1
|
Yeh AC, Koyama M, Waltner OG, Minnie SA, Boiko JR, Shabaneh TB, Takahashi S, Zhang P, Ensbey KS, Schmidt CR, Legg SRW, Sekiguchi T, Nelson E, Bhise SS, Stevens AR, Goodpaster T, Chakka S, Furlan SN, Markey KA, Bleakley ME, Elson CO, Bradley PH, Hill GR. Microbiota dictate T cell clonal selection to augment graft-versus-host disease after stem cell transplantation. Immunity 2024; 57:1648-1664.e9. [PMID: 38876098 PMCID: PMC11236519 DOI: 10.1016/j.immuni.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Allogeneic T cell expansion is the primary determinant of graft-versus-host disease (GVHD), and current dogma dictates that this is driven by histocompatibility antigen disparities between donor and recipient. This paradigm represents a closed genetic system within which donor T cells interact with peptide-major histocompatibility complexes (MHCs), though clonal interrogation remains challenging due to the sparseness of the T cell repertoire. We developed a Bayesian model using donor and recipient T cell receptor (TCR) frequencies in murine stem cell transplant systems to define limited common expansion of T cell clones across genetically identical donor-recipient pairs. A subset of donor CD4+ T cell clonotypes differentially expanded in identical recipients and were microbiota dependent. Microbiota-specific T cells augmented GVHD lethality and could target microbial antigens presented by gastrointestinal epithelium during an alloreactive response. The microbiota serves as a source of cognate antigens that contribute to clonotypic T cell expansion and the induction of GVHD independent of donor-recipient genetics.
Collapse
MESH Headings
- Graft vs Host Disease/immunology
- Graft vs Host Disease/microbiology
- Animals
- Mice
- Mice, Inbred C57BL
- CD4-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Microbiota/immunology
- Clonal Selection, Antigen-Mediated
- Transplantation, Homologous
- Bayes Theorem
- Stem Cell Transplantation/adverse effects
- Mice, Inbred BALB C
- Gastrointestinal Microbiome/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
Collapse
Affiliation(s)
- Albert C Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olivia G Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Simone A Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tamer B Shabaneh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kathleen S Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine R Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel R W Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ethan Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shruti S Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew R Stevens
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tracy Goodpaster
- Experimental Histopathology Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Saranya Chakka
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott N Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie E Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Charles O Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Philip H Bradley
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
DeWolf S, Elhanati Y, Nichols K, Waters NR, Nguyen CL, Slingerland JB, Rodriguez N, Lyudovyk O, Giardina PA, Kousa AI, Andrlová H, Ceglia N, Fei T, Kappagantula R, Li Y, Aleynick N, Baez P, Murali R, Hayashi A, Lee N, Gipson B, Rangesa M, Katsamakis Z, Dai A, Blouin AG, Arcila M, Masilionis I, Chaligne R, Ponce DM, Landau HJ, Politikos I, Tamari R, Hanash AM, Jenq RR, Giralt SA, Markey KA, Zhang Y, Perales MA, Socci ND, Greenbaum BD, Iacobuzio-Donahue CA, Hollmann TJ, van den Brink MR, Peled JU. Tissue-specific features of the T cell repertoire after allogeneic hematopoietic cell transplantation in human and mouse. Sci Transl Med 2023; 15:eabq0476. [PMID: 37494469 PMCID: PMC10758167 DOI: 10.1126/scitranslmed.abq0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B. Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasia Rodriguez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A. Giardina
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I. Kousa
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nick Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akimasa Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Kyorin University, Mitaka City, Tokyo, Japan
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madhumitha Rangesa
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoe Katsamakis
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda G. Blouin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doris M. Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Heather J. Landau
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ioannis Politikos
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Alan M. Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington; Seattle, WA, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Lawrenceville, NJ 08540
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
3
|
Jarosch S, Köhlen J, Ghimire S, Orberg ET, Hammel M, Gaag D, Evert M, Janssen KP, Hiergeist A, Gessner A, Weber D, Meedt E, Poeck H, D'Ippolito E, Holler E, Busch DH. Multimodal immune cell phenotyping in GI biopsies reveals microbiome-related T cell modulations in human GvHD. Cell Rep Med 2023; 4:101125. [PMID: 37467715 PMCID: PMC10394271 DOI: 10.1016/j.xcrm.2023.101125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is a significant complication after allogeneic hematopoietic stem cell transplantation (aHSCT), but major factors determining disease severity are not well defined yet. By combining multiplexed tissue imaging and single-cell RNA sequencing on gastrointestinal biopsies from aHSCT-treated individuals with fecal microbiome analysis, we link high microbiome diversity and the abundance of short-chain fatty acid-producing bacteria to the sustenance of suppressive regulatory T cells (Tregs). Furthermore, aGvHD severity strongly associates with the clonal expansion of mainly CD8 T cells, which we find distributed over anatomically distant regions of the gut, persistent over time, and inversely correlated with the presence of suppressive Tregs. Overall, our study highlights the pathophysiological importance of expanded CD8 T cell clones in the progression of aGvHD toward more severe clinical manifestations and strongly supports the further development of microbiome interventions as GvHD treatment via repopulation of the gut Treg niche to suppress inflammation.
Collapse
Affiliation(s)
- Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88397 Biberach an der Riß, Germany
| | - Jan Köhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine, Klinikum rechts der Isar TUM, 81675 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Doris Gaag
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Matthias Evert
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Elisabeth Meedt
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany; Leibniz Institute for Immuntherapie (LIT), Regensburg, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany.
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany.
| |
Collapse
|
5
|
Wu Y, Fu J, Wang H, Yu XZ. Donor T-Cell Repertoire Profiling in Recipient Lymphoid and Parenchyma Organs Reveals GVHD Pathogenesis at Clonal Levels After Bone Marrow Transplantation in Mice. Front Immunol 2021; 12:778996. [PMID: 34950143 PMCID: PMC8688739 DOI: 10.3389/fimmu.2021.778996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRβ-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|