1
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Engel DR, Wagenlehner FME, Shevchuk O. Scientific Advances in Understanding the Pathogenesis, Diagnosis, and Prevention of Urinary Tract Infection in the Past 10 Years. Infect Dis Clin North Am 2024; 38:229-240. [PMID: 38575493 DOI: 10.1016/j.idc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Urinary tract infection (UTI) is a very common disease that is accompanied by various complications in the affected person. UTI triggers diverse inflammatory reactions locally in the infected urinary bladder and kidney, causing tissue destruction and organ failure. Moreover, systemic responses in the entire body carry the risk of urosepsis with far-reaching consequences. Understanding the cell-, organ-, and systemic mechanisms in UTI are crucial for prevention, early intervention, and current therapeutic approaches. This review summarizes the scientific advances over the last 10 years concerning pathogenesis, prevention, rapid diagnosis, and new treatment approaches. We also highlight the impact of the immune system and potential new therapies to reduce progressive and recurrent UTI.
Collapse
Affiliation(s)
- Daniel R Engel
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany
| | - Florian M E Wagenlehner
- Justus-Liebig University Giessen, Clinic for Urology, Paediatric Urology and Andrology, Rudolf-Buchheim Straße 7, 35392 Giessen, Germany
| | - Olga Shevchuk
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany.
| |
Collapse
|
3
|
Cibir Z, Hassel J, Sonneck J, Kowitz L, Beer A, Kraus A, Hallekamp G, Rosenkranz M, Raffelberg P, Olfen S, Smilowski K, Burkard R, Helfrich I, Tuz AA, Singh V, Ghosh S, Sickmann A, Klebl AK, Eickhoff JE, Klebl B, Seidl K, Chen J, Grabmaier A, Viga R, Gunzer M. ComplexEye: a multi-lens array microscope for high-throughput embedded immune cell migration analysis. Nat Commun 2023; 14:8103. [PMID: 38081825 PMCID: PMC10713721 DOI: 10.1038/s41467-023-43765-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Autonomous migration is essential for the function of immune cells such as neutrophils and plays an important role in numerous diseases. The ability to routinely measure or target it would offer a wealth of clinical applications. Video microscopy of live cells is ideal for migration analysis, but cannot be performed at sufficiently high-throughput (HT). Here we introduce ComplexEye, an array microscope with 16 independent aberration-corrected glass lenses spaced at the pitch of a 96-well plate to produce high-resolution movies of migrating cells. With the system, we enable HT migration analysis of immune cells in 96- and 384-well plates with very energy-efficient performance. We demonstrate that the system can measure multiple clinical samples simultaneously. Furthermore, we screen 1000 compounds and identify 17 modifiers of migration in human neutrophils in just 4 days, a task that requires 60-times longer with a conventional video microscope. ComplexEye thus opens the field of phenotypic HT migration screens and enables routine migration analysis for the clinical setting.
Collapse
Affiliation(s)
- Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jacqueline Hassel
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Justin Sonneck
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Faculty of Computer Science, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Lennart Kowitz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gabriel Hallekamp
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Martin Rosenkranz
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Pascal Raffelberg
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Sven Olfen
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Kamil Smilowski
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Roman Burkard
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Iris Helfrich
- Department of Dermatology and Allergology, Medical Faculty of the Ludwig Maximilian University of Munich, Munich, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX, Aberdeen, UK
| | | | | | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | - Karsten Seidl
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Anton Grabmaier
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Reinhard Viga
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.
| |
Collapse
|
4
|
Goral A, Sledz M, Manda-Handzlik A, Cieloch A, Wojciechowska A, Lachota M, Mroczek A, Demkow U, Zagozdzon R, Matusik K, Wachowska M, Muchowicz A. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:89. [PMID: 37817276 PMCID: PMC10563345 DOI: 10.1186/s40164-023-00452-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Impaired neutrophil activity is an important issue in chronic lymphocytic leukemia (CLL), as it contributes to a dysfunctional immune response leading to life-threatening infections in patients. Some features typical of CLL neutrophils, e.g., the B-cell-supportive secretion profile, have already been described. However, most of these studies were performed on cells isolated from peripheral blood. It is still unclear which molecular factors and cell types are involved in shaping neutrophil function and phenotype in the CLL microenvironment. Since regulatory T cells (Treg) play an important role in CLL progression and influence the activity of neutrophils, we investigated the crosstalk between Treg and neutrophils in the spleen using a murine model of CLL. METHODS In this work, we used an Eµ-TCL1 mouse model of human CLL. For our in vivo and ex vivo experiments, we inoculated wild-type mice with TCL1 leukemic cells isolated from Eµ-TCL1 transgenic mice and then monitored disease progression by detecting leukemic cells in peripheral blood. We analyzed both the phenotype and activity of neutrophils isolated from the spleens of TCL1 leukemia-bearing mice. To investigate the interrelation between Treg and neutrophils in the leukemia microenvironment, we performed experiments using TCL1-injected DEREG mice with Treg depletion or RAG2KO mice with adoptively transferred TCL1 cells alone or together with Treg. RESULTS The obtained results underline the plasticity of the neutrophil phenotype, observed under the influence of leukemic cells alone and depending on the presence of Treg. In particular, Treg affect the expression of CD62L and IL-4 receptor in neutrophils, both of which are crucial for the function of these cells. Additionally, we show that Treg depletion and IL-10 neutralization induce changes in the leukemia microenvironment, partially restoring the "healthy" phenotype of neutrophils. CONCLUSIONS Altogether, the results indicate that the crosstalk between Treg and neutrophils in CLL may play an important role in CLL progression by interfering with the immune response.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marta Sledz
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Alicja Wojciechowska
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, 04-730, Poland
| | - Agnieszka Mroczek
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Matusik
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
| |
Collapse
|
5
|
Zec K, Thiebes S, Bottek J, Siemes D, Spangenberg P, Trieu DV, Kirstein N, Subramaniam N, Christ R, Klein D, Jendrossek V, Loose M, Wagenlehner F, Jablonska J, Bracht T, Sitek B, Budeus B, Klein-Hitpass L, Theegarten D, Shevchuk O, Engel DR. Comparative transcriptomic and proteomic signature of lung alveolar macrophages reveals the integrin CD11b as a regulatory hub during pneumococcal pneumonia infection. Front Immunol 2023; 14:1227191. [PMID: 37790937 PMCID: PMC10544576 DOI: 10.3389/fimmu.2023.1227191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Streptococcus pneumoniae is one of the main causes of community-acquired infections in the lung alveoli in children and the elderly. Alveolar macrophages (AM) patrol alveoli in homeostasis and under infectious conditions. However, the molecular adaptations of AM upon infections with Streptococcus pneumoniae are incompletely resolved. Methods We used a comparative transcriptomic and proteomic approach to provide novel insights into the cellular mechanism that changes the molecular signature of AM during lung infections. Using a tandem mass spectrometry approach to murine cell-sorted AM, we revealed significant proteomic changes upon lung infection with Streptococcus pneumoniae. Results AM showed a strong neutrophil-associated proteomic signature, such as expression of CD11b, MPO, neutrophil gelatinases, and elastases, which was associated with phagocytosis of recruited neutrophils. Transcriptomic analysis indicated intrinsic expression of CD11b by AM. Moreover, comparative transcriptomic and proteomic profiling identified CD11b as the central molecular hub in AM, which influenced neutrophil recruitment, activation, and migration. Discussion In conclusion, our study provides novel insights into the intrinsic molecular adaptations of AM upon lung infection with Streptococcus pneumoniae and reveals profound alterations critical for effective antimicrobial immunity.
Collapse
Affiliation(s)
- Kristina Zec
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Stephanie Thiebes
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Jenny Bottek
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Devon Siemes
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Philippa Spangenberg
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Duc Viet Trieu
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Nils Kirstein
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Nirojah Subramaniam
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Robin Christ
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Maria Loose
- Clinic for Urology, Paediatric Urology and Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Florian Wagenlehner
- Clinic for Urology, Paediatric Urology and Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thilo Bracht
- Medical Faculty, Medizinisches Proteom‐Center, Ruhr‐University Bochum, Bochum, Germany
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschafts-krankenhaus Bochum, Bochum, Germany
| | - Barbara Sitek
- Medical Faculty, Medizinisches Proteom‐Center, Ruhr‐University Bochum, Bochum, Germany
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschafts-krankenhaus Bochum, Bochum, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Olga Shevchuk
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| | - Daniel R. Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Li W, Zhang B, Cao W, Zhang W, Li T, Liu L, Xu L, Gao F, Wang Y, Wang F, Xing H, Jiang Z, Shi J, Bian Z, Song Y. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing. Exp Hematol Oncol 2023; 12:44. [PMID: 37158921 PMCID: PMC10165782 DOI: 10.1186/s40164-023-00402-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND BCMA CAR-T is highly effective for relapsed/refractory multiple myeloma(R/R-MM) and significantly improves the survival of patients. However, the short remission time and high relapse rate of MM patients treated with BCMA CAR-T remain bottlenecks that limit long-term survival. The immune microenvironment of the bone marrow (BM) in R/R-MM may be responsible for this. The present study aims to present an in-depth analysis of resistant mechanisms and to explore potential novel therapeutic targets for relapse of BCMA CAR-T treatment via single-cell RNA sequencing (scRNA-seq) of BM plasma cells and immune cells. METHODS This study used 10X Genomic scRNA-seq to identify cell populations in R/R-MM CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. Cell Ranger pipeline and CellChat were used to perform detailed analysis. RESULTS We compared the heterogeneity of CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We found that the proportion of monocytes/macrophages increased, while the percentage of T cells decreased at relapse after BCMA CAR-T treatment. We then reclustered and analyzed the alterations in plasma cells, T cells, NK cells, DCs, neutrophils, and monocytes/macrophages in the BM microenvironment before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We show here that the percentage of BCMA positive plasma cells increased at relapse after BCMA CAR-T cell therapy. Other targets such as CD38, CD24, SLAMF7, CD138, and GPRC5D were also found to be expressed in plasma cells of the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Furthermore, exhausted T cells, TIGIT+NK cells, interferon-responsive DCs, and interferon-responsive neutrophils, increased in the R/R-MM patient at relapse after BCMA CAR-T cell treatment. Significantly, the proportion of IL1βhi Mφ, S100A9hi Mφ, interferon-responsive Mφ, CD16hi Mφ, MARCO hi Mφ, and S100A11hi Mφ significantly increased in the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Cell-cell communication analysis indicated that monocytes/macrophages, especially the MIF and APRIL signaling pathway are key players in R/R-MM patient at relapse after BCMA CAR-T cell therapy. CONCLUSION Taken together, our data extend the understanding of intrinsic and extrinsic relapse of BCMA CAR-T treatment in R/R-MM patient and the potential mechanisms involved in the alterations of antigens and the induced immunosuppressive microenvironment, which may provide a basis for the optimization of BCMA CAR-T strategies. Further studies should be performed to confirm these findings.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lina Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - LinPing Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
7
|
The Role of Neutrophils in the Pathogenesis of Chronic Lymphocytic Leukemia. Int J Mol Sci 2021; 23:ijms23010365. [PMID: 35008790 PMCID: PMC8745265 DOI: 10.3390/ijms23010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor-associated neutrophils appear to be a crucial element of the tumor microenvironment that actively participates in the development and progression of cancerous diseases. The increased lifespan, plasticity in changing of phenotype, and functions of neutrophils influence the course of the disease and may significantly affect survival. In patients with chronic lymphocytic leukemia (CLL), disturbances in neutrophils functions impede the effective immune defense against pathogens. Therefore, understanding the mechanism underlying such a phenomenon in CLL seems to be of great importance. Here we discuss the recent reports analyzing the phenotype and functions of neutrophils in CLL, the most common leukemia in adults. We summarize the data concerning both the phenotype and the mechanisms by which neutrophils directly support the proliferation and survival of malignant B cells.
Collapse
|
8
|
Grüneboom A, Aust O, Cibir Z, Weber F, Hermann DM, Gunzer M. Imaging innate immunity. Immunol Rev 2021; 306:293-303. [PMID: 34837251 DOI: 10.1111/imr.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.
Collapse
Affiliation(s)
- Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Oliver Aust
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|