1
|
Puccio N, Manzotti G, Mereu E, Torricelli F, Ronchetti D, Cumerlato M, Craparotta I, Di Rito L, Bolis M, Traini V, Manicardi V, Fragliasso V, Torrente Y, Amodio N, Bolli N, Taiana E, Ciarrocchi A, Piva R, Neri A. Combinatorial strategies targeting NEAT1 and AURKA as new potential therapeutic options for multiple myeloma. Haematologica 2024; 109:4040-4055. [PMID: 38988264 PMCID: PMC11609815 DOI: 10.3324/haematol.2024.285470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple myeloma (MM) is a dreadful disease, marked by the uncontrolled proliferation of clonal plasma cells within the bone marrow. It is characterized by a highly heterogeneous clinical and molecular background, supported by severe genomic alterations. Important de-regulation of long non-coding RNA (lncRNA) expression, which can influence progression and therapy resistance, has been reported in MM patients. NEAT1 is a lncRNA essential for nuclear paraspeckles and is involved in the regulation of gene expression. We showed that NEAT1 supports MM proliferation, making this lncRNA an attractive therapeutic candidate. Here, we used a combinatorial strategy integrating transcriptomic and computational approaches with functional high-throughput drug screening to identify compounds that synergize with NEAT1 inhibition in restraining MM cell growth. AURKA inhibitors were identified as top-scoring drugs in these analyses. We showed that the combination of NEAT1 silencing and AURKA inhibitors in MM profoundly impairs microtubule organization and mitotic spindle assembly, finally leading to cell death. Analysis of the large publicly available CoMMpass dataset showed that, in MM patients, AURKA expression is strongly associated with reduced progression-free survival (P<0.0001) and overall survival (P<0.0001) probabilities and patients with high levels of expression of both NEAT1 and AURKA have a worse clinical outcome. Finally, using RNA-sequencing data from NEAT1 knockdown MM cells, we identified the AURKA allosteric regulator TPX2 as a new NEAT1 target in MM and as a mediator of the interplay between AURKA and NEAT1, therefore providing a possible explanation for the synergistic activity observed upon their combinatorial inhibition.
Collapse
Affiliation(s)
- Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | | | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Ilaria Craparotta
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan
| | - Laura Di Rito
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan
| | - Marco Bolis
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan; Bioinformatics Core Unit, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Novystem Spa, Milan
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan
| | - Elisa Taiana
- Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia.
| |
Collapse
|
2
|
Weiss J, Gibbons K, Ehyaee V, Perez-Silos V, Zevallos A, Maienschein-Cline M, Brister E, Sverdlov M, Shah E, Balakrishna J, Symes E, Frederiksen JK, Gann PH, Post R, Lopez-Hisijos N, Reneau J, Venkataraman G, Bailey N, Brown NA, Xu ML, Wilcox RA, Inamdar K, Murga-Zamalloa C. Specific Polo-Like Kinase 1 Expression in Nodular Lymphocyte-Predominant Hodgkin Lymphoma Suggests an Intact Immune Surveillance Program. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:165-178. [PMID: 37923249 PMCID: PMC10768536 DOI: 10.1016/j.ajpath.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare and relatively indolent B-cell lymphoma. Characteristically, the [lymphocyte-predominant (LP)] tumor cells are embedded in a microenvironment enriched in lymphocytes. More aggressive variants of mature B-cell and peripheral T-cell lymphomas exhibit nuclear expression of the polo-like kinase 1 (PLK1) protein, stabilizing MYC (alias c-myc) and associated with worse clinical outcomes. This study demonstrated expression of PLK1 in the LP cells in 100% of NLPHL cases (n = 76). In contrast, <5% of classic Hodgkin lymphoma cases (n = 70) showed PLK1 expression within the tumor cells. Loss-of-function approaches demonstrated that the expression of PLK1 promoted cell proliferation and increased MYC stability in NLPHL cell lines. Correlation with clinical parameters revealed that the increased expression of PLK1 was associated with advanced-stage disease in patients with NLPHL. A multiplex immunofluorescence panel coupled with artificial intelligence algorithms was used to correlate the composition of the tumor microenvironment with the proliferative stage of LP cells. The results showed that LP cells with PLK1 (high) expression were associated with increased numbers of cytotoxic and T-regulatory T cells. Overall, the findings demonstrate that PLK1 signaling increases NLPHL proliferation and constitutes a potential vulnerability that can be targeted with PLK1 inhibitors. An active immune surveillance program in NLPHL may be a critical mechanism limiting PLK1-dependent tumor growth.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kathryn Gibbons
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan
| | - Vida Ehyaee
- Department of Pathology, Rush University, Chicago, Illinois
| | - Vanessa Perez-Silos
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Alejandro Zevallos
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Eileen Brister
- Research Tissue Imaging Core and Research Histology Core, University of Illinois at Chicago, Chicago, Illinois
| | - Maria Sverdlov
- Research Tissue Imaging Core and Research Histology Core, University of Illinois at Chicago, Chicago, Illinois
| | - Eshana Shah
- Department of Internal Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Emily Symes
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - John K Frederiksen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Robert Post
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - John Reneau
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | | - Nathanael Bailey
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Noah A Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Mina L Xu
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Ryan A Wilcox
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan.
| | | |
Collapse
|
3
|
Jiang K, Bai L, Wang C, Xiao X, Cheng Z, Peng H, Liu S. The Aurora kinase inhibitor AT9283 inhibits Burkitt lymphoma growth by regulating Warburg effect. PeerJ 2023; 11:e16581. [PMID: 38099309 PMCID: PMC10720464 DOI: 10.7717/peerj.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To investigate the effect of the kinase inhibitor AT9283 on Burkitt lymphoma (BL) cells and elucidate the underlying mechanisms. Methods The effect of AT9283 on the proliferation of BL cell lines was tested using the MTT assay. Apoptosis and cell cycle were measured by flow cytometry. The proteins associated with the cell cycle, apoptosis, and the Warburg effect were detected using Western blotting. Alterations in glycolytic metabolism in terms of glucose intake and lactate concentrations were determined by glucose and lactate assays. Results The current study utilized the GEPIA, the Human Protein Atlas (HAP) database and immunohistochemistry to conduct analyses, which revealed a high expression of Aurora kinases and Warburg effect-related proteins in malignant B-cell lymphoma tissues. AT9283 significantly inhibited the cell proliferation of BL cells and induced G2/M arrest. Additionally, AT9283 induced apoptosis in BL cells and reversed the Warburg effect by increasing glucose uptake and reducing lactate production. Moreover, the protein expression of hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A was significantly suppressed by AT9283, possibly through the inhibition of c-Myc and HIF-1α protein expression. Conclusion The reversal of the Warburg effect in BL cells and the subsequent inhibition of cell proliferation and induction of apoptosis were observed by targeting Aurora A and Aurora B with AT9283. This finding may present new therapeutic options and targets for BL.
Collapse
Affiliation(s)
- Kaiming Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Bai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Zhang Z, Liu E, Zhang D, Zhao W, Wang G, Zhang Y, Huo Y, Zhang C, Li W. The expression and clinical significance of PLK1/p-PLK1 protein in NK/T cell Lymphoma. Diagn Pathol 2023; 18:129. [PMID: 38037110 PMCID: PMC10691161 DOI: 10.1186/s13000-023-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
AIMS To investigate the expression of polo-like kinase 1 protein (PLK1) and its phosphorylation level (p-PLK1) in extranodal NK/T cell lymphoma (NKTCL) and their correlation with clinical characteristics and prognosis. METHODS We collected 40 cases of NKTCL (referred to as the experimental group), which received diagnoses at the First Affiliated Hospital of Zhengzhou University between January 2018 and October 2022. Concurrently, we assembled a control group, including 20 cases afflicted with nasopharyngeal mucosal lymphoid hyperplasia diseases during the same timeframe. We utilized immunohistochemical techniques to evaluate the levels of PLK1 and p-PLK1 expression in both the experimental and control groups. Subsequently, we conducted an analysis to identify disparities in their expression and explore their relationships with clinical characteristics and patient prognosis. RESULTS Among the 40 NKTCL patients, there were 27 males and 11 females, with a median age of 51 years (range 12-80 years). Compared to the control group, the tissue samples of NKTCL patients exhibited significantly elevated expression levels and active phosphorylation levels of PLK1 (P < 0.05). Correlation analysis of the immunohistochemical H score and Ki-67 positive rate of PLK1 and p-PLK1, revealed a significant positive correlation for both (P < 0.0001, each). No statistically significant differences were observed in the distribution of PLK1 and p-PLK1 expression in NKTCL patients with respect to gender, age, Ann Arbor stage, PINK-E score, B-symptoms, lactate dehydrogenase, β2-microglobulin, blood EBV-DNA, bone marrow invasion, and lymph node metastasis (p > 0.05). Grouping based on PLK1 and p-PLK1 immunohistochemical H-scores revealed that the high expression of PLK1 and p-PLK1 was associated with poor prognosis. CONCLUSIONS The expression levels and active phosphorylation levels of PLK1 were significantly increased in NK/T cell lymphoma, and patients with overexpression of PLK1 and p-PLK1 had a poorer prognosis.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wugan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanping Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yajun Huo
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chongli Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
6
|
Biswas S, Mahapatra E, Das S, Roy M, Mukherjee S. PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay. Heliyon 2022; 8:e11656. [PMID: 36458309 PMCID: PMC9706142 DOI: 10.1016/j.heliyon.2022.e11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background/aim Intricate association and aberrant activation of serine/threonine kinase (STK) family proteins like Polo-like kinase (PLK1) and Aurora kinase (Aurora A abruptly regulate mitotic entry whereas activation of PKCδ), another important member of STK family conversely induces apoptosis which is preceded by cell cycle arrest. These STKs are considered as major determinant of oncogenicity. Therefore, the contributory role of Aurora A/PLK-1 axis in mitotic control and PKCδ in apoptosis control and their reciprocity in cancer research is an emerging area to explore. The present study investigated the intricate involvement of STKs in breast cancer cells (MCF-7 and MDA-MB-231) and their disruption by PEITC. Methods Both MCF-7 and MDA-MB-231 cells were checked for clonogenic assay, cell-cycle analysis and the results were compared with normal MCF-10A, Western blotting, TUNEL & DNA-fragmentation assay, wound healing, transwell migration assays in presence and absence of PEITC. Results PEITC was found to increase the expression of PKCδ with subsequent nuclear translocation. Nuclear translocation of PKCδ was accompanied by inhibition of nuclear lamin vis a vis phosphorylation of Nrf2 at Ser 40 alongside nuclear accumulation of phospho-Nrf2. Activated PKCδ furthermore exerted its apoptotic effect by negatively regulating Aurora A and consequentially PLK1; indicating activation of PLK1 by Aurora A. Involvement of PEITC induced PKCδ activation and Aurora A inhibition was ascertained by using Rottlerin/Aurora A Inhibitor. Discussion & conclusion Natural isothiocyanates like PEITC efficiently altered the functional abilities of STKs concerning their entangled functional interplay. Such alterations in protein expression by PEITC was chaperoned with inhibition of the aggressiveness of breast cancer cells and ultimately induction of apoptosis.
Collapse
Affiliation(s)
- Souvick Biswas
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Elizabeth Mahapatra
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Salini Das
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Madhumita Roy
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Sutapa Mukherjee
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| |
Collapse
|
7
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
9
|
Jadhav M, Sankhe K, Bhandare RR, Edis Z, Bloukh SH, Khan TA. Synthetic Strategies of Pyrimidine-Based Scaffolds as Aurora Kinase and Polo-like Kinase Inhibitors. Molecules 2021; 26:5170. [PMID: 34500603 PMCID: PMC8434097 DOI: 10.3390/molecules26175170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.
Collapse
Affiliation(s)
- Mrunal Jadhav
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| | - Kaksha Sankhe
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| | - Richie R. Bhandare
- Department of Pharmaceutical Chemistry, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Zehra Edis
- Department of Pharmaceutical Chemistry, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Tabassum Asif Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| |
Collapse
|
10
|
Ashrafi F, Ghezeldasht SA, Ghobadi MZ. Identification of joint gene players implicated in the pathogenesis of HTLV-1 and BLV through a comprehensive system biology analysis. Microb Pathog 2021; 160:105153. [PMID: 34419613 DOI: 10.1016/j.micpath.2021.105153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV) are oncogenic viruses that induce adult T cell leukemia/lymphoma (ATLL) and enzootic bovine leukosis (EBL), respectively. HTLV-1 principally infects CD4+ T cells comprising regulatory T cells (Tregs), T helper 1 (Th1), and T helper 2 (Th2), while BLV infects B lymphocytes. Both viruses may impel cell proliferation and malignancy. METHODS To survey the transcriptomic variations due to HTLV-1 and BLV infection and further hematologic malignancies, differential expression genes (DEGs) were explored between leukemia and normal samples using the DESeq2 package. Gene set enrichment analyses (GSEA) were then performed to identify significant gene sets using the FGSEA package. Afterward, the protein-protein interaction (PPI) networks were reconstructed using the STRING online database. Eventually, the hub significant genes and modules were determined through network analysis and MCODE algorithm, respectively. RESULTS Our results uncloaked that four common functional gene sets including mitotic-spindle, G2M-checkpoint, E2F-targets, and MYC-targets-V1 are involved in the human and ovine hosts. Furthermore, twelve up-regulated hub genes including BIRC5, CCNA2, CCNB2, BUB1, DLGAP5, TOP2A, PBK, ASPM, UBE2C, CEP55, KIF20A, and NUSAP1 were identified which were similarly activated in both human and ovine hosts. They mostly participate in pathways including cell cycle, cell division, DNA damage responses, growth factors production, and p53 signaling pathway. The dysregulated hub genes and pathways seem to be involved in the development and progression of the infected cells toward malignancy. CONCLUSION There is common gene groups between HTLV-1 and BLV infections that promote viral malignancy through enhancing cell proliferation and overall survival of cancer cells. The dysregulated genes and pathways may be the efficient candidates for the therapy of the mentioned life-threatening diseases.
Collapse
Affiliation(s)
- Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Zarei Ghobadi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Das BK, Kannan A, Nguyen Q, Gogoi J, Zhao H, Gao L. Selective Inhibition of Aurora Kinase A by AK-01/LY3295668 Attenuates MCC Tumor Growth by Inducing MCC Cell Cycle Arrest and Apoptosis. Cancers (Basel) 2021; 13:3708. [PMID: 34359608 PMCID: PMC8345130 DOI: 10.3390/cancers13153708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an often-lethal skin cancer with increasing incidence and limited treatment options. Although immune checkpoint inhibitors (ICI) have become the standard of care in advanced MCC, 50% of all MCC patients are ineligible for ICIs, and amongst those treated, many patients develop resistance. There is no therapeutic alternative for these patients, highlighting the urgent clinical need for alternative therapeutic strategies. Using patient-derived genetic insights and data generated in our lab, we identified aurora kinase as a promising therapeutic target for MCC. In this study, we examined the efficacy of the recently developed and highly selective AURKA inhibitor, AK-01 (LY3295668), in six patient-derived MCC cell lines and two MCC cell-line-derived xenograft mouse models. We found that AK-01 potently suppresses MCC survival through apoptosis and cell cycle arrest, particularly in MCPyV-negative MCC cells without RB expression. Despite the challenge posed by its short in vivo durability upon discontinuation, the swift and substantial tumor suppression with low toxicity makes AK-01 a strong potential candidate for MCC management, particularly in combination with existing regimens.
Collapse
Affiliation(s)
- Bhaba K. Das
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Aarthi Kannan
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Quy Nguyen
- Genomics High Throughput Sequencing Facility, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA;
| | - Jyoti Gogoi
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Ling Gao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Fragliasso V, Tameni A, Inghirami G, Mularoni V, Ciarrocchi A. Cytoskeleton Dynamics in Peripheral T Cell Lymphomas: An Intricate Network Sustaining Lymphomagenesis. Front Oncol 2021; 11:643620. [PMID: 33928032 PMCID: PMC8076600 DOI: 10.3389/fonc.2021.643620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Defects in cytoskeleton functions support tumorigenesis fostering an aberrant proliferation and promoting inappropriate migratory and invasive features. The link between cytoskeleton and tumor features has been extensively investigated in solid tumors. However, the emerging genetic and molecular landscape of peripheral T cell lymphomas (PTCL) has unveiled several alterations targeting structure and function of the cytoskeleton, highlighting its role in cell shape changes and the aberrant cell division of malignant T cells. In this review, we summarize the most recent evidence about the role of cytoskeleton in PTCLs development and progression. We also discuss how aberrant signaling pathways, like JAK/STAT3, NPM-ALK, RhoGTPase, and Aurora Kinase, can contribute to lymphomagenesis by modifying the structure and the signaling properties of cytoskeleton.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Mularoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
13
|
Deng M, Xu-Monette ZY, Pham LV, Wang X, Tzankov A, Fang X, Zhu F, Visco C, Bhagat G, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, You H, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Hagemeister F, van Krieken JH, Piris MA, Winter JN, Li Y, Xu B, Liu P, Young KH. Aggressive B-cell Lymphoma with MYC/TP53 Dual Alterations Displays Distinct Clinicopathobiological Features and Response to Novel Targeted Agents. Mol Cancer Res 2020; 19:249-260. [PMID: 33154093 DOI: 10.1158/1541-7786.mcr-20-0466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the major type of aggressive B-cell lymphoma. High-grade B-cell lymphoma (HGBCL) with MYC/BCL2 double-hit (DH) represents a distinct entity with dismal prognosis after standard immunochemotherapy in the current WHO lymphoma classification. However, whether TP53 mutation synergizes with MYC abnormalities (MYC rearrangement and/or Myc protein overexpression) contributing to HGBCL-like biology and prognosis is not well investigated. In this study, patients with DLBCL with MYC/TP53 abnormalities demonstrated poor clinical outcome, high-grade morphology, and distinct gene expression signatures. To identify more effective therapies for this distinctive DLBCL subset, novel MYC/TP53/BCL-2-targeted agents were investigated in DLBCL cells with MYC/TP53 dual alterations or HGBCL-MYC/BCL2-DH. A BET inhibitor INCB057643 effectively inhibited cell viability and induced apoptosis in DLBCL/HGBCL cells regardless of MYC/BCL2/TP53 status. Combining INCB057643 with a MDM2-p53 inhibitor DS3032b significantly enhanced the cytotoxic effects in HGBCL-DH without TP53 mutation, while combining with the BCL-2 inhibitor venetoclax displayed potent therapeutic synergy in DLBCL/HGBCL cells with and without concurrent TP53 mutation. Reverse-phase protein arrays revealed the synergistic molecular actions by INCB057643, DS3032b and venetoclax to induce cell-cycle arrest and apoptosis and to inhibit AKT/MEK/ERK/mTOR pathways, as well as potential drug resistance mechanisms mediated by upregulation of Mcl-1 and RAS/RAF/MEK/ERK pathways. In summary, these findings support subclassification of DLBCL/HGBCL with dual MYC/TP53 alterations, which demonstrates distinct pathobiologic features and dismal survival with standard therapy, therefore requiring additional targeted therapies. IMPLICATIONS: The clinical and pharmacologic studies suggest recognizing DLBCL with concomitant TP53 mutation and MYC abnormalities as a distinctive entity necessary for precision oncology practice. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/2/249/F1.large.jpg.
Collapse
Affiliation(s)
- Manman Deng
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina.,Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zijun Y Xu-Monette
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Lan V Pham
- Phamacyclics, an Abbvie Company, San Francisco, California
| | - Xudong Wang
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | | | - Xiaosheng Fang
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Feng Zhu
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Carlo Visco
- Department of Medicine and Division of Hematology, University of Verona, Verona, Italy
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | | | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | - Fredrick Hagemeister
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Phillip Liu
- Applied Technology Group, Incyte Research Institute, Wilmington, Delaware.
| | - Ken H Young
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
14
|
Klener P. Mantle cell lymphoma: insights into therapeutic targets at the preclinical level. Expert Opin Ther Targets 2020; 24:1029-1045. [PMID: 32842810 DOI: 10.1080/14728222.2020.1813718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is a chronically relapsing B-cell non-Hodgkin lymphoma characterized by recurrent molecular-cytogenetic aberrations that lead to deregulation of DNA damage response, cell cycle progression, epigenetics, apoptosis, proliferation, and motility. In the last 10 years, clinical approval of several innovative drugs dramatically changed the landscape of treatment options in the relapsed/refractory (R/R) MCL, which translated into significantly improved survival parameters. AREAS COVERED Here, up-to-date knowledge on the biology of MCL together with currently approved and clinically tested frontline and salvage therapies are reviewed. In addition, novel therapeutic targets in MCL based on the scientific reports published in Pubmed are discussed. EXPERT OPINION Bruton tyrosine-kinase inhibitors, NFkappaB inhibitors, BCL2 inhibitors, and immunomodulary agents in combination with monoclonal antibodies and genotoxic drugs have the potential to induce long-term remissions in majority of newly diagnosed MCL patients. Several other classes of anti-tumor drugs including phosphoinositole-3-kinase, cyclin-dependent kinase or DNA damage response kinase inhibitors have demonstrated promising anti-lymphoma efficacy in R/R MCL. Most importantly, adoptive immunotherapy with genetically modified T-cells carrying chimeric antigen receptor represents a potentially curative treatment approach even in the patients with chemotherapy and ibrutinib-refractory disease.
Collapse
Affiliation(s)
- Pavel Klener
- First Department of Internal Medicine- Hematology, University General Hospital and First Faculty of Medicine, Charles University , Prague, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
15
|
Murga-Zamalloa C, Wilcox RA. GATA-3 in T-cell lymphoproliferative disorders. IUBMB Life 2019; 72:170-177. [PMID: 31317631 DOI: 10.1002/iub.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
GATA-3 regulates the differentiation, proliferation, survival, and function of peripheral T cells and their thymic progenitors. Recent findings, reviewed here, not only implicate GATA-3 in the pathogenesis of molecularly, genetically, and clinically distinct T-cell lymphoproliferative disorders, but also have significant diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|