1
|
Michel M, Crickx E, Fattizzo B, Barcellini W. Autoimmune haemolytic anaemias. Nat Rev Dis Primers 2024; 10:82. [PMID: 39487134 DOI: 10.1038/s41572-024-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 11/04/2024]
Abstract
Adult autoimmune haemolytic anaemias (AIHAs) include different subtypes of a rare autoimmune disease in which autoantibodies targeting autoantigens expressed on the membrane of autologous red blood cells (RBCs) are produced, leading to their accelerated destruction. In the presence of haemolytic anaemia, the direct antiglobulin test is the cornerstone of AIHA diagnosis. AIHAs are classified according to the isotype and the thermal optimum of the autoantibody into warm (wAIHAs), cold and mixed AIHAs. wAIHAs, the most frequent type of AIHAs, are associated with underlying conditions in ~50% of cases. In wAIHA, IgG autoantibody reacts with autologous RBCs at 37 °C, leading to antibody-dependent cell-mediated cytotoxicity and increased phagocytosis of RBCs in the spleen. Cold AIHAs include cold agglutinin disease (CAD) and cold agglutinin syndrome (CAS) when there is an underlying condition. CAD and cold agglutinin syndrome are IgM cold antibody-driven AIHAs characterized by classical complement pathway-mediated haemolysis. The management of wAIHAs has long been based around corticosteroids and splenectomy and on symptomatic measures and non-specific cytotoxic agents for CAD. Rituximab and the development of complement inhibitors, such as the anti-C1s antibody sutimlimab, have changed the therapeutic landscape of AIHAs, and new promising targeted therapies are under investigation.
Collapse
Affiliation(s)
- Marc Michel
- Department of Internal Medicine and Clinical Immunology, National Reference Centre for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France.
| | - Etienne Crickx
- Department of Internal Medicine and Clinical Immunology, National Reference Centre for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Berentsen S. Cold-antibody Autoimmune Hemolytic Anemia: its Association with Neoplastic Disease and Impact on Therapy. Curr Oncol Rep 2024; 26:1085-1096. [PMID: 38874820 DOI: 10.1007/s11912-024-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Cold-antibody mediated autoimmune hemolytic anemia (cAIHA) is subclassified as cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH). This review aims to address the occurrence of neoplastic disorders with these three entities and analyze the impact of such neoplasias on treatment for cAIHA. RECENT FINDINGS "Primary" CAD is a distinct clonal B-cell lymphoproliferative disorder in probably all cases, although not classified as a malignant lymphoma. CAS is secondary to malignant lymphoma in a minority of cases. Recent findings allow a further clarification of these differential diagnoses and the therapeutic consequences of specific neoplastic entities. Appropriate diagnostic workup is critical for therapy in cAIHA. Patients with CAD should be treated if they have symptomatic anemia, significant fatigue, or bothersome circulatory symptoms. The distinction between CAD and CAS and the presence of any underlying malignancy in CAS have essential therapeutic implications.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway.
| |
Collapse
|
3
|
Berentsen S, Vos JMI, Malecka A, Tjønnfjord GE, D'Sa S. The impact of individual clinical features in cold agglutinin disease: hemolytic versus non-hemolytic symptoms. Expert Rev Hematol 2024; 17:479-492. [PMID: 38938203 DOI: 10.1080/17474086.2024.2372333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION During the last decades, the pathogenesis of cold agglutinin disease (CAD) has been well elucidated and shown to be complex. Several documented or investigational therapies have been made available. This development has resulted in major therapeutic advances, but also in challenges in choice of therapy. AREAS COVERED In this review, we address each step in pathogenesis: bone marrow clonal lymphoproliferation, composition and effects of monoclonal cold agglutinin, non-complement mediated erythrocyte agglutination, complement-dependent hemolysis, and other effects of complement activation. We also discuss the heterogeneous clinical features and their relation to specific steps in pathogenesis, in particular with respect to the impact of complement involvement. CAD can be classified into three clinical phenotypes with consequences for established treatments as well as development of new therapies. Some promising future treatment approaches - beyond chemoimmunotherapy and complement inhibition - are reviewed. EXPERT OPINION The patient's individual clinical profile regarding complement involvement and hemolytic versus non-hemolytic features is important for the choice of treatment. Further development of treatment approaches is encouraged, and some candidate drugs are promising irrespective of clinical phenotype. Patients with CAD requiring therapy should be considered for inclusion in clinical trials.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | | | - Agnieszka Malecka
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shirley D'Sa
- UCLH Centre for Waldenstrom macroglobulinaemia and Related Conditions, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Karube K, Satou A, Kato S. New classifications of B-cell neoplasms: a comparison of 5th WHO and International Consensus classifications. Int J Hematol 2024:10.1007/s12185-024-03781-5. [PMID: 38805112 DOI: 10.1007/s12185-024-03781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In 2024, the World Health Organization (WHO) launched a new classification of lymphoid neoplasms, a revision of the previously used Revised 4th Edition of their classification (WHO-4R). However, this means that two classifications are now in simultaneous use: the 5th Edition of the WHO classification (WHO-5) and the International Consensus Classification (ICC). Instead of a comprehensive review of each disease entity, as already described elsewhere, this review focuses on revisions made in both the WHO-5 and ICC from WHO-4R and discrepancies between them regarding B-cell neoplasms. Similarities include cutaneous marginal zone lymphoma, cold agglutinin disease, non-primary effusion lymphoma-type effusion-based lymphoma, and gray zone lymphoma. Differences include plasma cell neoplasms, high-grade B-cell lymphoma (double hit lymphoma), follicular lymphoma, LPD with immune deficiency and dysregulation, extranodal large B-cell lymphoma, transformations of indolent B-cell lymphomas, and diffuse large B-cell lymphoma, not otherwise specified. Understanding the similarities and differences between the two latest classifications will aid daily diagnostic practice and future research on lymphoid neoplasms.
Collapse
Affiliation(s)
- Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University, Aichi, Japan.
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Seiichi Kato
- Center for Clinical Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Attygalle AD, Chan JKC, Coupland SE, Du MQ, Ferry JA, Jong DD, Gratzinger D, Lim MS, Naresh KN, Nicolae A, Ott G, Rosenwald A, Schuh A, Siebert R. The 5th edition of the World Health Organization Classification of mature lymphoid and stromal tumors - an overview and update. Leuk Lymphoma 2024; 65:413-429. [PMID: 38189838 DOI: 10.1080/10428194.2023.2297939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 01/09/2024]
Abstract
The purpose of this review is to give an overview on the conceptual framework and major developments of the upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid tumours (WHO-HAEM5) and to highlight the most significant changes made in WHO-HAEM5 compared with the revised 4th edition (WHO-HAEM4R) of lymphoid and stromal neoplasms. The changes from the revised 4th edition include the reorganization of entities by means of a hierarchical system that is realized throughout the 5th edition of the WHO classification of tumors of all organ systems, a modification of nomenclature for some entities, the refinement of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities. For the first time, tumor-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms are included in the classification.
Collapse
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, UK
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ISMIB, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Megan S Lim
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Kikkeri N Naresh
- Fred Hutchinson Cancer Center, University of Washington, Seattle, USA
| | - Alina Nicolae
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-UniversitätWürzburg, and Cancer Center Mainfranken, Würzburg, Germany
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Medeiros LJ, Chadburn A, Natkunam Y, Naresh KN. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissues: B-cell Neoplasms. Mod Pathol 2024; 37:100441. [PMID: 38309432 DOI: 10.1016/j.modpat.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
We review B-cell neoplasms in the 5th edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5). The revised classification is based on a multidisciplinary approach including input from pathologists, clinicians, and other experts. The WHO-HEM5 follows a hierarchical structure allowing the use of family (class)-level definitions when defining diagnostic criteria are partially met or a complete investigational workup is not possible. Disease types and subtypes have expanded compared with the WHO revised 4th edition (WHO-HEM4R), mainly because of the expansion in genomic knowledge of these diseases. In this review, we focus on highlighting changes and updates in the classification of B-cell lymphomas, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of B-cell lymphomas in routine practice.
Collapse
Affiliation(s)
- L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle
| |
Collapse
|
7
|
Małecka A, Østlie I, Trøen G, Małecki J, Delabie J, Tierens A, Munthe LA, Berentsen S, Tjønnfjord GE. Gene expression analysis revealed downregulation of complement receptor 1 in clonal B cells in cold agglutinin disease. Clin Exp Immunol 2024; 216:45-54. [PMID: 38133636 PMCID: PMC10929701 DOI: 10.1093/cei/uxad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Cold agglutinin disease (CAD) is a rare B-cell lymphoproliferative disorder of the bone marrow, manifested by autoimmune hemolytic anemia caused by binding of monoclonal IgM autoantibodies to the I antigen. Underlying genetic changes have previously been reported, but their impact on gene expression profile has been unknown. Here, we define differentially expressed genes in CAD B cells. To unravel downstream alteration in cellular pathways, gene expression by RNA sequencing was undertaken. Clonal B-cell samples from 12 CAD patients and IgM-expressing memory B cells from 4 healthy individuals were analyzed. Differential expression analysis and filtering resulted in 93 genes with significant differential expression. Top upregulated genes included SLC4A1, SPTA1, YBX3, TESC, HBD, AHSP, TRAF1, HBA2, RHAG, CA1, SPTB, IL10, UBASH3B, ALAS2, HBA1, CRYM, RGCC, KANK2, and IGHV4-34. They were upregulated at least 8-fold, while complement receptor 1 (CR1/CD35) was downregulated 11-fold in clonal CAD B cells compared to control B cells. Flow cytometry analyses further confirmed reduced CR1 (CD35) protein expression by clonal CAD IgM+ B cells compared to IgM+ memory B cells in controls. CR1 (CD35) is an important negative regulator of B-cell activation and differentiation. Therefore, reduced CR1 (CD35) expression may increase activation, proliferation, and antibody production in CAD-associated clonal B cells.
Collapse
Affiliation(s)
- Agnieszka Małecka
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ingunn Østlie
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Jan Delabie
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Ludvig A Munthe
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Hayashi K, Koyama D, Sato Y, Fukatsu M, Ikezoe T. Lymphoplasmacytic lymphoma presenting cold agglutinin syndrome: Clonal expansion of KMT2D and IGHV4-34 mutations after COVID-19. Br J Haematol 2023; 203:e110-e113. [PMID: 37697431 DOI: 10.1111/bjh.19106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Bruehl FK, Mannion P, Barbato E, Nakashima MO, Cook JR. IgM monoclonal gammopathy of undetermined significance: clinicopathologic features with and without IgM-related disorders. Haematologica 2023; 108:2764-2773. [PMID: 37021542 PMCID: PMC10543195 DOI: 10.3324/haematol.2022.282389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
A subset of patients with immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS) develop IgM-related disorders (IgM-RD) including peripheral neuropathy, cryoglobulinemia and/or cold agglutinin disease (CAD). We examined the clinical and bone marrow pathologic findings in 191 IgM MGUS patients (2016 World Health Oragnization criteria). Clonal plasma cells were identified in 41 of 171 (24%) cases by immunohistochemistry (IHC) and clonal B cells in 43 of 157 (27%). IgM-RD was identified in 82 (43%) cases, including peripheral neuropathy (n=67, 35%), cryoglobulinemia (n=21, 11%), and CAD (n=10, 5%). Cases of CAD showed distinctive features including lack of MYD88 mutations (P=0.048), supporting the concept of primary CAD as a distinct clinicopathologic disorder. Following exclusion of CAD, comparison of the remaining cases with (n=72) or without (n=109) IgM-RD showed IgM-RD to be more frequent in men than women (P=0.02) and to be more highly associated with MYD88 L265P (P=0.011). Cases with and without IgM-RD otherwise showed similar features including serum IgM concentrations, presence of lymphoid aggregates, clonal B cells by flow cytometry or clonal plasma cells by IHC. No differences were observed in overall survival between cases with and without IgM-RD. No cases in this series met criteria for plasma cell type IgM MGUS as defined in the 2022 International Consensus Classification of lymphoid neoplasms. These results show IgM-RD to be common in patients with IgM MGUS. While CAD shows distinctive features, the remaining cases of IgM-RD largely show pathologic findings similar to IgM MGUS without IgM-RD.
Collapse
Affiliation(s)
- Frido K Bruehl
- Institutions: Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Peter Mannion
- Institutions: Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Elisha Barbato
- Institutions: Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Megan O Nakashima
- Institutions: Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - James R Cook
- Institutions: Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
10
|
Guenther A, Tierens A, Malecka A, Delabie J. The Histopathology of Cold Agglutinin Disease-Associated B-Cell Lymphoproliferative Disease. Am J Clin Pathol 2023; 160:229-237. [PMID: 37253147 DOI: 10.1093/ajcp/aqad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVES Primary cold agglutinin disease is a type of autoimmune hemolytic anemia caused by circulating antibodies against I antigen, a carbohydrate expressed on most cells, including red blood cells. The underlying disease has been characterized in recent years as a distinct B-cell lymphoproliferative disease of the bone marrow, occurring mostly in the elderly. The disease has been now been included as a separate entity in the most recent classifications of mature B-cell neoplasms. METHODS A review of the characteristics of cold agglutinin disease is provided, with an emphasis on the pathology features. RESULTS A detailed description of the histopathology, immunophenotype, and genetics of cold agglutinin disease is provided and compared to other B-cell lymphoproliferative diseases in the bone marrow with similar features. CONCLUSIONS Recognition of the pathology features of cold agglutinin disease allows to distinguish it from other diseases, especially lymphoplasmacytic lymphoma and marginal zone lymphoma.
Collapse
Affiliation(s)
- Angela Guenther
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| | | | - Jan Delabie
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Tsarouhas P, Stalling M, Julius C, Hord J. An unusual case of primary cold agglutinin-associated lymphoproliferative disease in an adolescent female. Pediatr Hematol Oncol 2023; 41:65-73. [PMID: 37166221 DOI: 10.1080/08880018.2023.2166633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Affiliation(s)
| | - Melissa Stalling
- Pathology and Laboratory Medicine, Akron Children's Hospital, Akron, OH, USA
| | - Carmen Julius
- Pathology and Laboratory Medicine, Akron Children's Hospital, Akron, OH, USA
| | - Jeffrey Hord
- Pediatric Hematology Oncology, Akron Children's Hospital, Akron, OH, USA
| |
Collapse
|
12
|
Gelbenegger G, Berentsen S, Jilma B. Monoclonal antibodies for treatment of cold agglutinin disease. Expert Opin Biol Ther 2023; 23:395-406. [PMID: 37128907 DOI: 10.1080/14712598.2023.2209265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Cold agglutinin disease (CAD) is a difficult-to-treat autoimmune hemolytic anemia and B cell lymphoproliferative disorder associated with fatigue, acrocyanosis and a risk of thromboembolic events. Cold-induced binding of autoantibodies agglutinates red blood cells and triggers the classical complement pathway, leading to predominantly extravascular hemolysis. AREAS COVERED This review summarizes clinical and experimental antibody-based treatments for CAD and analyzes the risks and benefits of B cell and complement directed therapies, and discusses potential future treatments for CAD. EXPERT OPINION Conventional treatment of CAD includes a B cell targeted treatment approach with rituximab, yielding only limited treatment success. Addition of a cytotoxic agent (e.g. bendamustine) increases efficacy but this is accompanied by an increased risk of neutropenia and infection. Novel complement-directed therapies have emerged and were shown to have a good efficacy against hemolysis and safety profile but are expensive and unable to address circulatory symptoms. Complement inhibition with sutimlimab may be used as a bridging strategy until B cell directed therapy with rituximab takes effect or continued indefinitely if needed. Future antibody-based treatment approaches for CAD involve the further development of complement-directed antibodies, combination of rituximab and bortezomib, and daratumumab. Non-antibody based prospective treatments may include the use of Bruton tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Haugesund, Norway
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Berentsen S. Sutimlimab for the Treatment of Cold Agglutinin Disease. Hemasphere 2023; 7:e879. [PMID: 37153870 PMCID: PMC10155901 DOI: 10.1097/hs9.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Cold agglutinin disease (CAD) is a rare autoimmune hemolytic anemia and a bone marrow clonal lymphoproliferative disorder. Hemolysis in CAD is complement-dependent and mediated by the classical activation pathway. Patients also frequently suffer from fatigue and cold-induced circulatory symptoms. Although not all patients need treatment, the symptom burden has previously been underestimated. Effective therapies target the clonal lymphoproliferation or the complement activation. Sutimlimab, a humanized monoclonal IgG4 antibody that binds and inactivates complement protein C1s, is the most extensively investigated complement inhibitor for the treatment of CAD. This review addresses the preclinical studies of sutimlimab and the studies of pharmacokinetics and pharmacodynamics. We then describe and discuss the prospective clinical trials that established sutimlimab as a rapidly acting, highly efficacious, and low-toxic therapeutic agent. This complement inhibitor does not improve the cold-induced circulatory symptoms, which are not complement-mediated. Sutimlimab is approved for the treatment of CAD in the US, Japan, and the European Union. A tentative therapeutic algorithm is presented. The choice of therapy for CAD should be based on an individual assessment, and patients requiring therapy should be considered for inclusion in clinical trials.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| |
Collapse
|
14
|
Fend F, Dogan A, Cook JR. Plasma cell neoplasms and related entities-evolution in diagnosis and classification. Virchows Arch 2023; 482:163-177. [PMID: 36414803 PMCID: PMC9852202 DOI: 10.1007/s00428-022-03431-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Plasma cell neoplasms including multiple myeloma (MM) and related terminally differentiated B-cell neoplasms are characterized by secretion of monoclonal immunoglobulin and stepwise development from a preneoplastic clonal B and/or plasma cell proliferation called monoclonal gammopathy of undetermined significance (MGUS). Diagnosis of these disorders requires integration of clinical, laboratory, and morphological features. While their classification mostly remains unchanged compared to the revised 2016 WHO classification and the 2014 International Myeloma Working Group consensus, some changes in criteria and terminology were proposed in the 2022 International Consensus Classification (ICC) of mature lymphoid neoplasms. MGUS of IgM type is now divided into IgM MGUS of plasma cell type, precursor to the rare IgM MM and characterized by MM-type cytogenetics, lack of clonal B-cells and absence of MYD88 mutation, and IgM MGUS, NOS including the remaining cases. Primary cold agglutinin disease is recognized as a new entity. MM is now formally subdivided into cytogenetic groups, recognizing the importance of genetics for clinical features and prognosis. MM with recurrent genetic abnormalities includes MM with CCND family translocations, MM with MAF family translocations, MM with NSD2 translocation, and MM with hyperdiploidy, with the remaining cases classified as MM, NOS. For diagnosis of localized plasma cell tumors, solitary plasmacytoma of bone, and primary extraosseous plasmacytoma, the importance of excluding minimal bone marrow infiltration by flow cytometry is emphasized. Primary systemic amyloidosis is renamed immunoglobulin light chain amyloidosis (AL), and a localized AL amyloidosis is recognized as a distinct entity. This review summarizes the updates on plasma cell neoplasms and related entities proposed in the 2022 ICC. KEY POINTS: • Lymphoplasmacytic lymphoma can be diagnosed with lymphoplasmacytic aggregates in trephine biopsies < 10% of cellularity and evidence of clonal B-cells and plasma cells. • IgM MGUS is subdivided into a plasma cell type and a not otherwise specified (NOS) type. • Primary cold agglutinin disease is recognized as a new entity. • The term "multiple myeloma" replaces the term "plasma cell myeloma" used in the 2016 WHO classification. • Multiple myeloma is subdivided into 4 mutually exclusive cytogenetic groups and MM NOS. • Minimal bone marrow infiltration detected by flow cytometry is of major prognostic importance for solitary plasmacytoma of bone and to a lesser extent for primary extraosseous plasmacytoma. • Localized IG light chain amyloidosis is recognized as a separate entity, distinct from systemic immunoglobulin light chain (AL) amyloidosis.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - James R. Cook
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
15
|
Falini B, Martino G, Lazzi S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia 2023; 37:18-34. [PMID: 36460764 PMCID: PMC9883170 DOI: 10.1038/s41375-022-01764-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Several editions of the World Health Organization (WHO) classifications of lympho-hemopoietic neoplasms in 2001, 2008 and 2017 served as the international standard for diagnosis. Since the 4th WHO edition, here referred as WHO-HAEM4, significant clinico-pathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining diagnostic criteria of several diseases, to upgrade entities previously defined as provisional and to identify new entities. This process has resulted in two recent classifying proposals of lymphoid neoplasms, the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, with focus on mature B-cell neoplasms. The main aim is to provide a tool to facilitate the work of pathologists, hematologists and researchers involved in the diagnosis and treatment of lymphomas.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy.
| | - Giovanni Martino
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Institute of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, Brousset P, Cerroni L, de Leval L, Dirnhofer S, Dogan A, Feldman AL, Fend F, Friedberg JW, Gaulard P, Ghia P, Horwitz SM, King RL, Salles G, San-Miguel J, Seymour JF, Treon SP, Vose JM, Zucca E, Advani R, Ansell S, Au WY, Barrionuevo C, Bergsagel L, Chan WC, Cohen JI, d'Amore F, Davies A, Falini B, Ghobrial IM, Goodlad JR, Gribben JG, Hsi ED, Kahl BS, Kim WS, Kumar S, LaCasce AS, Laurent C, Lenz G, Leonard JP, Link MP, Lopez-Guillermo A, Mateos MV, Macintyre E, Melnick AM, Morschhauser F, Nakamura S, Narbaitz M, Pavlovsky A, Pileri SA, Piris M, Pro B, Rajkumar V, Rosen ST, Sander B, Sehn L, Shipp MA, Smith SM, Staudt LM, Thieblemont C, Tousseyn T, Wilson WH, Yoshino T, Zinzani PL, Dreyling M, Scott DW, Winter JN, Zelenetz AD. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022; 140:1229-1253. [PMID: 35653592 PMCID: PMC9479027 DOI: 10.1182/blood.2022015851] [Citation(s) in RCA: 707] [Impact Index Per Article: 235.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors.
Collapse
Affiliation(s)
- Elias Campo
- Haematopathology Section, Hospital Clínic of Barcelona, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ahmet Dogan
- Laboratory of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | | | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Mondor Institute for Biomedical Research, INSERM U955, Faculty of Medicine, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Strategic Research Program on Chronic Lymphocytic Leukemia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, CIBERONC, Pamplona, Spain
| | - John F Seymour
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Julie M Vose
- Division of Hematology-Oncology, Department of Internal Medicine, University of Nebraska Medical Center, University of Nebraska, Omaha, NE
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ranjana Advani
- Stanford Cancer Center, Blood and Marrow Transplant Program, Stanford University, Stanford, CA
| | - Stephen Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wing-Yan Au
- Blood-Med Clinic, Hong Kong, People's Republic of China
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Andrew Davies
- Cancer Research UK Centre, Centre for Cancer Immunology, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, Hospital of Perugia, University of Perugia , Perugia, Italy
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Harvard University, Boston, MA
| | - John R Goodlad
- National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - John G Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eric D Hsi
- Department of Pathology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC
| | - Brad S Kahl
- Oncology Division, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Won-Seog Kim
- Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - John P Leonard
- Weill Department of Medicine, Weill Medical College, Cornell University, New York, NY
| | - Michael P Link
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - Armando Lopez-Guillermo
- Department of Hematology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Maria Victoria Mateos
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cancer, Universidad de Salamanca, Salamanca, Spain
| | - Elizabeth Macintyre
- Laboratoire d'Onco-Hématologie, AP-HP, Hôpital Necker-Enfants Malades, Université de Paris Cité and Institut Necker-Enfants Malades, Paris, France
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Medical College, Cornell University, New York, NY
| | - Franck Morschhauser
- Department of Hematology, Centre Hospitalier Universitaire de Lille, University Lille, Lille, France
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Marina Narbaitz
- Department of Pathology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina and Fundacion para combatir la leucemia (FUNDALEU), Buenos Aires, Argentina
| | - Astrid Pavlovsky
- Fundación para Combatir la Leucemia (FUNDALEU), Centro de Hematología Pavlovsky, Buenos Aires, Argentina
| | - Stefano A Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Miguel Piris
- Jiménez Díaz Foundation University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Barbara Pro
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vincent Rajkumar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Steven T Rosen
- Beckman Research Institute, and Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurie Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Sonali M Smith
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Catherine Thieblemont
- Service Hémato-Oncologie, AP-HP, Hôpital Saint-Louis, Paris, France
- DMU-DHI, Université de Paris-Paris Diderot, Paris, France
| | - Thomas Tousseyn
- Department of Pathology, Universitair Ziekenhuis Leuven Hospitals, Leuven, Belgium
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Pier-Luigi Zinzani
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Andrew D Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College, Cornell University, New York, NY
| |
Collapse
|
17
|
Berentsen S, Barcellini W, D'Sa S, Jilma B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom? Immunotherapy 2022; 14:1191-1204. [PMID: 35946351 DOI: 10.2217/imt-2022-0085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapies for cold agglutinin disease have been directed at the pathogenic B-cell clone. Sutimlimab, a monoclonal antibody that targets C1s, is the first complement inhibitor to be extensively studied in cold agglutinin disease. Sutimlimab selectively blocks the classical activation pathway and leaves the alternative and lectin pathways intact. Trials have documented high response rates with rapid improvement in hemolysis, hemoglobin levels and fatigue scores and low toxicity. Sutimlimab was recently approved in the USA. This drug appears to be particularly useful in severely anemic patients who require a rapid response, in acute exacerbations that do not resolve spontaneously and in patients in whom chemoimmunotherapy is contraindicated or has failed. The choice of therapy in cold agglutinin disease should be individualized.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | - Wilma Barcellini
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Shirley D'Sa
- University College London Hospitals Centre for Waldenström and Associated Conditions, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Berentsen S, Tjønnfjord GE. Current treatment options in cold agglutinin disease: B-cell directed or complement directed therapy? Transfus Med Rev 2022; 36:181-187. [DOI: 10.1016/j.tmrv.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 10/15/2022]
|
19
|
Liu JQ, Zhang FK. [Recent progress in the diagnosis and treatment of cold agglutinin disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:524-528. [PMID: 35968599 PMCID: PMC9800217 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 12/24/2022]
Affiliation(s)
- J Q Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - F K Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
20
|
Abstract
INTRODUCTION Autoimmune hemolytic anemia (AIHA) is classified according to the direct antiglobulin test (DAT) and thermal characteristics of the autoantibody into warm and cold forms, and in primary versus secondary depending on the presence of associated conditions. AREAS COVERED AIHA displays a multifactorial pathogenesis, including genetic (association with congenital conditions and certain mutations), environmental (drugs, infections, including SARS-CoV-2, pollution, etc.), and miscellaneous factors (solid/hematologic neoplasms, systemic autoimmune diseases, etc.) contributing to tolerance breakdown. Several mechanisms, such as autoantibody production, complement activation, monocyte/macrophage phagocytosis, and bone marrow compensation are implicated in extra-/intravascular hemolysis. Treatment should be differentiated and sequenced according to AIHA type (i.e. steroids followed by rituximab for warm, rituximab alone or in association with bendamustine or fludarabine for cold forms). Several new drugs targeting B-cells/plasma cells, complement, and phagocytosis are in clinical trials. Finally, thrombosis and infections may complicate disease course burdening quality of life and increasing mortality. EXPERT OPINION Beyond warm and cold AIHA, a gray-zone still exists including mixed and DAT negative forms representing an unmet need. AIHA management is rapidly changing through an increasing knowledge of the pathogenic mechanisms, the refinement of diagnostic tools, and the development of novel targeted and combination therapies.
Collapse
Affiliation(s)
- B Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - W Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Patriquin CJ, Pavenski K. O, wind, if winter comes … will symptoms be far behind?: Exploring the seasonality (or lack thereof) and management of cold agglutinin disease. Transfusion 2021; 62:2-10. [PMID: 34893982 DOI: 10.1111/trf.16765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J Patriquin
- Division of Medical Oncology & Hematology, University Health Network, Toronto General Hospital, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Katerina Pavenski
- Departments of Medicine & Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Departments of Medicine & Laboratory Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
MESH Headings
- Anemia, Hemolytic, Autoimmune/diagnosis
- Anemia, Hemolytic, Autoimmune/pathology
- Anemia, Hemolytic, Autoimmune/physiopathology
- Anemia, Hemolytic, Autoimmune/therapy
- Blood Transfusion
- Complement Inactivating Agents/therapeutic use
- Glucocorticoids/therapeutic use
- Hemoglobinuria, Paroxysmal/diagnosis
- Hemoglobinuria, Paroxysmal/pathology
- Hemoglobinuria, Paroxysmal/physiopathology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Immunologic Factors/therapeutic use
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- From the Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway (S.B.); and the Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.)
| | - Wilma Barcellini
- From the Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway (S.B.); and the Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.)
| |
Collapse
|
23
|
Abstract
The last decades have seen great progress in the treatment of cold agglutinin disease (CAD). Comparative trials are lacking, and recommendations must be based mainly on nonrandomized trials and will be influenced by personal experience. Herein, current treatment options are reviewed and linked to 3 cases, each addressing specific aspects of therapy. Two major steps in CAD pathogenesis are identified, clonal B-cell lymphoproliferation and complement-mediated hemolysis, each of which constitutes a target of therapy. Although drug treatment is not always indicated, patients with symptomatic anemia or other bothersome symptoms should be treated. The importance of avoiding ineffective therapies is underscored. Corticosteroids should not be used to treat CAD. Studies on safety and efficacy of relevant drugs and combinations are briefly described. The author recommends that B cell-directed approaches remain the first choice in most patients requiring treatment. The 4-cycle bendamustine plus rituximab combination is highly efficacious and sufficiently safe and induces durable responses in most patients, but the time to response can be many months. Rituximab monotherapy should be preferred in frail patients. The complement C1s inhibitor sutimlimab is an emerging option in the second line and may also find its place in the first line in specific situations.
Collapse
|
24
|
Rituximab Use in Warm and Cold Autoimmune Hemolytic Anemia. J Clin Med 2020; 9:jcm9124034. [PMID: 33322221 PMCID: PMC7763062 DOI: 10.3390/jcm9124034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
Autoimmune hemolytic anemia is a rare condition characterized by destruction of red blood cells with and without involvement of complement. It is associated with significant morbidity and mortality. In warm autoimmune hemolytic anemia, less than 50% of patients remain in long-term remission following initial steroid therapy and subsequent therapies are required. Cold agglutinin disease is a clonal hematologic disorder that requires therapy in the majority of patients and responds poorly to steroids and alkylators. Rituximab has a favorable toxicity profile and has demonstrated efficacy in autoimmune hemolytic anemia in first-line as well as relapsed settings. Rituximab is the preferred therapy for steroid refractory warm autoimmune hemolytic anemia (wAIHA) and as part of the first- and second-line treatment of cold agglutinin disease. This article reviews the mechanism of action of rituximab and the current literature on its role in the management of primary and secondary warm autoimmune hemolytic anemia and cold agglutinin disease.
Collapse
|
25
|
Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing 2020; 17:38. [PMID: 33292368 PMCID: PMC7677104 DOI: 10.1186/s12979-020-00208-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) is an acquired, heterogeneous group of diseases which includes warm AIHA, cold agglutinin disease (CAD), mixed AIHA, paroxysmal cold hemoglobinuria and atypical AIHA. Currently CAD is defined as a chronic, clonal lymphoproliferative disorder, while the presence of cold agglutinins underlying other diseases is known as cold agglutinin syndrome. AIHA is mediated by autoantibodies directed against red blood cells (RBCs) causing premature erythrocyte destruction. The pathogenesis of AIHA is complex and still not fully understood. Recent studies indicate the involvement of T and B cell dysregulation, reduced CD4+ and CD25+ Tregs, increased clonal expansions of CD8 + T cells, imbalance of Th17/Tregs and Tfh/Tfr, and impaired lymphocyte apoptosis. Changes in some RBC membrane structures, under the influence of mechanical stimuli or oxidative stress, may promote autohemolysis. The clinical presentation and treatment of AIHA are influenced by many factors, including the type of AIHA, degree of hemolysis, underlying diseases, presence of concomitant comorbidities, bone marrow compensatory abilities and the presence of fibrosis and dyserthropoiesis. The main treatment for AIHA is based on the inhibition of autoantibody production by mono- or combination therapy using GKS and/or rituximab and, rarely, immunosuppressive drugs or immunomodulators. Reduction of erythrocyte destruction via splenectomy is currently the third line of treatment for warm AIHA. Supportive treatment including vitamin supplementation, recombinant erythropoietin, thrombosis prophylaxis and the prevention and treatment of infections is essential. New groups of drugs that inhibit immune responses at various levels are being developed intensively, including inhibition of antibody-mediated RBCs phagocytosis, inhibition of B cell and plasma cell frequency and activity, inhibition of IgG recycling, immunomodulation of T lymphocytes function, and complement cascade inhibition. Recent studies have brought about changes in classification and progress in understanding the pathogenesis and treatment of AIHA, although there are still many issues to be resolved, particularly concerning the impact of age-associated changes to immunity.
Collapse
Affiliation(s)
- Sylwia Sulimiera Michalak
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland.
| | - Anna Olewicz-Gawlik
- Department of Anatomy and Histology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Poznan University of Medical Sciences, Poznan, Poland
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Edyta Wolny-Rokicka
- Department of Radiotherapy, Multidisciplinary Hospital, Gorzów Wielkopolski, Poland
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
26
|
Berentsen S. New Insights in the Pathogenesis and Therapy of Cold Agglutinin-Mediated Autoimmune Hemolytic Anemia. Front Immunol 2020; 11:590. [PMID: 32318071 PMCID: PMC7154122 DOI: 10.3389/fimmu.2020.00590] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hemolytic anemias mediated by cold agglutinins can be divided into cold agglutinin disease (CAD), which is a well-defined clinicopathologic entity and a clonal lymphoproliferative disorder, and secondary cold agglutinin syndrome (CAS), in which a similar picture of cold-hemolytic anemia occurs secondary to another distinct clinical disease. Thus, the pathogenesis in CAD is quite different from that of polyclonal autoimmune diseases such as warm-antibody AIHA. In both CAD and CAS, hemolysis is mediated by the classical complement pathway and therefore can result in generation of anaphylotoxins, such as complement split product 3a (C3a) and, to some extent, C5a. On the other hand, infection and inflammation can act as triggers and drivers of hemolysis, exemplified by exacerbation of CAD in situations with acute phase reaction and the role of specific infections (particularly Mycoplasma pneumoniae and Epstein-Barr virus) as causes of CAS. In this review, the putative mechanisms behind these phenomena will be explained along with other recent achievements in the understanding of pathogenesis in these disorders. Therapeutic approaches have been directed against the clonal lymphoproliferation in CAD or the underlying disease in CAS. Currently, novel targeted treatments, in particular complement-directed therapies, are also being rapidly developed and will be reviewed.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Haugesund, Norway
| |
Collapse
|