. Brooks
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Belen P. Solans
- Department of Bioengineering and Therapeutics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ying Lu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sandhya Kharbanda
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christopher C. Dvorak
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nahal Lalefar
- Benioff Children’s Hospital of Oakland, University of California San Francisco, Oakland, CA 94609, USA
| | - Susie Long
- Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN 55454, USA
| | - Ashish O. Gupta
- Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN 55454, USA
| | - Biljana Horn
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Pediatrics, University of Florida, Gainesville, FL 32603, USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Pediatrics, University of Florida, Gainesville, FL 32603, USA
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Beth Apsel-Winger
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Rada Savic
- Department of Bioengineering and Therapeutics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Janel Long-Boyle
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
23
|
Huang S, Bian Y, Huang C, Miao L. Is Monitoring of the Intracellular Active Metabolite Levels of Nucleobase and Nucleoside Analogs Ready for Precision Medicine Applications? Eur J Drug Metab Pharmacokinet 2022; 47:761-775. [PMID: 35915365 DOI: 10.1007/s13318-022-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Nucleobase and nucleoside analogs (NAs) play important roles in cancer therapy. Although there are obvious individual differences in NA treatments, most NAs lack direct relationships between their plasma concentration and efficacy or adverse effects. Accumulating evidence suggests that the intracellular active metabolite levels of NAs predict patient outcomes. This article reviewed the relationships between NA intracellular active metabolite levels and their efficacy or adverse effects. The factors affecting the formation of intracellular active metabolites and combination regimens that elevate intracellular active metabolite levels were also reviewed. Given the mechanism of NA cytotoxicity, NA intracellular active metabolite levels may be predictive of clinical outcomes. Many clinical studies support this hypothesis. Therefore, the monitoring of intracellular active metabolite levels is beneficial for individualized NA treatment. However, to perform clinical monitoring in practice, well-designed studies are needed to explore the optimal threshold or range and the appropriate regimen adjustment strategies based on these parameters.
Collapse
Affiliation(s)
- Shenjia Huang
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S, Li Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol 2022; 13:954235. [PMID: 36091028 PMCID: PMC9460961 DOI: 10.3389/fimmu.2022.954235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the therapeutic landscape of haematological malignancies. However, resistance and relapse remain prominent limitations, and they are related to the limited persistence and efficacy of CAR T cells, downregulation or loss of tumour antigens, intrinsic resistance of tumours to death signalling, and immune suppressive microenvironment. Rational combined modality treatments are regarded as a promising strategy to further unlock the antitumor potential of CAR T cell therapy, which can be applied before CAR T cell infusion as a conditioning regimen or in ex vivo culture settings as well as concomitant with or after CAR T cell infusion. In this review, we summarize the combinatorial strategies, including chemotherapy, radiotherapy, haematopoietic stem cell transplantation, targeted therapies and other immunotherapies, in an effort to further enhance the effectiveness of this impressive therapy and benefit more patients.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Zhengbang Zou
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xin
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| |
Collapse
|
25
|
Dekker L, Sanders E, Lindemans CA, de Koning C, Nierkens S. Naive T Cells in Graft Versus Host Disease and Graft Versus Leukemia: Innocent or Guilty? Front Immunol 2022; 13:893545. [PMID: 35795679 PMCID: PMC9250980 DOI: 10.3389/fimmu.2022.893545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation (allo-HCT) largely depends on the development and management of graft-versus-host disease (GvHD), infections, and the occurrence of relapse of malignancies. Recent studies showed a lower incidence of chronic GvHD and severe acute GvHD in patients receiving naive T cell depleted grafts compared to patients receiving complete T cell depleted grafts. On the other hand, the incidence of acute GvHD in patients receiving cord blood grafts containing only naive T cells is rather low, while potent graft-versus-leukemia (GvL) responses have been observed. These data suggest the significance of naive T cells as both drivers and regulators of allogeneic reactions. The naive T cell pool was previously thought to be a quiescent, homogenous pool of antigen-inexperienced cells. However, recent studies showed important differences in phenotype, differentiation status, location, and function within the naive T cell population. Therefore, the adequate recovery of these seemingly innocent T cells might be relevant in the imminent allogeneic reactions after allo-HCT. Here, an extensive review on naive T cells and their contribution to the development of GvHD and GvL responses after allo-HCT is provided. In addition, strategies specifically directed to stimulate adequate reconstitution of naive T cells while reducing the risk of GvHD are discussed. A better understanding of the relation between naive T cells and alloreactivity after allo-HCT could provide opportunities to improve GvHD prevention, while maintaining GvL effects to lower relapse risk.
Collapse
Affiliation(s)
- Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Evy Sanders
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
26
|
Xu M, AlRiyami L, Rao H, Hook R, Wall DA, Schechter T, Grunebaum E. Successful desensitization protocol for a patient with fludarabine anaphylaxis during hematopoietic transplantation. Pediatr Allergy Immunol 2022; 33:e13789. [PMID: 35754132 DOI: 10.1111/pai.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mei Xu
- Division of Immunology and Allergy, Department of Pediatrics, Toronto, Ontario, Canada
| | - Layla AlRiyami
- Division of Hematology and Oncology, Section of Stem Cell Transplantation, Department of Pediatrics, Toronto, Ontario, Canada
| | - Harini Rao
- Division of Hematology and Oncology, Section of Stem Cell Transplantation, Department of Pediatrics, Toronto, Ontario, Canada
| | - Roxanne Hook
- Department of Pharmacy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donna A Wall
- Division of Hematology and Oncology, Section of Stem Cell Transplantation, Department of Pediatrics, Toronto, Ontario, Canada
| | - Tal Schechter
- Division of Hematology and Oncology, Section of Stem Cell Transplantation, Department of Pediatrics, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Relationship of iothalamate clearance and NRM in patients receiving fludarabine and melphalan reduced-intensity conditioning. Blood Adv 2022; 6:3844-3849. [PMID: 35522968 PMCID: PMC9278281 DOI: 10.1182/bloodadvances.2021006395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
The reduced-intensity conditioning regimen, fludarabine and melphalan, is frequently used in allogeneic hematopoietic stem cell transplantation (HSCT). Melphalan and the active metabolite of fludarabine, F-ara-A, are excreted via the kidneys. Existing methods to assess clearance in this setting are based on serum creatinine, which has known limitations for glomerular filtration rate (GFR) estimation in patients with malignancy. Measured GFR (mGFR) may better predict drug dosing to mitigate toxicity and increase the chances of successful engraftment. The primary objective of this study was to assess the association between mGFR and risk for non-relapse mortality (NRM) in allogeneic HSCT patients receiving conditioning with fludarabine and melphalan. In the 109 included patients, mGFR < 65 ml/min/1.73m2 predicted a significantly higher rate of overall NRM (HR 2.13, 95% CI, 1.03-4.35, P = 0.04) and 1-year incidence of infection (HR 2.63, 95% CI, 1.54-4.55, P < 0.001) in addition to a significantly lower 2-year survival (P = 0.019). Kidney function estimated via eGFR and eCrCl did not correlate with post-transplant outcomes. These results suggest that mGFR is a promising approach for assessing clearance in allogeneic HSCT patients and may be preferred to standard creatinine-based eGFR strategies.
Collapse
|
28
|
Fabrizio VA, Boelens JJ, Mauguen A, Baggott C, Prabhu S, Egeler E, Mavroukakis S, Pacenta H, Phillips CL, Rossoff J, Stefanski HE, Talano JA, Moskop A, Margossian SP, Verneris MR, Myers GD, Karras NA, Brown PA, Qayed M, Hermiston M, Satwani P, Krupski C, Keating AK, Wilcox R, Rabik CA, Chinnabhandar V, Kunicki M, Goksenin AY, Mackall CL, Laetsch TW, Schultz LM, Curran KJ. Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv 2022; 6:1961-1968. [PMID: 34788386 PMCID: PMC9006295 DOI: 10.1182/bloodadvances.2021006418] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells provide a therapeutic option in hematologic malignancies. However, treatment failure after initial response approaches 50%. In allogeneic hematopoietic cell transplantation, optimal fludarabine exposure improves immune reconstitution, resulting in lower nonrelapse mortality and increased survival. We hypothesized that optimal fludarabine exposure in lymphodepleting chemotherapy before CAR T-cell therapy would improve outcomes. In a retrospective analysis of patients with relapsed/refractory B-cell acute lymphoblastic leukemia undergoing CAR T-cell (tisagenlecleucel) infusion after cyclophosphamide/fludarabine lymphodepleting chemotherapy, we estimated fludarabine exposure as area under the curve (AUC; mg × h/L) using a validated population pharmacokinetic (PK) model. Fludarabine exposure was related to overall survival (OS), cumulative incidence of relapse (CIR), and a composite end point (loss of B-cell aplasia [BCA] or relapse). Eligible patients (n = 152) had a median age of 12.5 years (range, <1 to 26), response rate of 86% (n = 131 of 152), 12-month OS of 75.1% (95% confidence interval [CI], 67.6% to 82.6%), and 12-month CIR of 36.4% (95% CI, 27.5% to 45.2%). Optimal fludarabine exposure was determined as AUC ≥13.8 mg × h/L. In multivariable analyses, patients with AUC <13.8 mg × h/L had a 2.5-fold higher CIR (hazard ratio [HR], 2.45; 95% CI, 1.34-4.48; P = .005) and twofold higher risk of relapse or loss of BCA (HR, 1.96; 95% CI, 1.19-3.23; P = .01) compared with those with optimal fludarabine exposure. High preinfusion disease burden was also associated with increased risk of relapse (HR, 2.66; 95% CI, 1.45-4.87; P = .001) and death (HR, 4.77; 95% CI, 2.10-10.9; P < .001). Personalized PK-directed dosing to achieve optimal fludarabine exposure should be tested in prospective trials and, based on this analysis, may reduce disease relapse after CAR T-cell therapy.
Collapse
Affiliation(s)
- Vanessa A. Fabrizio
- Colorado Children’s Hospital, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Jaap Jan Boelens
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christina Baggott
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Snehit Prabhu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Emily Egeler
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Sharon Mavroukakis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Holly Pacenta
- Department of Pediatrics, University of Texas Southwestern Medical Center/Children’s Health, Dallas, TX
- Division of Hematology and Oncology, Cook Children’s Medical Center, Fort Worth, TX
| | - Christine L. Phillips
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jenna Rossoff
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Heather E. Stefanski
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Julie-An Talano
- Department of Pediatric Hematology Oncology, Medical College of Wisconsin, Wauwatosa, WI
| | - Amy Moskop
- Department of Pediatric Hematology Oncology, Medical College of Wisconsin, Wauwatosa, WI
| | - Steven P. Margossian
- Pediatric Hematology-Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Michael R. Verneris
- Colorado Children’s Hospital, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Nicole A. Karras
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA
| | - Patrick A. Brown
- Department of Oncology, Sidney Kimmel Cancer Center, John Hopkins School of Medicine, Baltimore, MD
| | - Muna Qayed
- Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Michelle Hermiston
- Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Christa Krupski
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Amy K. Keating
- Colorado Children’s Hospital, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Cara A. Rabik
- Department of Oncology, Sidney Kimmel Cancer Center, John Hopkins School of Medicine, Baltimore, MD
| | - Vasant Chinnabhandar
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael Kunicki
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - A. Yasemin Goksenin
- Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA
| | - Crystal L. Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Division of Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center/Children’s Health, Dallas, TX
- Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Division of Oncology, Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Liora M. Schultz
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Kevin J. Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| |
Collapse
|
29
|
Shah GL, Boelens JJ, Carlow D, Lin A, Schofield R, Cruz Sitner N, Alperovich A, Ruiz J, Proli A, Dahi P, Tamari R, Giralt SA, Scordo M, Admiraal R. Population Pharmacokinetics of Melphalan in a Large Cohort of Autologous and Allogeneic Hematopoietic Cell Transplantation Recipients: Towards Individualized Dosing Regimens. Clin Pharmacokinet 2022; 61:553-563. [PMID: 34859337 PMCID: PMC9415324 DOI: 10.1007/s40262-021-01093-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES High-dose melphalan is an integral part of conditioning chemotherapy prior to both autologous and allogeneic hematopoietic cell transplantation. While underexposure may lead to relapse, overexposure may lead to toxicities include mucositis, diarrhea, bone marrow suppression, and rarely sinusoidal obstruction syndrome. In this study, we describe the population pharmacokinetics of high-dose melphalan as a first step towards individualized dosing. METHODS Melphalan samples were collected in patients receiving an allogeneic or autologous hematopoietic cell transplantation between August 2016 and August 2020 at the Memorial Sloan Kettering Cancer Center. A population-pharmacokinetic model was developed using NONMEM. RESULTS Based on a total of 3418 samples from 452 patients receiving a median cumulative dose of 140 mg/m2, a two-compartment population-pharmacokinetic model was developed. Fat-free mass was a covariate for clearance, central volume of distribution, and inter-compartmental clearance, while glomerular filtration rate predicted clearance. Simulation studies showed that based on fixed body surface area-based dosing, renal impairment has a higher impact in increasing melphalan exposure compared with obesity. CONCLUSIONS The proposed model adequately describes the population pharmacokinetics of melphalan in adult patients receiving a hematopoietic cell transplantation. This model can be used to define the therapeutic window of melphalan, and subsequently to develop individualized dosing regimens aiming for that therapeutic window in all patients.
Collapse
Affiliation(s)
- Gunjan L Shah
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Dean Carlow
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Lin
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Schofield
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Cruz Sitner
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Alperovich
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josel Ruiz
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony Proli
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parastoo Dahi
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sergio A Giralt
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael Scordo
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Rick Admiraal
- Pediatric Hematopoeitic Cell Transplantation Program, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Bertaina A, Abraham A, Bonfim C, Cohen S, Purtill D, Ruggeri A, Weiss D, Wynn R, Boelens JJ, Prockop S. An ISCT Stem Cell Engineering Committee Position Statement on Immune Reconstitution: the importance of predictable and modifiable milestones of immune reconstitution to transplant outcomes. Cytotherapy 2022; 24:385-392. [PMID: 35331394 DOI: 10.1016/j.jcyt.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Allogeneic stem cell transplantation is a potentially curative therapy for some malignant and non-malignant disease. There have been substantial advances since the approaches first introduced in the 1970s, and the development of approaches to transplant with HLA incompatible or alternative donors has improved access to transplant for those without a fully matched donor. However, success is still limited by morbidity and mortality from toxicity and imperfect disease control. Here we review our emerging understanding of how reconstitution of effective immunity after allogeneic transplant can protect from these events and improve outcomes. We provide perspective on milestones of immune reconstitution that are easily measured and modifiable.
Collapse
Affiliation(s)
- Alice Bertaina
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Allistair Abraham
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Québec, Canada
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | | | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Susan Prockop
- Stem Cell Transplant Program, Division of Hematology/Oncology Boston Children's Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute.
| |
Collapse
|
31
|
van der Stoep MYEC, Oostenbrink LVE, Bredius RGM, Moes DJAR, Guchelaar HJ, Zwaveling J, Lankester AC. Therapeutic Drug Monitoring of Conditioning Agents in Pediatric Allogeneic Stem Cell Transplantation; Where do We Stand? Front Pharmacol 2022; 13:826004. [PMID: 35330826 PMCID: PMC8940165 DOI: 10.3389/fphar.2022.826004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established curative treatment that has significantly improved clinical outcome of pediatric patients with malignant and non-malignant disorders. This is partly because of the use of safer and more effective combinations of chemo- and serotherapy prior to HSCT. Still, complications due to the toxicity of these conditioning regimens remains a major cause of transplant-related mortality (TRM). One of the most difficult challenges to further improve HSCT outcome is reducing toxicity while maintaining efficacy. The use of personalized dosing of the various components of the conditioning regimen by means of therapeutic drug monitoring (TDM) has been the topic of interest in the last decade. TDM could play an important role, especially in children who tend to show greater pharmacokinetic variability. However, TDM should only be performed when it has clear added value to improve clinical outcome or reduce toxicity. In this review, we provide an overview of the available evidence for the relationship between pharmacokinetic parameters and clinical outcome or toxicities of the most commonly used conditioning agents in pediatric HSCT.
Collapse
Affiliation(s)
- M. Y. Eileen C. van der Stoep
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: M. Y. Eileen C. van der Stoep,
| | - Lisa V. E. Oostenbrink
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert G. M. Bredius
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Juliette Zwaveling
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
32
|
Fludarabine Exposure Predicts Outcome after CD19 CAR T-Cell Therapy in Children and Young Adults with Acute Leukemia. Blood Adv 2022; 6:1969-1976. [PMID: 35134115 PMCID: PMC9006280 DOI: 10.1182/bloodadvances.2021006700] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
A cumulative fludarabine AUCT0−∞ ≥14 mg*h/L correlates with improved LFS after CD19 CAR T-cell infusion. Clinical outcome in patients receiving CD19 CAR T cells might be improved by optimizing fludarabine exposure in the lymphodepleting regimen.
The addition of fludarabine to cyclophosphamide as a lymphodepleting regimen prior to CD19 chimeric antigen receptor (CAR) T-cell therapy significantly improved outcomes in patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL). Fludarabine exposure, previously shown to be highly variable when dosing is based on body surface area (BSA), is a predictor for survival in allogeneic hematopoietic cell transplantation (allo-HCT). Hence, we hypothesized that an optimal exposure of fludarabine might be of clinical importance in CD19 CAR T-cell treatment. We examined the effect of cumulative fludarabine exposure during lymphodepletion, defined as concentration-time curve (AUC), on clinical outcome and lymphocyte kinetics. A retrospective analysis was conducted with data from 26 patients receiving tisagenlecleucel for r/r B-ALL. Exposure of fludarabine was shown to be a predictor for leukemia-free survival (LFS), B-cell aplasia, and CD19-positive relapse following CAR T-cell infusion. Minimal event probability was observed at a cumulative fludarabine AUCT0−∞ ≥14 mg*h/L, and underexposure was defined as an AUCT0−∞ <14 mg*h/L. In the underexposed group, the median LFS was 1.8 months, and the occurrence of CD19-positive relapse within 1 year was 100%, which was higher compared with the group with an AUCT0−∞ ≥14 mg*h/L (12.9 months; P < .001; and 27.4%; P = .0001, respectively). Furthermore, the duration of B-cell aplasia within 6 months was shorter in the underexposed group (77.3% vs 37.3%; P = .009). These results suggest that optimizing fludarabine exposure may have a relevant impact on LFS following CAR T-cell therapy, which needs to be validated in a prospective clinical trial.
Collapse
|
33
|
Individualized Dosage Optimization for Myeloablative Conditioning before Unrelated Cord Blood Transplantation in a Diamond–Blackfan Anemia Patient with Germline RPL11 Mutation: A Case Study. Processes (Basel) 2022. [DOI: 10.3390/pr10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Unrelated cord blood transplantation (CBT) for Diamond–Blackfan anemia (DBA), a systemic ribosomopathy affecting the disposition of conditioning agents, has resulted in outcomes inferior to those by transplantations from matched donors. We report the experience of the pharmacokinetics-guided myeloablative unrelated CBT in a DBA patient with a germline RPL11 mutation. The conditioning consisted of individualized dosing of fludarabine (based on weight and renal function with a target area under the curve (AUC) of 17.5 mg·h/L) and busulfan (based on therapeutic drug monitoring with a target AUC of 90 mg·h/L), as well as dosing and timing of thymoglobulin (based on body weight and pre-dose lymphocyte count to target pre-CBT AUC of 30.7 AU·day/mL and post-CBT AUC of 4.3 AU·day/mL, respectively). The pharmacokinetic measures resulted in a 27.5% reduction in busulfan and a 35% increase in fludarabine, as well as an over three-fold increase in thymoglobulin dosage with the start time changed to day-9 instead of day-2 compared to regular regimens. The transplantation resulted in rapid, complete, and sustained hematopoietic engraftment. The patient is now healthy over 3 years after CBT. A pharmacokinetics-guided individualized dosing strategy for conditioning might be a feasible option to improve the outcomes of DBA patients receiving unrelated myeloablative CBT.
Collapse
|
34
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
35
|
Clofarabine-fludarabine-busulfan in HCT for pediatric leukemia: an effective, low toxicity, TBI-free conditioning regimen. Blood Adv 2021; 6:1719-1730. [PMID: 34781362 PMCID: PMC8941455 DOI: 10.1182/bloodadvances.2021005224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
CloFluBu-conditioning results in encouraging EFS for ALL and AML, with low TRM, limited incidence of aGvHD and GF, and no cases of VOD. Minimal residual disease status prior to transplantation impacted outcome due to increased relapse risk in both AML and ALL patients.
We prospectively studied clofarabine-fludarabine-busulfan (CloFluBu)-conditioning in allogeneic hematopoietic cell therapy (HCT) for lymphoid and myeloid malignancies and hypothesized that CloFluBu provides a less toxic alternative to conventional conditioning regimens, with adequate antileukemic activity. All patients receiving their first HCT, from 2011-2019, were included and received CloFluBu. The primary endpoint was event-free survival (EFS). Secondary endpoints were overall survival (OS), graft-versus-host disease (GvHD)-relapse-free survival (GRFS), treatment-related mortality (TRM), cumulative incidence of relapse (CIR), acute and chronic GvHD (aGvHD and cGvHD), and veno-occlusive disease (VOD). Cox proportional hazard and Fine and Gray competing-risk models were used for data analysis. One hundred fifty-five children were included: 60 acute lymphoid leukemia (ALL), 69 acute myeloid leukemia (AML), and 26 other malignancies (mostly MDS-EB). The median age was 9.7 (0.5 to 18.6) years. Estimated 2-year EFS was 72.0% ± 6.0 in ALL patients, and 62.4% ± 6.0 in AML patients. TRM in the whole cohort was 11.0% ± 2.6, incidence of aGvHD 3 to 4 at 6 months was 12.3% ± 2.7, extensive cGvHD at 2 years was 6.4% ± 2.1. Minimal residual disease-positivity prior to HCT was associated with higher CIR, both in ALL and AML. CloFluBu showed limited toxicity and encouraging EFS. CloFluBu is a potentially less toxic alternative to conventional conditioning regimens. Randomized prospective studies are needed.
Collapse
|
36
|
Nijstad AL, Nierkens S, Lindemans CA, Boelens JJ, Bierings M, Versluys AB, van der Elst KC, Huitema AD. Population pharmacokinetics of clofarabine for allogeneic hematopoietic cell transplantation in paediatric patients. Br J Clin Pharmacol 2021; 87:3218-3226. [PMID: 33444472 PMCID: PMC8359279 DOI: 10.1111/bcp.14738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Clofarabine has recently been evaluated as part of the conditioning regimen for allogeneic hematopoietic stem cell transplantation (HCT) in children. Pharmacokinetic (PK) exposure of different agents commonly used in conditioning regimens is strongly related to HCT outcome. Consequently, the PK of clofarabine may be important for outcome. This report describes the population PK of clofarabine in paediatric patients and one adult. METHODS From 80 paediatric (0.5-18 years) and 1 adult patient (37 years), 805 plasma concentrations were included in pharmacokinetic analyses using nonlinear mixed effects modelling. RESULTS A two-compartment model adequately described the PK of clofarabine. Body weight and estimated glomerular filtration rate (eGFR) were included as covariates. Clearance was differentiated into nonrenal and renal clearance (approximately 55% of total clearance), resulting in population estimates of 24.0 L/h (95% confidence interval [CI] 13.7-34.4) and 29.8 L/h (95% CI 23.9-36.1) for a patient of 70 kg with normal renal function, respectively. Unexplained interindividual variability in clearance was 17.8% (95% CI 14.6-22.4). A high variability in exposure was observed (range area under the curveT0-inf 1.8-6.0 mg/L*h) after body surface area (BSA) based dosing. Interestingly, children with low body weight had a lower exposure than children with a higher body weight, which indicates that the currently practised BSA-based dosing is not adequate for clofarabine. CONCLUSION A clofarabine dosing algorithm based on this PK model, using body weight and eGFR, results in a more predictable exposure than BSA-based dosing. However, the exact target exposure needs to be further investigated.
Collapse
Affiliation(s)
- A. Laura Nijstad
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Caroline A. Lindemans
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Jaap Jan Boelens
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Stem Cell Transplantation and Cellular Therapies, MSK KidsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marc Bierings
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - A. Birgitta Versluys
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Kim C.M. van der Elst
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Alwin D.R. Huitema
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of Pharmacy & PharmacologyNetherlands Cancer InstituteAmsterdamthe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| |
Collapse
|
37
|
The impact of obesity and body weight on the outcome of patients with relapsed/refractory large B-cell lymphoma treated with axicabtagene ciloleucel. Blood Cancer J 2021; 11:124. [PMID: 34210955 PMCID: PMC8249448 DOI: 10.1038/s41408-021-00515-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
|
38
|
Gagelmann N, Kröger N. Dose intensity for conditioning in allogeneic hematopoietic cell transplantation: can we recommend "when and for whom" in 2021? Haematologica 2021; 106:1794-1804. [PMID: 33730842 PMCID: PMC8252938 DOI: 10.3324/haematol.2020.268839] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem-cell transplantation is a potentially curative therapy for various hematologic diseases. An essential component of this procedure is the pre-transplant conditioning regimen, which should facilitate engraftment and reduce or eliminate tumor cells. The recognition of the substantial association of a graft-versus- tumor effect and the high toxicity of the commonly used conditioning regimen led to the introduction of more differentiated intensity strategies, with the aim of making hematopoietic stem-cell transplantation less toxic and safer, and thus more applicable to broader populations such as older or unfit patients. In general, prospective and retrospective studies suggest a correlation between increasing intensity and nonrelapse mortality and an inverse correlation with relapse incidence. In this review, we will summarize traditional and updated definitions for conditioning intensity strategies and the landscape of comparative prospective and retrospective studies, which may help to find the balance between the risk of non-relapse mortality and relapse. We will try to underscore the caveats regarding these definitions and analyses, by missing complex differences between intensity and toxicity as well as the broad influences of other factors in the transplantation procedure. We will summarize evidence regarding several confounders which may influence decisions when selecting the intensity of the conditioning regimen for any given patient, according to the individual risk of relapse and non-relapse mortality.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg.
| |
Collapse
|
39
|
Takahashi T, Scheibner A, Cao Q, Pearson R, Sanghavi K, Weisdorf DJ, Brunstein CG, Rogosheske J, Bachanova V, Warlick ED, Wiseman A, Jacobson PA. Higher Fludarabine and Cyclophosphamide Exposures Lead to Worse Outcomes in Reduced-Intensity Conditioning Hematopoietic Cell Transplantation for Adult Hematologic Malignancy. Transplant Cell Ther 2021; 27:773.e1-773.e8. [PMID: 34044184 DOI: 10.1016/j.jtct.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022]
Abstract
Reduced-intensity conditioning regimens using fludarabine (Flu) and cyclophosphamide (Cy) have been widely used in hematopoietic cell transplantation (HCT) recipients. The optimal exposure of these agents remains to be determined. We aimed to delineate the exposure-outcome associations of Flu and Cy separately and then both combined on HCT outcomes. This is a single-center, observational, pharmacokinetic (PK)-pharmacodynamic (PD) study of Flu and Cy in HCT recipients age ≥18 years who received Cy (50 mg/kg in a single dose), Flu (150 to 200 mg/m2 given as 5 daily doses), and total body irradiation (TBI; 200 cGy). We measured trough concentrations of 9-β-D-arabinosyl-2-fluoradenine (F-ara-A), an active metabolite of Flu, on days -5 and -4 (F-ara-ADay-5 and F-ara-ADay-4, respectively), and measured phosphoramide mustard (PM), the final active metabolite of Cy, and estimated the area under the curve (AUC). The 89 enrolled patients had a nonrelapse mortality (NRM) of 9% (95% confidence interval [CI], 3% to 15%) at day +100 and 15% (95% CI, 7% to 22%) at day +180, and an overall survival (OS) of 73% (95% CI, 63% to 81%) at day +180. In multivariate analysis, higher PM area under the curve (AUC) for 0 to 8 hours (PM AUC0-8 hr) was an independent predictor of worse NRM (P < .01 at both day +100 and day +180) and worse day +180 OS (P < .01), but no associations were identified for F-ara-A trough levels. We observed lower day +100 NRM in those with both high F-ara-ADay-4 trough levels (≥40 ng/mL; >25th percentile) and low PM AUC0-8 hr (<34,235 hr ng/mL; <75th percentile), compared with high exposures to both agents (hazard ratio, 0.06; 95% CI, 0.01 to 0.48). No patients with low F-ara-ADay-4 (<40 ng/mL; <25th percentile) had NRM by day +100, regardless of PM AUC. The interpatient PK variability was large in F-ara-ADay-4 trough and PM AUC0-8 hr (29-fold and 5.0-fold, respectively). Flu exposure alone was not strongly associated with NRM or OS in this reduced Flu dose regimen; however, high exposure to both Flu and Cy was associated with a >16-fold higher NRM. These results warrant further investigation to optimize reduced-intensity regimens based on better PK-PD understanding and possible adaptation to predictable factors influencing drug clearance.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Aileen Scheibner
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rachael Pearson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Kinjal Sanghavi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Claudio G Brunstein
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - John Rogosheske
- Department of Pharmacy, M Health Fairview, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Erica D Warlick
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anthony Wiseman
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
40
|
αβ T-cell graft depletion for allogeneic HSCT in adults with hematological malignancies. Blood Adv 2021; 5:240-249. [PMID: 33570642 DOI: 10.1182/bloodadvances.2020002444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
We conducted a multicenter prospective single-arm phase 1/2 study that assesses the outcome of αβ T-cell depleted allogeneic hematopoietic stem cell transplantation (allo-HSCT) of peripheral blood derived stem cells from matched related, or unrelated donors (10/10 and 9/10) in adults, with the incidence of acute graft-versus-host disease (aGVHD) as the primary end point at day 100. Thirty-five adults (median age, 59; range, 19-69 years) were enrolled. Conditioning consisted of antithymocyte globulin, busulfan, and fludarabine, followed by 28 days of mycophenolic acid after allo-HSCT. The minimal follow-up time was 24 months. The median number of infused CD34+ cells and αβ T cells were 6.1 × 106 and 16.3 × 103 cells per kg, respectively. The cumulative incidence (CI) of aGVHD grades 2-4 and 3-4 at day 100 was 26% and 14%. One secondary graft failure was observed. A prophylactic donor lymphocyte infusion (DLI) (1 × 105 CD3+ T cells per kg) was administered to 54% of the subjects, resulting in a CI of aGVHD grades 2-4 and 3-4 to 37% and 17% at 2 years. Immune monitoring revealed an early reconstitution of natural killer (NK) and γδ T cells. Cytomegalovirus reactivation associated with expansion of memory-like NK cells. The CI of relapse was 29%, and the nonrelapse mortality 32% at 2 years. The 2-year CI of chronic GVHD (cGVHD) was 23%, of which 17% was moderate. We conclude that only 26% of patients developed aGVHD 2-4 after αβ T-cell-depleted allo-HSCT within 100 days and was associated with a low incidence of cGVHD after 2 years. This trial was registered at www.trialregister.nl as #NL4767.
Collapse
|
41
|
Reduced-intensity single-unit unrelated cord blood transplant with optional immune boost for nonmalignant disorders. Blood Adv 2021; 4:3041-3052. [PMID: 32634238 DOI: 10.1182/bloodadvances.2020001940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Children with many inherited nonmalignant disorders can be cured or their condition alleviated by hematopoietic stem cell transplantation (HSCT). Umbilical cord blood (UCB) units are a rapidly available stem cell source and offer great flexibility in HLA matching, allowing nearly uniform access to HSCT. Although reduced-intensity conditioning (RIC) regimens promise decreased treatment-related morbidity and mortality, graft failure and infections have limited their use in chemotherapy-naive patients. We prospectively evaluated a novel RIC regimen of alemtuzumab, hydroxyurea, fludarabine, melphalan, and thiotepa with a single-unit UCB graft in 44 consecutive patients with inborn errors of metabolism, immunity, or hematopoiesis. In addition, 5% of the UCB graft was re-cryopreserved and reserved for cord donor leukocyte infusion (cDLI) posttransplant. All patients engrafted at a median of 15 days posttransplant, and chimerism was >90% donor in the majority of patients at 1-year posttransplant with only 1 secondary graft failure. The incidence of grade II to IV graft-versus-host disease (GVHD) was 27% (95% confidence interval [CI], 17-43) with no extensive chronic GVHD. Overall survival was 95% (95% CI, 83-99) and 85% (95% CI, 64-93) at 1 and 5 years posttransplant, respectively. No significant end-organ toxicities were observed. The use of cDLI did not affect GVHD and showed signals of efficacy for infection control or donor chimerism. This RIC transplant regimen using single-unit UCB graft resulted in outstanding survival and remarkably low rates of graft failure. Implementation of the protocol not requiring pharmacokinetic monitoring would be feasible and applicable worldwide for children with inherited disorders of metabolism, immunity, or hematopoiesis. This trial was registered at www.clinicaltrials.gov as #NCT01962415.
Collapse
|
42
|
Dalhat MH, Altayb HN, Khan MI, Choudhry H. Structural insights of human N-acetyltransferase 10 and identification of its potential novel inhibitors. Sci Rep 2021; 11:6051. [PMID: 33723305 PMCID: PMC7960695 DOI: 10.1038/s41598-021-84908-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
N-acetyltransferase 10 (NAT10), is an acetyltransferase that regulates RNA stability and translation processes. Association of NAT10 with several diseases including cancer, makes it a promising therapeutic target. Remodelin is the only known NAT10 inhibitor, but the structural information related to its binding with NAT10 is still obscure. Here, we predicted the human NAT10 structure using homology modeling that was not available previously and used human NAT10 to identify the novel binding site(s) of Remodelin. The alignment of the modeled human NAT10 showed 24% identity and 37% positivity with crystal structure of tRNA (Met) cytidine acetyltransferase. Molecular docking showed binding of Remodelin with NAT10 in acetyl-CoA binding pocket. Additionally, we screened a library of FDA-approved drugs for the identification of novel inhibitors of NAT10 activity. Binding score showed that four drugs namely, Fosaprepitant (- 11.709), Leucal (- 10.46), Fludarabine (- 10.347) and Dantrolene (- 9.875) bind to NAT10 and have better binding capability when compared with Acetyl-CoA (- 5.691) and Remodelin (- 5.3). Acetyl-CoA, Remodelin, and others exhibit hits for hydrophobic, hydrophilic and hydrogen interactions. Interestingly, Remodelin and others interact with the amino acid residues ILE629, GLY639, GLY641, LEU719, and PHE722 in the Acetyl-CoA binding pocket of NAT10 similar to Acetyl-CoA. Our findings revealed that Fosaprepitant, Leucal, Fludarabine, and Dantrolene are promising molecules that can be tested and developed as potential inhibitors of NAT10 acetyltransferase activity.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hisham N Altayb
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
43
|
Schmid C, Kuball J, Bug G. Defining the Role of Donor Lymphocyte Infusion in High-Risk Hematologic Malignancies. J Clin Oncol 2021; 39:397-418. [PMID: 33434060 DOI: 10.1200/jco.20.01719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital, Augsburg, Germany
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gesine Bug
- Department of Medicine 2, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Ben Hassine K, Powys M, Svec P, Pozdechova M, Versluys B, Ansari M, Shaw PJ. Total Body Irradiation Forever? Optimising Chemotherapeutic Options for Irradiation-Free Conditioning for Paediatric Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:775485. [PMID: 34956984 PMCID: PMC8705537 DOI: 10.3389/fped.2021.775485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Total-body irradiation (TBI) based conditioning prior to allogeneic hematopoietic stem cell transplantation (HSCT) is generally regarded as the gold-standard for children >4 years of age with acute lymphoblastic leukaemia (ALL). Retrospective studies in the 1990's suggested better survival with irradiation, confirmed in a small randomised, prospective study in the early 2000's. Most recently, this was reconfirmed by the early results of the large, randomised, international, phase III FORUM study published in 2020. But we know survivors will suffer a multitude of long-term sequelae after TBI, including second malignancies, neurocognitive, endocrine and cardiometabolic effects. The drive to avoid TBI directs us to continue optimising irradiation-free, myeloablative conditioning. In chemotherapy-based conditioning, the dominant myeloablative effect is provided by the alkylating agents, most commonly busulfan or treosulfan. Busulfan with cyclophosphamide is a long-established alternative to TBI-based conditioning in ALL patients. Substituting fludarabine for cyclophosphamide reduces toxicity, but may not be as effective, prompting the addition of a third agent, such as thiotepa, melphalan, and now clofarabine. For busulfan, it's wide pharmacokinetic (PK) variability and narrow therapeutic window is well-known, with widespread use of therapeutic drug monitoring (TDM) to individualise dosing and control the cumulative busulfan exposure. The development of first-dose selection algorithms has helped achieve early, accurate busulfan levels within the targeted therapeutic window. In the future, predictive genetic variants, associated with differing busulfan exposures and toxicities, could be employed to further tailor individualised busulfan-based conditioning for ALL patients. Treosulfan-based conditioning leads to comparable outcomes to busulfan-based conditioning in paediatric ALL, without the need for TDM to date. Future PK evaluation and modelling may optimise therapy and improve outcome. More recently, the addition of clofarabine to busulfan/fludarabine has shown encouraging results when compared to TBI-based regimens. The combination shows activity in ALL as well as AML and deserves further evaluation. Like busulfan, optimization of chemotherapy conditioning may be enhanced by understanding not just the PK of clofarabine, fludarabine, treosulfan and other agents, but also the pharmacodynamics and pharmacogenetics, ideally in the context of a single disease such as ALL.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Madeleine Powys
- Blood Transplant and Cell Therapies, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, Comenius University, Bratislava, Slovakia.,Bone Marrow Transplantation Unit, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miroslava Pozdechova
- Department of Pediatric Hematology and Oncology, Comenius University, Bratislava, Slovakia.,Bone Marrow Transplantation Unit, National Institute of Children's Diseases, Bratislava, Slovakia
| | | | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Peter J Shaw
- Blood Transplant and Cell Therapies, Children's Hospital at Westmead, Sydney, NSW, Australia.,Speciality of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Bechman N, Maher J. Lymphodepletion strategies to potentiate adoptive T-cell immunotherapy - what are we doing; where are we going? Expert Opin Biol Ther 2020; 21:627-637. [PMID: 33243003 DOI: 10.1080/14712598.2021.1857361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Adoptive immunotherapy of cancer has evolved from the use of ex vivo expanded lymphokine-activated killer cells and tumor-infiltrating lymphocytes to an increasing array of approaches involving genetically engineered T-cells. A pivotal advance in the enablement of these therapies has been the conditioning of patients with lymphodepleting chemotherapy.A broad range of lymphodepleting regimens has been employed in an effort to improve response rates, without any single consistent approach having emerged. Only a limited number of studies involving small numbers of patients has directly compared two or more regimens, making it challenging to infer which are the preferred agents and dosing schedules. This difficulty is compounded by the fact that both response rate and toxicity appear to be disease-, patient- and T-cell product specific. EXPERT OPINION This article surveys clinical experience with lymphodepleting regimens that have been used in conjunction with adoptive T-cell immunotherapy, focussing in particular on studies where different approaches have been employed. Harnessing this limited and evolving clinical experience, we set out to provide potential insights into how an optimal balance may be achieved between efficacy and safety. Intermediate dose fludarabine-based regimens are emerging as an increasingly popular option in an attempt to achieve this goal, although further studies are required to provide definitive evidence.
Collapse
Affiliation(s)
| | - John Maher
- Leucid Bio Ltd., Guy's Hospital, London UK.,King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, London UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London UK.,Department of Immunology, Eastbourne Hospital, Kings Drive, East Sussex, UK
| |
Collapse
|
46
|
Hayashi RJ. Considerations in Preparative Regimen Selection to Minimize Rejection in Pediatric Hematopoietic Transplantation in Non-Malignant Diseases. Front Immunol 2020; 11:567423. [PMID: 33193340 PMCID: PMC7604384 DOI: 10.3389/fimmu.2020.567423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
The variables that influence the selection of a preparative regimen for a pediatric hematopoietic stem cell transplant procedure encompasses many issues. When one considers this procedure for non-malignant diseases, components in a preparative regimen that were historically developed to reduce malignant tumor burden may be unnecessary. The primary goal of the procedure in this instance becomes engraftment with the establishment of normal hematopoiesis and a normal immune system. Overcoming rejection becomes the primary priority, but pursuit of this goal cannot neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease or life threatening infections. With the improvements in supportive care, newborn screening techniques for early disease detection, and the expansion of viable donor sources, we have reached a stage where hematopoietic stem cell transplantation can be considered for virtually any patient with a hematopoietic based disease. Advancing preparative regiments that minimize rejection and transplant related toxicity will thus dictate to what extent this medical technology is fully utilized. This mini-review will provide an overview of the origins of conditioning regimens for transplantation and how agents and techniques have evolved to make hematopoietic stem cell transplantation a viable option for children with non-malignant diseases of the hematopoietic system. We will summarize the current state of this facet of the transplant procedure and describe the considerations that come into play in selecting a particular preparative regimen. Decisions within this realm must tailor the treatment to the primary disease condition to ideally achieve an optimal outcome. Finally, we will project forward where advances are needed to overcome the persistent engraftment obstacles that currently limit the utilization of transplantation for haematopoietically based diseases in children.
Collapse
Affiliation(s)
- Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
47
|
Langenhorst JB, Dorlo TPC, van Kesteren C, van Maarseveen EM, Nierkens S, de Witte MA, Boelens JJ, Huitema ADR. Clinical Trial Simulation To Optimize Trial Design for Fludarabine Dosing Strategies in Allogeneic Hematopoietic Cell Transplantation. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:272-281. [PMID: 31957334 PMCID: PMC7239337 DOI: 10.1002/psp4.12486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Optimal fludarabine exposure has been associated with improved treatment outcome in allogeneic hematopoietic cell transplantation, suggesting potential benefit of individualized dosing. A randomized controlled trial (RCT) comparing alternative fludarabine dosing strategies to current practice may be warranted, but should be sufficiently powered for a relevant end point, while still feasible to enroll. To find the optimal design, we simulated RCTs comparing current practice (160 mg/m2 ) to either covariate-based or therapeutic drug monitoring (TDM)-guided dosing with potential outcomes being nonrelapse mortality (NRM), graft failure, or relapse, and ultimately overall survival (covering all three aforementioned outcomes). The inclusion in each treatment arm (n) required to achieve 80% power was calculated for all combinations of end points and dosing comparisons. The trial requiring the lowest n for sufficient power compared TDM-guided dosing to current practice with NRM as primary outcome (n = 70, NRM decreasing from 21% to 5.7%). We conclude that a superiority trial is feasible.
Collapse
Affiliation(s)
- Jurgen B Langenhorst
- Pediatric Blood and Marrow Transplant Program, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands.,Model-informed drug development consultant, Pharmetheus AB, Uppsala, Sweden
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte van Kesteren
- Pediatric Blood and Marrow Transplant Program, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Erik M van Maarseveen
- Department of Clinical Pharmacy, University Medical Centre Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
| | - Stefan Nierkens
- Pediatric Blood and Marrow Transplant Program, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
| | - Moniek A de Witte
- Department of Hematology, University Medical Centre Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
| | - Jaap Jan Boelens
- Pediatric Blood and Marrow Transplant Program, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Stem Cell Transplant and Cellular Therapies, Pediatrics, Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Centre Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Redefining and measuring transplant conditioning intensity in current era: a study in acute myeloid leukemia patients. Bone Marrow Transplant 2020; 55:1114-1125. [DOI: 10.1038/s41409-020-0803-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
|
49
|
Boelens JJ, Hosszu KK, Nierkens S. Immune Monitoring After Allogeneic Hematopoietic Cell Transplantation: Toward Practical Guidelines and Standardization. Front Pediatr 2020; 8:454. [PMID: 32974239 PMCID: PMC7472532 DOI: 10.3389/fped.2020.00454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative treatment option for children suffering from hematological malignancies and a variety of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or immune deficiencies. Although efficacy and safety of the HCT procedure has increased significantly over the last decades, the majority of the patients still suffer from severe acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD) and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are numerous and versatile. For example, there is variation in the selected graft sources, type of infused cell subsets, cell doses, and the protocols used for conditioning, as well as immune suppression and treatment of adverse events. Moreover, recent pharmacokinetic studies show that medications used in the conditioning regimen (e.g., busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to achieve optimal exposure in every individual patient. Due to this multitude of variables and site-specific policies/preferences, harmonization between HCT centers is still difficult to achieve. Literature shows that adequate immune recovery post-HCT limits both relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring immune parameters post-HCT may facilitate a timely prediction of outcome. The use of standardized assays to measure immune parameters would facilitate a fast comparison between different strategies tested in different centers or between different clinical trials. We here discuss immune cell markers that may contribute to clinical decision making and may be worth to standardize in multicenter collaborations for future trials.
Collapse
Affiliation(s)
- Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kinga K Hosszu
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology and UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
50
|
Frequency of lethal central nervous system neurotoxicity in patients undergoing allogeneic stem cell transplantation: a retrospective registry analysis. Bone Marrow Transplant 2019; 55:1642-1646. [PMID: 31695171 DOI: 10.1038/s41409-019-0738-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
|