1
|
Papadopoulou V, Schiavini G, Stalder G, Basset V, Schoumans J, Nabergoj M, Schaller M. Characteristics and Prognosis of "Acute Promyelocytic Leukemia-like" Nucleophosmin-1-Mutated Acute Myeloid Leukemia in a Retrospective Patient Cohort. Biomedicines 2024; 12:2282. [PMID: 39457595 PMCID: PMC11505509 DOI: 10.3390/biomedicines12102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: AML with NPM1 mutation is the largest subcategory of AML, representing about 35% of AML cases. It is characterized by CD34 negativity, which suggests a relatively differentiated state of the bulk of leukemic blasts. Notably, a significant subset of NPM1-mutated AML cases also exhibit HLA-DR negativity, classifying them as "double-negative", and mimicking, therefore, the CD34- HLA-DR- immunophenotype of acute promyelocytic leukemia (APL). Objectives: This study focuses on the "acute promyelocytic leukemia-like" ("APL-like") subset of NPM1-mutated AML, which can be challenging to distinguish from APL at presentation, prior to confirming RARa translocations. We aim to investigate the hematologic and immunophenotypic parameters that may aid to its distinction from APL. Additionally, we explore differences in genetic profile and prognosis between "APL-like" and "non-APL-like" NPM1-mutated AML cases. Methods: We conducted a retrospective evaluation of 77 NPM1-mutated AML cases and 28 APL cases. Results: Morphological characteristics, hematologic parameters (such as DD/WBC and PT/WBC), and specific immunophenotypic markers (including SSC, CD64, and CD4) can assist in the early distinction of "APL-like" NPM1-mutated AML from APL. Regarding differences in genetic profiles and outcomes between "APL-like" and non-"APL-like" NPM1-mutated AML cases, we observed a significantly higher incidence of IDH1/2 /TET2 mutations, along with a significantly lower incidence of DNMT3A mutations in the "APL-like" subset compared to the non-"APL-like" subset. The frequency of Ras-pathway and FLT3 mutations did not differ between these last two groups, nor did their prognoses. Conclusions: Our findings contribute to a comprehensive characterization of NPM1-mutated AML, enhancing diagnostic accuracy and aiding in the detailed classification of the disease. This information may potentially guide targeted therapies or differentiation-based treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Giulia Schiavini
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Gregoire Stalder
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Valentin Basset
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jacqueline Schoumans
- Oncogenetics Unit, Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mitja Nabergoj
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Muriel Schaller
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Hartzell CM, Shaver AC, Mason EF. Flow Cytometric Assessment of Malignant Hematologic Disorders. Clin Lab Med 2024; 44:465-477. [PMID: 39089752 DOI: 10.1016/j.cll.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multiparameter flow cytometry (MPF) is an essential component of the diagnostic workup of hematologic malignancies. Recently developed tools have expanded the utility of MPF in detecting T-cell clonality and myelomonocytic dysplasia. Minimal/measurable residual disease analysis has long been established as critical in the management of B-lymphoblastic leukemia and is emerging as a useful tool in myeloid malignancies. With the continued increased complexity of MPF assays, emerging tools for data collection and analysis will allow users to take full advantage of MPF in the diagnosis of hematologic disease.
Collapse
Affiliation(s)
- Connor M Hartzell
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA
| | - Aaron C Shaver
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA
| | - Emily F Mason
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA.
| |
Collapse
|
3
|
Wu Q, Zhang Y, Yuan B, Huang Y, Jiang L, Liu F, Yan P, Cheng J, Long Z, Jiang X. Influence of genetic co-mutation on chemotherapeutic outcome in NPM1-mutated and FLT3-ITD wild-type AML patients. Cancer Med 2024; 13:e70102. [PMID: 39126219 PMCID: PMC11316012 DOI: 10.1002/cam4.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) gene-mutated acute myeloid leukemia (NPM1mut AML) is classified as a subtype with a favorable prognosis. However, some patients fail to achieve a complete remission or relapse after intensified chemotherapy. Genetic abnormalities in concomitant mutations contribute to heterogeneous prognosis of NPM1mut AML patients. METHODS In this study, 91 NPM1-mutated and FLT3-ITD wild-type (NPM1mut/FLT3-ITDwt) AML patients with intermediate-risk karyotype were enrolled to analyze the impact of common genetic co-mutations on chemotherapeutic outcome. RESULTS Our data revealed that TET1/2 (52/91, 57.1%) was the most prevalent co-mutation in NPM1mut AML patients, followed by IDH1/2 (36/91, 39.6%), DNMT3A (35/91, 38.5%), myelodysplastic syndrome related genes (MDS-related genes) (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and ZRSR2 genes) (35/91, 38.5%), FLT3-TKD (27/91, 29.7%) and GATA2 (13/91, 14.3%) mutations. Patients with TET1/2mut exhibited significantly worse relapse-free survival (RFS) (median, 28.7 vs. not reached (NR) months; p = 0.0382) compared to patients with TET1/2wt, while no significant difference was observed in overall survival (OS) (median, NR vs. NR; p = 0.3035). GATA2mut subtype was associated with inferior OS (median, 28 vs. NR months; p < 0.0010) and RFS (median, 24 vs. NR months; p = 0.0224) compared to GATA2wt. By multivariate analysis, GATA2mut and MDS-related genesmut were independently associated with worse survival. CONCLUSION Mutations in TET1/2, GATA2 and MDS-related genes were found to significantly influence the chemotherapeutic outcome of patients with NPM1mut AML. The findings of our study have significant clinical implications for identifying patients who have an adverse response to frontline chemotherapy and provide a novel reference for further prognostic stratification of NPM1mut/FLT3-ITDwt AML patients.
Collapse
Affiliation(s)
- Quan Wu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujiao Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Baoyi Yuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yun Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fang Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ping Yan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaying Cheng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiquan Long
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuejie Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Papadopoulou V, Schoumans J, Basset V, Solly F, Pasquier J, Blum S, Spertini O. Single-center, observational study of AML/MDS-EB with IDH1/2 mutations: genetic profile, immunophenotypes, mutational kinetics and outcomes. Hematology 2023; 28:2180704. [PMID: 36815747 DOI: 10.1080/16078454.2023.2180704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE IDH1/2 mutations, intervening in epigenetic procedures, are frequently encountered in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Knowledge of the genetics, immunophenotypes, and mutational kinetics of IDH1/2-mutated AML can contribute to the understanding of AML clonal architecture and inform therapeutics and monitoring. METHODS We retrospectively analyzed 50 IDH1/2-mutated AML/MDS-EB cases of our institution, to identify recurrent co-mutations, immunophenotypes, patterns of co-variance of IDH1/2 allele burdens with those of recurrent co-mutations, frequency of persistent IDH1/2 mutation as clonal hematopoiesis of indeterminate potential (CHIP) in remission and response to hypomethylating agents. RESULTS Most frequently co-mutated genes were DNMT3A, SRSF2 and NPM1. Most cases with co-existent IDH1/2 and NPM1 mutations (11/13) showed an 'APL-like' immunophenotype (CD34-HLADR-). Allele burdens of mutated IDH1/2 were identical to mutated SRSF2 allele burdens at diagnosis and remission, but not always to mutated NPM1 allele burden in remission. We show persistence of significant mutIDH1/2 allele burden in approximately one-fourth of patients with deep remissions. IDH1/2 mutations were significantly more frequent among responders to first-line HMA-based regimens than among non-responders, in patients treated for myeloid neoplasms with excess blasts. CONCLUSIONS IDH1/2 mutations are most frequently accompanied by DNMT3A, SRSF2 and NPM1 mutations. NPM1-IDH1/2 mutated AML has a mature phenotype possibly amenable to differentiation therapies. IDH1/2 and SRSF2 mutations probably arise at the same developmental stage of the disease, as their allele burdens covariate. IDH1/2 mutation represents CHIP in a substantial proportion of cases and is therefore no reliable residual disease marker. The preferential presence of IDH1/2 mutations among HMA-responders could inform therapeutic decisions if confirmed in larger series.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacqueline Schoumans
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Valentin Basset
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Françoise Solly
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Sabine Blum
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Spertini
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Montalban-Bravo G, Kanagal-Shamanna R, Li Z, Hammond D, Chien K, Rodriguez-Sevilla JJ, Sasaki K, Jabbour E, DiNardo C, Takahashi K, Short N, Issa GC, Pemmaraju N, Kadia T, Ravandi F, Daver N, Borthakur G, Loghavi S, Pierce S, Bueso-Ramos C, Kantarjian H, Garcia-Manero G. Phenotypic subtypes of leukaemic transformation in chronic myelomonocytic leukaemia. Br J Haematol 2023; 203:581-592. [PMID: 37608562 DOI: 10.1111/bjh.19060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Chronic myelomonocytic leukaemia (CMML) is a haematological disorder with high risk of transformation to acute myeloid leukaemia (AML). To characterize the phenotypic and genomic patterns of CMML progression, we evaluated a cohort of 189 patients with AML evolving from CMML. We found that transformation occurs through distinct trajectories characterized by genomic profiles and clonal evolution: monocytic (Mo-AML, 53%), immature myeloid (My-AML, 43%) or erythroid (Ery-AML, 2%). Mo-AML, characterized by expansion of monoblasts and promonocytes (low CD34, CD117 expression; high CD14, CD33, CD56 and CD64 expression), were defined by SRSF2, TET2 and RAS pathway mutation co-dominance and were more likely to evolve from SRSF2-TET2 co-mutant CMML through emergence/expansion of RAS pathway mutant clones. Conversely, My-AML, characterized by expansion of immature myeloid blasts (high frequency of CD34, CD38, CD117; low frequency of CD14, CD64 and CD56 expression) were less likely to exhibit SRSF2-TET2 co-mutations or RAS pathway mutations and had higher frequency of CEBPA mutations. Ery-AML was defined by complex karyotypes and TP53 mutations. A trend towards improved OS and EFS with hypomethylating agent-venetoclax combination was observed in My-AML, but not Mo-AML. These findings define distinct progression of CMML and set the basis for future studies evaluating the role of phenotype-specific therapeutics.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Matarraz S, Leoz P, Yeguas-Bermejo A, van der Velden V, Bras AE, Sánchez Gallego JI, Lecrevisse Q, Ayala-Bueno R, Teodosio C, Criado I, González-González M, Flores-Montero J, Avendaño A, Vidriales MB, Chillón MC, González T, García-Sanz R, Prieto Conde MI, Villamor N, Magnano L, Colado E, Fernández P, Sonneveld E, Philippé J, Reiterová M, Caballero Berrocal JC, Diaz-Gálvez FJ, Ramos F, Dávila Valls J, Manjón Sánchez R, Solano Tovar J, Calvo X, García Alonso L, Arenillas L, Alonso S, Fonseca A, Quirós Caso C, van Dongen JJM, Orfao A. Baseline immunophenotypic profile of bone marrow leukemia cells in acute myeloid leukemia with nucleophosmin-1 gene mutation: a EuroFlow study. Blood Cancer J 2023; 13:132. [PMID: 37666856 PMCID: PMC10477264 DOI: 10.1038/s41408-023-00909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Affiliation(s)
- Sergio Matarraz
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Pilar Leoz
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Ana Yeguas-Bermejo
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Vincent van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne E Bras
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jose I Sánchez Gallego
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Quentin Lecrevisse
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rosa Ayala-Bueno
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Teodosio
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ignacio Criado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María González-González
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Flores-Montero
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Alejandro Avendaño
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - María B Vidriales
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - María C Chillón
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Teresa González
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Ramón García-Sanz
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - María I Prieto Conde
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Hematology Department, University Hospital of Salamanca, CIBERONC (CB16/12/00233), IBSAL, Accelerator program and Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca), Salamanca, Spain
| | - Neus Villamor
- Hematology Service, Hospital Clinic, Barcelona, Spain
| | - Laura Magnano
- Hematology Service, Hospital Clinic, Barcelona, Spain
| | - Enrique Colado
- Hematology Department and Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Paula Fernández
- FACS/Stem Cell Laboratory, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Jan Philippé
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Michaela Reiterová
- CLIP-Department of Pediatric Hematology and Oncology, Second Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | | | - Fernando Ramos
- Department of Hematology, Complejo Asistencial Universitario de León, León, Spain
| | | | | | - Jackeline Solano Tovar
- Department of Hematology, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - Xavier Calvo
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | | | | | - Sara Alonso
- Hematology Department and Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ariana Fonseca
- Hematology Department and Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Covadonga Quirós Caso
- Hematology Department and Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jacques J M van Dongen
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (IBMCC; CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Lucas F, Hergott CB. Advances in Acute Myeloid Leukemia Classification, Prognostication and Monitoring by Flow Cytometry. Clin Lab Med 2023; 43:377-398. [PMID: 37481318 DOI: 10.1016/j.cll.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Although final classification of acute myeloid leukemia (AML) integrates morphologic, cytogenetic, and molecular data, flow cytometry remains an essential component of modern AML diagnostics. Here, we review the current role of flow cytometry in the classification, prognostication, and monitoring of AML. We cover immunophenotypic features of key genetically defined AML subtypes and their effects on biological and clinical behaviors, review clinically tractable strategies to differentiate leukemias with ambiguous immunophenotypes more accurately and discuss key principles of standardization for measurable residual disease monitoring. These advances underscore flow cytometry's continued growth as a powerful diagnostic, management, and discovery tool.
Collapse
Affiliation(s)
- Fabienne Lucas
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Testa U, Pelosi E, Castelli G. Genetic, Phenotypic, and Clinical Heterogeneity of NPM1-Mutant Acute Myeloid Leukemias. Biomedicines 2023; 11:1805. [PMID: 37509445 PMCID: PMC10376179 DOI: 10.3390/biomedicines11071805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. AML with mutated nucleophosmin 1 (NPM1-mut) is the largest of the genetically defined groups, involving about 30% of adult AMLs and is currently recognized as a distinct entity in the actual AML classifications. NPM1-mut AML usually occurs in de novo AML and is associated predominantly with a normal karyotype and relatively favorable prognosis. However, NPM1-mut AMLs are genetically, transcriptionally, and phenotypically heterogeneous. Furthermore, NPM1-mut is a clinically heterogenous group. Recent studies have in part clarified the consistent heterogeneities of these AMLs and have strongly supported the need for an additional stratification aiming to improve the therapeutic response of the different subgroups of NPM1-mut AML patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
9
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
10
|
Ningombam A, Verma D, Kumar R, Singh J, Ali MS, Pandey AK, Singh I, Bakhshi S, Sharma A, Pushpam D, Palanichamy JK, Tanwar P, Singh AR, Chopra A. Prognostic relevance of NPM1, CEBPA, and FLT3 mutations in cytogenetically normal adult AML patients. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:28-43. [PMID: 36937459 PMCID: PMC10017593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/06/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Acute myeloid leukemia with normal cytogenetics (CN-AML) is the largest group of AML patients with very heterogenous patient outcomes. The revised World Health Organization classification of the hematolymphoid tumours, 2022, has incorporated AML with Nucleophosphmin1 (NPM1) and CCAAT/enhancer binding protein-alpha (CEBPA) mutations as distinct entities. Despite the existing evidence of the prognostic relevance of FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD) in AML, it has not been included in the revised classification. METHOD In this prospective study, we determined the prevalence of NPM1, CEBPA, and FLT3 gene mutations in 151 de novo CN-AML adult patients (age ≥18 years) in a tertiary care hospital in north India. Additionally, the prognostic relevance of these mutations was also evaluated. RESULTS NPM1, FLT3-ITD, and CEBPA mutations were found in 33.11%, 23.84%, and 15.77% of CN-AML patients, respectively. CEBPA mutations were found at 3 domains: transactivation domain 1 (TAD1) in 10 (6.62%), transactivation domain 2 (TAD2) in 5 (3.31%), and basic leucine zipper domain (bZIP) in 11 (7.82%) patients. Patients with NPM1 mutation had better clinical remission rate (CR) (P=0.003), event-free survival (P=0.0014), and overall survival (OS) (P=0.0017). However, FLT3-ITD and CEBPA mutations did not show any association with CR (P=0.404 and 0.92, respectively). Biallelic CEBPA mutations were found in 12 (7.95%) patients and were associated with better OS (P=0.043). CONCLUSIONS These findings indicate that NPM1 and CEBPA mutations can be precisely used for risk stratification in CN-AML patients.
Collapse
Affiliation(s)
| | | | | | - Jay Singh
- Laboratory Oncology, AIIMSNew Delhi, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oertling E, Fuda F, Koduru P, Chen M, Weinberg O, Juntilla M, Jaso J, Vusirikala M, Chung S, Geethakumari PR, Madanat YF, Collins R, Gagan J, Chen W. Distinct mutational and clinicopathologic profiles characterize acute myeloid leukemia with cup-like nuclei. Leuk Res 2023; 124:106995. [PMID: 36459761 DOI: 10.1016/j.leukres.2022.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Estelle Oertling
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Franklin Fuda
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prasad Koduru
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mingyi Chen
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga Weinberg
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marisa Juntilla
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesse Jaso
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Madhuri Vusirikala
- Departments of Internal Medicine (Hematology and Oncology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen Chung
- Departments of Internal Medicine (Hematology and Oncology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Yazan F Madanat
- Departments of Internal Medicine (Hematology and Oncology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert Collins
- Departments of Internal Medicine (Hematology and Oncology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey Gagan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weina Chen
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Duchmann M, Joudinaud R, Boudry A, Pasanisi J, Di Feo G, Kim R, Bucci M, Chauvel C, Chat L, Larcher L, Pacchiardi K, Mathis S, Raffoux E, Adès L, Berthon C, Clappier E, Roumier C, Puissant A, Preudhomme C, Duployez N, Itzykson R. Hematopoietic differentiation at single-cell resolution in NPM1-mutated AML. Blood Cancer J 2022; 12:136. [PMID: 36151081 PMCID: PMC9508105 DOI: 10.1038/s41408-022-00734-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Matthieu Duchmann
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Romane Joudinaud
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France.,Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Augustin Boudry
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Justine Pasanisi
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Giuseppe Di Feo
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Rathana Kim
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France.,Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Maxime Bucci
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Clémentine Chauvel
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laureen Chat
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Lise Larcher
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Kim Pacchiardi
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Stéphanie Mathis
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Lionel Adès
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Céline Berthon
- Hematology Department, Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Lille, France
| | - Emmanuelle Clappier
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France.,Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Roumier
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Alexandre Puissant
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Claude Preudhomme
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Nicolas Duployez
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Raphaël Itzykson
- Université Paris Cité, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France. .,Hematology Department, Saint Louis Hospital, AP-HP, Paris, France.
| |
Collapse
|
13
|
Fang H, Wang SA, Hu S, Konoplev SN, Mo H, Liu W, Zuo Z, Xu J, Jorgensen JL, Yin CC, El Hussein S, Jelloul FZ, Tang Z, Medeiros LJ, Wang W. Acute promyelocytic leukemia: Immunophenotype and differential diagnosis by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:283-291. [PMID: 35716019 DOI: 10.1002/cyto.b.22085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prompt diagnosis of acute promyelocytic leukemia (APL) is critical for patient care. In this study, we aimed to characterize the immunophenotype of APL and explore immunophenotypic difference between APL and its mimics using flow cytometric analysis. METHODS Eighty-five cases were collected, including 47 APL, 26 NPM1-mutated acute myeloid leukemia (AML) and 12 KMT2A-rearranged AML with an APL-like immunophenotype. Immunophenotypes were analyzed using flow cytometric analysis. RESULTS APL showed four distinct patterns (designated a-d) based on CD45/SSC plots. Blasts in patterns a-c showed high side scatter, whereas blasts in pattern d had low side scatter and were located in the traditional blast gate. Compared with patterns a-c, pattern d of APL (APL-D) was more often positive for CD2 (p = 0.0005) and CD34 (p = 0.0002) in blasts. All NPM1-mutated AML and KMT2A-rearranged AML cases with an APL-like immunophenotype had blasts in the traditional blast gate on CD45/SSC, mimicking APL-D. In comparison, uniform CD13 and positive CD64 were seen in 100% (n = 13) APL-D cases and in only 2 of 26 (8%) NPM1-mutated AML cases (p < 0.0001). In addition, APL-D cases were more likely to be positive for CD2 and/or CD34 than NPM1-mutated AML (p < 0.0001 and p = 0.0007, respectively). In comparison with APL-D, KMT2A-rearranged AML cases were less often positive for myeloperoxidase (MPO) (p = 0.001), with none being strongly positive. Similar to NPM1-mutated AML and different from APL-D, KMT2A-rearranged AML cases were rarely positive for CD34 and all negative for CD2. CONCLUSIONS APL and its immunophenotypic mimics share some immunophenotypic similarities but can be distinguished by CD2, CD13, CD34, CD64, and MPO.
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sergej N Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huan Mo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Liu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey L Jorgensen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Redavid I, Conserva MR, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Single-Cell Sequencing: Ariadne’s Thread in the Maze of Acute Myeloid Leukemia. Diagnostics (Basel) 2022; 12:diagnostics12040996. [PMID: 35454044 PMCID: PMC9024495 DOI: 10.3390/diagnostics12040996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a haematological neoplasm resulting from the accumulation of genetic and epigenetic alterations. Patients’ prognoses vary with AML genetic heterogeneity, which hampers successful treatments. Single-cell approaches have provided new insights of the clonal architecture of AML, revealing the mutational history from diagnosis, during treatment and to relapse. In this review, we imagine single-cell technologies as the Ariadne’s thread that will guide us out of the AML maze, provide a precise identikit of the leukemic cell at single-cell resolution and explore genomic, transcriptomic, epigenetic and proteomic levels.
Collapse
Affiliation(s)
- Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
- Correspondence:
| |
Collapse
|
15
|
Genetic diversity within leukemia-associated immunophenotype-defined subclones in AML. Ann Hematol 2022; 101:571-579. [PMID: 35024892 PMCID: PMC8810467 DOI: 10.1007/s00277-021-04747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease showing dynamic clonal evolution patterns over time. Various subclones may be present simultaneously and subclones may show a different expansion pattern and respond differently to applied therapies. It is already clear that immunophenotyping and genetic analyses may yield overlapping, but also complementary information. Detailed information on the genetic make-up of immunophenotypically defined subclones is however scarce. We performed error-corrected sequencing for 27 myeloid leukemia driver genes in 86, FACS-sorted immunophenotypically characterized normal and aberrant subfractions in 10 AML patients. We identified three main scenarios. In the first group of patients, the two techniques were equally well characterizing the malignancy. In the second group, most of the isolated populations did not express aberrant immunophenotypes but still harbored several genetic aberrancies, indicating that the information obtained only by immunophenotyping would be incomplete. Vice versa, one patient was identified in which genetic mutations were found only in a small fraction of the immunophenotypically defined malignant populations, indicating that the genetic analysis gave an incomplete picture of the disease. We conclude that currently, characterization of leukemic cells in AML by molecular and immunophenotypic techniques is complementary, and infer that both techniques should be used in parallel in order to obtain the most complete view on the disease.
Collapse
|
16
|
Hindley A, Catherwood MA, McMullin MF, Mills KI. Significance of NPM1 Gene Mutations in AML. Int J Mol Sci 2021; 22:ijms221810040. [PMID: 34576201 PMCID: PMC8467861 DOI: 10.3390/ijms221810040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.
Collapse
Affiliation(s)
- Andrew Hindley
- Clinical Haematology, Belfast City Hospital, Belfast BT9 7AB, UK;
- Correspondence:
| | | | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Northern Ireland and Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Ken I. Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Clonal heterogeneity is a significant obstacle to successful treatment of patients with acute myeloid leukemia (AML). Here, we review new advances in the understanding of genetic heterogeneity in AML using single-cell DNA-sequencing technology. RECENT FINDINGS New genomics and immunologic discovery tools have provided single-cell resolution maps of the clonal architecture of AML. The use of these technologies reveals the mutational landscape of AML at diagnosis, during treatment, and at relapse has an enormous degree of clonal complexity and diversity that is poised to adapt and evolve under environmental pressures. SUMMARY AML is a complex ecosystem of competing and cooperating clones undergoing constant evolution and selection.
Collapse
|
18
|
Pettersson L, Holmgren B, Juliusson G, Lazarevic VL, Ehinger M. Mutational spectrum of de novo NPM1-mutated acute myeloid leukemia patients older than 75 years. Leuk Lymphoma 2021; 62:1958-1966. [PMID: 33711909 DOI: 10.1080/10428194.2021.1894650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AML with mutated NPM1 occurs in all age groups. Yet, the mutational pattern is not extensively studied in the very old, which may hamper appropriate risk assessment. Herein we examined 22 cases of NPM1-mutated de novo AML in patients older than 75, with a median age of 84. All diagnostic samples were sequenced aiming for coverage of the most relevant AML-associated mutations. For comparison with younger patients, we used already published data on several cohorts. A total of 76 mutations including 50 different variants were identified in 16 recurrently mutated AML genes. Compared with younger patients, a significant enrichment of TET2 and SRSF2 was observed, together with a reduced frequency of DNMT3A mutations. Our results indicate that the mutational pattern may be different in the very old as compared to younger patients with NPM1-mutated AML.HighlightsThe mutational spectrum of NPM1-mutated AML in patients above 75 years displays distinct features.A significant enrichment of TET2 and SRSF2 mutations together with a reduced frequency of DNMT3A mutations was observed in the elderly.NPM1 mutation is a secondary event in the development of AML in the very old.
Collapse
Affiliation(s)
- Louise Pettersson
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden.,Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden
| | - Benjamin Holmgren
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vladimir Lj Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden
| | - Mats Ehinger
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
19
|
Giammarco S, Chiusolo P, Sica S, Rossi M, Minnella G, Zini G. Sudden death of a SARS-CoV-2 patient with NPM1 + acute myeloid leukemia mimicking acute promyelocytic leukemia. Int J Lab Hematol 2021; 43:341-342. [PMID: 33497032 PMCID: PMC8013190 DOI: 10.1111/ijlh.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Monica Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gessica Minnella
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gina Zini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
20
|
Liu H, Chen P, Yang YL, Zhu KW, Wang T, Tang L, Liu YL, Cao S, Zhou G, Zeng H, Zhao XL, Zhang W, Chen XP. TBC1D16 predicts chemosensitivity and prognosis in adult acute myeloid leukemia (AML) patients. Eur J Pharmacol 2021; 895:173894. [PMID: 33476656 DOI: 10.1016/j.ejphar.2021.173894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disease with poor survival. Chemotherapy resistance is one of the determinant factors influencing AML prognosis. To identify genes possibly affecting the drug responses in AML, the Illumina Infinium MethylationEPIC (850K) was used to screen for differential DNA methylation loci between patients achieved complete remission (CR) or not (non-CR) after induction therapy in 37 AML patients. Then, 32 differentially methylated sites (DMS) were selected for replication in another 86 AML patients by next-generation sequencing. Nine sites including cg03988660, cg16804603, cg18166936, cg11308319, cg09095403, cg18493214, cg01443536, cg16030878 and cg10143426 were replicated. Analysis of the Gene Expression Omnibus (GEO) database showed that mRNA expression of TBC1D16 and HDAC4 was associated with AML prognosis. Methylation level of the cg16030878 in TBC1D16 3'-UTR correlated positively with TBC1D16 mRNA expression in samples both in the TCGA database and clinically collected in the study. Both higher cg16030878 methylation and higher TBC1D16 mRNA expression were associated with increased risk of non-CR and worse overall survival (OS) in AML patients. In AML cells, knockdown of TBC1D16 decreased cell proliferation and ERK phosphorylation levels, as well as increased sensitivity to mitoxantrone and decitabine indicated by IC50. In patients with combined use of decitabine, those patients with CR showed significantly lower TBC1D16 mRNA expression. On the contrary, knockdown of TBC1D16 resulted in decreased sensitivity to cytarabine in U937 cells. Our findings implicated that TBC1D16 is a potential predictor for chemosensitivity and prognosis in adult AML patients.
Collapse
Affiliation(s)
- Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yong-Long Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Nucleophosmin (NPM1) mutations are encountered in myeloid neoplasia and are present in ~ 30% of de novo acute myeloid leukemia cases. This review summarizes features of mutant NPM1-related disease, with a particular emphasis on recent discoveries relevant to disease monitoring, prognostication, and therapeutic intervention. RECENT FINDINGS Recent studies have shown that HOX/MEIS gene overexpression is central to the survival of NPM1-mutated cells. Two distinct classes of small molecule drugs, BH3 mimetics and menin-MLL interaction inhibitors, have demonstrated exquisite leukemic cell toxicity in preclinical AML models associated with HOX/MEIS overexpression, and the former of these has shown efficacy in older treatment-naïve NPM1-mutated AML patients. The results of ongoing clinical trials further investigating these compounds will be of particular importance and may alter the clinical management of patients with NPM1-mutated myeloid neoplasms. Significant scientific advancements over the last decade, including improved sequencing and disease monitoring techniques, have fostered a much deeper understanding of mutant NPM1 disease biology, prognostication, and opportunities for therapeutic intervention. These discoveries have led to the development of clinical assays that permit the detection and monitoring of mutant NPM1 and have paved the way for future investigation of targeted therapeutics using emerging cutting-edge techniques.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Michael J Kluk
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Bader 126.2, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Testa U, Castelli G, Pelosi E. Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. Cancers (Basel) 2020; 12:E2427. [PMID: 32859092 PMCID: PMC7564409 DOI: 10.3390/cancers12092427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease generated by the acquisition of multiple genetic and epigenetic aberrations which impair the proliferation and differentiation of hematopoietic progenitors and precursors. In the last years, there has been a dramatic improvement in the understanding of the molecular alterations driving cellular signaling and biochemical changes determining the survival advantage, stimulation of proliferation, and impairment of cellular differentiation of leukemic cells. These molecular alterations influence clinical outcomes and provide potential targets for drug development. Among these alterations, an important role is played by two mutant enzymes of the citric acid cycle, isocitrate dehydrogenase (IDH), IDH1 and IDH2, occurring in about 20% of AMLs, which leads to the production of an oncogenic metabolite R-2-hydroxy-glutarate (R-2-HG); this causes a DNA hypermethylation and an inhibition of hematopoietic stem cell differentiation. IDH mutations differentially affect prognosis of AML patients following the location of the mutation and other co-occurring genomic abnormalities. Recently, the development of novel therapies based on the specific targeting of mutant IDH may contribute to new effective treatments of these patients. In this review, we will provide a detailed analysis of the biological, clinical, and therapeutic implications of IDH mutations.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|