1
|
Christensen NV, Laustsen C, Bertelsen LB. Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized 13C NMR. NMR IN BIOMEDICINE 2024; 37:e5264. [PMID: 39319772 DOI: 10.1002/nbm.5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized 13C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-13C]pyruvate and [1-13C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized 13C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.
Collapse
Affiliation(s)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Yan M, Luo X, Han H, Qiu J, Ye Q, Zhang L, Wang Y. ROCK2 increases drug resistance in acute myeloid leukemia via metabolic reprogramming and MAPK/PI3K/AKT signaling. Int Immunopharmacol 2024; 140:112897. [PMID: 39126734 DOI: 10.1016/j.intimp.2024.112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Rho-associated coiled-coil kinase 2 (ROCK2) is classified as a member of the serine/threonine protein kinase family and has been identified as a key driver of the development of various forms of cancer. The cause of ROCK2's impact on acute myeloid leukemia (AML) is still unknown. We found that ROCK2 expression was higher in AML patients, leading to lower complete response rates and worse overall survival. Additionally, ROCK2 expression was elevated in the doxorubicin-resistant leukemia cell line HL-60/ADM when compared to their individual parent cells. Moreover, the suppression or inhibition of ROCK2 leads to enhanced drug sensitivity in both AML cell lines and primary AML specimens, along with a notable decrease in downstream signaling pathways. Furthermore, the suppression of ROCK2 caused disruption of cellular energy production pathways by directly affecting the functionality of proteins within the mitochondrial electron transport chain. Finally, we discovered that TRIM26, a specific E3 ligase, is capable of ubiquitylating ROCK2, and the upregulation of TRIM26 within HL-60/ADM cells resulted in heightened sensitivity to the drug and reduced resistance. Thus, our study presents a new strategy for overcoming drug resistance in AML through targeting ROCK2/AKT/MAPK signaling pathway.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hong Han
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qiu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bao Y, Qiao J, Gong W, Zhang R, Zhou Y, Xie Y, Xie Y, He J, Yin T. Spatial metabolomics highlights metabolic reprogramming in acute myeloid leukemia mice through creatine pathway. Acta Pharm Sin B 2024; 14:4461-4477. [PMID: 39525575 PMCID: PMC11544190 DOI: 10.1016/j.apsb.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute myeloid leukemia (AML) is recognized as an aggressive cancer that is characterized by significant metabolic reprogramming. Here, we applied spatial metabolomics to achieve high-throughput, in situ identification of metabolites within the liver metastases of AML mice. Alterations at metabolite and protein levels were further mapped out and validated by integrating untargeted metabolomics and proteomics. This study showed a downregulation in arginine's contribution to polyamine biosynthesis and urea cycle, coupled with an upregulation of the creatine metabolism. The upregulation of creatine synthetases Gatm and Gamt, as well as the creatine transporter Slc6a8, resulted in a marked accumulation of creatine within tumor foci. This process further enhances oxidative phosphorylation and glycolysis of leukemia cells, thereby boosting ATP production to foster proliferation and infiltration. Importantly, we discovered that inhibiting Slc6a8 can counter these detrimental effects, offering a new strategy for treating AML by targeting metabolic pathways.
Collapse
Affiliation(s)
- Yucheng Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjie Gong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
5
|
Lu Q, Qu W, Wen Y, Ke P, Zhao L, Wang Q, Chen S, Zeng Z. Single-cell RNA-seq reveals the links between the metabolic heterogeneity and cell identity in NBM and AML. Br J Haematol 2024; 204:1100-1104. [PMID: 38009537 DOI: 10.1111/bjh.19233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Wenqiang Qu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yuxin Wen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Luyao Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
6
|
Bolkun L, Pienkowski T, Sieminska J, Godzien J, Pietrowska K, Kłoczko J, Wierzbowska A, Moniuszko M, Ratajczak M, Kretowski A, Ciborowski M. Metabolomic profile of acute myeloid leukaemia parallels of prognosis and response to therapy. Sci Rep 2023; 13:21809. [PMID: 38071228 PMCID: PMC10710498 DOI: 10.1038/s41598-023-48970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The heterogeneity of acute myeloid leukemia (AML), a complex hematological malignancy, is caused by mutations in myeloid cells affecting their differentiation and proliferation. Thus, various cytogenetic alterations in AML cells may be characterized by a unique metabolome and require different treatment approaches. In this study, we performed untargeted metabolomics to assess metabolomics differences between AML patients and healthy controls, AML patients with different treatment outcomes, AML patients in different risk groups based on the 2017 European LeukemiaNet (ELN) recommendations for the diagnosis and management of AML, AML patients with and without FLT3-ITD mutation, and a comparison between patients with FLT3-ITD, CBF-AML (Core binding factor acute myelogenous leukemia), and MLL AML (mixed-lineage leukemia gene) in comparison to control subjects. Analyses were performed in serum samples using liquid chromatography coupled with mass spectrometry (LC-MS). The obtained metabolomics profiles exhibited many alterations in glycerophospholipid and sphingolipid metabolism and allowed us to propose biomarkers based on each of the above assessments as an aid for diagnosis and eventual classification, allowing physicians to choose the best-suited treatment approach. These results highlight the application of LC-MS-based metabolomics of serum samples as an aid in diagnostics and a potential minimally invasive prognostic tool for identifying various cytogenetic and treatment outcomes of AML.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Janusz Kłoczko
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | | | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
| |
Collapse
|
7
|
Ghazaryan A, Wallace JA, Tang WW, Barba C, Lee SH, Bauer KM, Nelson MC, Kim CN, Stubben C, Voth WP, Rao DS, O’Connell RM. miRNA-1 promotes acute myeloid leukemia cell pathogenesis through metabolic regulation. Front Genet 2023; 14:1192799. [PMID: 37229187 PMCID: PMC10203238 DOI: 10.3389/fgene.2023.1192799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.
Collapse
Affiliation(s)
- Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jared A. Wallace
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - William W. Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Morgan C. Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Carissa N. Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Chris Stubben
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Warren P. Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
10
|
TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. HEMATO 2022. [DOI: 10.3390/hemato3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TP53 mutated/deleted acute myeloid leukemia (AML) stands out as one of the poorest prognosis forms of acute leukemia with a median overall survival not reaching one year in most cases, even in selected cases when allogenic stem-cell transplantation is performed. This aggressive behavior relies on intrinsic chemoresistance of blast cells and on high rates of relapse. New insights into the biology of the disease have shown strong linkage between TP53 mutant AML, altered metabolic features and immunoregulation uncovering new scenarios and leading to possibilities beyond current treatment approaches. Furthermore, new targeted therapies acting on misfolded/dysfunctional p53 protein are under current investigation with the aim to improve outcomes. In this review, we sought to offer an insight into TP53 mutant AML current biology and treatment approaches, with a special focus on leukemia-associated immune and metabolic changes.
Collapse
|
11
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
12
|
Lipids and the cancer stemness regulatory system in acute myeloid leukemia. Essays Biochem 2022; 66:333-344. [PMID: 35996953 DOI: 10.1042/ebc20220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease of impaired myeloid differentiation and a caricature of normal hematopoiesis. Leukemic stem cells (LSCs) are responsible for long-term clonal propagation in AML just as hematopoietic stem cells (HSCs) sustain lifelong hematopoiesis. LSCs are often resistant to standard chemotherapy and are responsible for clinical relapse. Although AML is highly heterogeneous, determinants of stemness are prognostic for AML patient survival and can predict AML drug sensitivity. Therefore, one way to overcome challenges preventing efficacious treatment outcomes is to target LSC stemness. Metabolomic and lipidomic studies of serum and cells from AML patients are emerging to complement genomic, transcriptomic, epigenetic, and proteomic data sets to characterize and stratify AML. Recent studies have shown the value of fractionating LSCs versus blasts when characterizing metabolic pathways and implicate the importance of lipid balance to LSCs function. As more extensive metabolic studies coupled to functional in vivo assays are conducted on highly purified HSCs, bulk AML, and LSCs, the similarities and differences in lipid homeostasis in stem-like versus more mature AML subtypes as well as from normal HSCs are emerging. Here, we discuss the latest findings from studies of lipid function in LSCs, with a focus on sphingolipids (SLs) as stemness/lineage fate mediators in AML, and the balance of fatty acid anabolism and catabolism fueling metabolic flexibility and drug resistance in AML. We also discuss how designing successful strategies to target lipid vulnerabilities and improve AML patient survival should take into consideration the hierarchical nature of AML.
Collapse
|
13
|
Duan Z, Chen Y, Ye M, Xiao L, Chen Y, Cao Y, Peng Y, Zhang J, Zhang Y, Yang T, Liu W, Feng S, Hu J. Differentiation and prognostic stratification of acute myeloid leukemia by serum-based spectroscopy coupling with metabolic fingerprints. FASEB J 2022; 36:e22416. [PMID: 35713583 DOI: 10.1096/fj.202200487r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. New approaches to predict the prognosis of AML have increasingly attracted attention. There were 98 non-M3 AML cases and 48 healthy controls were enrolled in the current work. Clinically routine assays for cytogenetic and molecular genetic analyses were performed on the bone marrow samples of patients with AML. Meanwhile, metabolic profiling of these AML subjects was also performed on the serum samples by combining Ag nanoparticle-based surface-enhanced Raman spectroscopy (SERS) with proton nuclear magnetic resonance (NMR) spectroscopy. Although most of the routine biochemical test showed no significant differences between the M0-M2 and M5 groups, the metabolic profiles were significantly different either between AML subtypes or between prognostic risk subgroups. Specific SERS bands were screened to serve as potential markers for AML subtypes. The results demonstrated that the classification models for M0-M2 and M5 shared two bands (i.e., 1328 and 741 cm-1 ), all came from nucleic acid signals. Furthermore, Metabolic profiles provided various differential metabolites responsible for different AML subtypes, and we found altered pathways mainly included energy metabolism like glycolysis, pyruvate metabolism, and metabolisms of nucleic acid bases as well as specific amino acid metabolisms. It is concluded that integration of SERS and NMR provides the rational and could be reliable to reveal AML differentiation, and meanwhile lay the basis for experimental and clinical practice to monitor disease progression and prognostic evaluation.
Collapse
Affiliation(s)
- Zhengwei Duan
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Minlu Ye
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Lijing Xiao
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Yanxin Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi Peng
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou, China
| | - Jingling Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ting Yang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wuping Liu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, China
| | - Shangyuan Feng
- Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Desikan SP, Daver N, DiNardo C, Kadia T, Konopleva M, Ravandi F. Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer J 2022; 12:91. [PMID: 35680852 PMCID: PMC9184476 DOI: 10.1038/s41408-022-00687-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in FLT3 and IDH targeted inhibition have improved response rates and overall survival in patients with mutations affecting these respective proteins. Despite this success, resistance mechanisms have arisen including mutations that disrupt inhibitor-target interaction, mutations impacting alternate pathways, and changes in the microenvironment. Here we review the role of these proteins in leukemogenesis, their respective inhibitors, mechanisms of resistance, and briefly ongoing studies aimed at overcoming resistance.
Collapse
Affiliation(s)
- Sai Prasad Desikan
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Naval Daver
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Courtney DiNardo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Tapan Kadia
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Farhad Ravandi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA.
| |
Collapse
|
16
|
Raimondi V, Ciotti G, Gottardi M, Ciccarese F. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022; 10:biomedicines10061359. [PMID: 35740380 PMCID: PMC9220225 DOI: 10.3390/biomedicines10061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) plays a key role in differentiation blockade and metabolic reprogramming of cancer cells. Approximatively 20–30% of acute myeloid leukemia (AML) cases carry mutations in the isocitrate dehydrogenase (IDH) enzymes, leading to a reduction in the Krebs cycle intermediate α-ketoglutarate (α-KG) to 2-HG. Relapse and chemoresistance of AML blasts following initial good response to standard therapy account for the very poor outcome of this pathology, which represents a great challenge for hematologists. The decrease of 2-HG levels through pharmacological inhibition of mutated IDH enzymes induces the differentiation of AML blasts and sensitizes leukemic cells to several anticancer drugs. In this review, we provide an overview of the main genetic mutations in AML, with a focus on IDH mutants and the role of 2-HG in AML pathogenesis. Moreover, we discuss the impact of high levels of 2-HG on the response of AML cells to antileukemic therapies and recent evidence for highly efficient combinations of mutant IDH inhibitors with other drugs for the management of relapsed/refractory (R/R) AML.
Collapse
Affiliation(s)
- Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
- Correspondence:
| | - Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
17
|
Banella C, Catalano G, Travaglini S, Pelosi E, Ottone T, Zaza A, Guerrera G, Angelini DF, Niscola P, Divona M, Battistini L, Screnci M, Ammatuna E, Testa U, Nervi C, Voso MT, Noguera NI. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel) 2022; 14:cancers14102565. [PMID: 35626170 PMCID: PMC9139619 DOI: 10.3390/cancers14102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute Myeloid Leukemias (AMLs) are rapidly progressive clonal neoplastic diseases. The overall 5-year survival rate is very poor: less than 5% in older patients aged over 65 years old. Elderly AML patients are often “unfit” for intensive chemotherapy, further highlighting the need of highly effective, well-tolerated new treatment options for AMLs. Growing evidence indicates that AML blasts feature a highly diverse and flexible metabolism consistent with the aggressiveness of the disease. Based on these evidences, we targeted the metabolic peculiarity and plasticity of AML cells with an association of ascorbate, which causes oxidative stress and interferes with hexokinase activity, and buformin, which completely shuts down mitochondrial contributions in ATP production. The ascorbate–buformin combination could be an innovative therapeutic option for elderly AML patients that are resistant to therapy. Abstract In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias’ (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate–buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
Collapse
Affiliation(s)
- Cristina Banella
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Health Sciences, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Gianfranco Catalano
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Travaglini
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Tiziana Ottone
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Zaza
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Daniela Francesca Angelini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, University of Rome Tor Vergata, 00144 Rome, Italy;
| | | | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Roma, Italy;
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100 Latina, Italy;
| | - Maria Teresa Voso
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| | - Nelida Ines Noguera
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| |
Collapse
|
18
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
19
|
Liu Y, Chen X, Liu J, Jin Y, Wang W. Circular RNA circ_0004277 Inhibits Acute Myeloid Leukemia Progression Through MicroRNA-134-5p / Single stranded DNA binding protein 2. Bioengineered 2022; 13:9662-9673. [PMID: 35412941 PMCID: PMC9161967 DOI: 10.1080/21655979.2022.2059609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are crucial non-coding RNAs in the process of tumorigenesis. Nevertheless, the biological function of circ_0004277 in acute myeloid leukemia (AML) is blurred. Microarray data of circRNAs were utilized to evaluate circRNAs’ differential expression in AML. Quantitative real-time polymerase chain reaction (qRT-PCR) was executed to determine circ_0004277 and microRNA-134-5p (miR-134-5p) expression levels. The growth, migration and invasion of AML cells were tested by the cell counting kit-8 and Transwell experiment. Dual-luciferase reporter gene experiment, RNA immunoprecipitation (RIP) experiment and RNA pull-down experiment were executed to determine the targeting relationship between circ_0004277 and miR-134-5p. Western blot assay was used to detect single stranded DNA binding protein 2 (SSBP2) expression. We observed that circ_0004277 was down-regulated in AML, while miR-134-5p was up-regulated. Functionally, circ_0004277 overexpression or inhibition of miR-134-5p remarkably suppressed AML cell viability, migration and invasion. Furthermore, miR-134-5p served as a direct downstream target of circ_0004277 and SSBP2 was identified as a target of miR-134-5p. Compensation experiments showed that miR-134-5p mimics abolished the biological function of circ_0004277 on malignant phenotypes of AML cells. Collectively, circ_0004277 impedes AML development by adsorbing miR-134-5p and up-regulating SSBP2.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingyang Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yinglan Jin
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
20
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
21
|
Hatfield KJ, Grønningsaeter IS, Reikvam H. Future perspective: metabolism as a therapeutic target in acute myeloid leukemia - from Warburg to precision medicine. Curr Med Res Opin 2021; 37:2107-2111. [PMID: 34498983 DOI: 10.1080/03007995.2021.1978960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acute myeloid leukemia (AML) is a highly malignant blood cancer disease, with dismal prognosis. The theory that cancer cells utilize metabolism to their growth advantage was postulated almost hundred years ago. However, only recently have been able to take advantage of this Achilles heel of malignant cell growth. Current observations suggest a crucial role for various metabolic pathways in AML, and special in leukemia stem cells, believed to be responsible for re-initiation of the leukemic clone, and hence relapse of this devastating disease. In the present article we discuss the features for metabolism in AML based on recent research, and special emphasizing the potential of pharmacological inhibiting metabolism as new treatment approaches.
Collapse
Affiliation(s)
- Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ida Sofie Grønningsaeter
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Akershus University Hospital, Oslo, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Identification of Protein Biomarker Signatures for Acute Myeloid Leukemia (AML) Using Both Nontargeted and Targeted Approaches. Proteomes 2021; 9:proteomes9040042. [PMID: 34842843 PMCID: PMC8628952 DOI: 10.3390/proteomes9040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an increasing number of clonal myeloid blast cells which are incapable of differentiating into mature leukocytes. AML risk stratification is based on genetic background, which also serves as a means to identify the optimal treatment of individual patients. However, constant refinements are needed, and the inclusion of significant measurements, based on the various omics approaches that are currently available to researchers/clinicians, have the potential to increase overall accuracy with respect to patient management. Using both nontargeted (label-free mass spectrometry) and targeted (multiplex immunoassays) proteomics, a range of proteins were found to be significantly changed in AML patients with different genetic backgrounds. The inclusion of validated proteomic biomarker panels could be an important factor in the prognostic classification of AML patients. The ability to measure both cellular and secreted analytes, at diagnosis and during the course of treatment, has advantages in identifying transforming biological mechanisms in patients, assisting important clinical management decisions.
Collapse
|
23
|
El-Shaqanqery HE, Mohamed RH, Sayed AA. Mitochondrial Effects on Seeds of Cancer Survival in Leukemia. Front Oncol 2021; 11:745924. [PMID: 34692527 PMCID: PMC8529120 DOI: 10.3389/fonc.2021.745924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The cancer metabolic alteration is considered a hallmark and fast becoming a road for therapeutic intervention. Mitochondria have been regarded as essential cell elements that fuel the metabolic needs of most cancer cell types. Leukemia stem cells (LSCs) are a heterogeneous, highly self-renewing, and pluripotent cell population within leukemic cells. The most important source of ATP and metabolites to fulfill the bioenergetics and biosynthetic needs of most cancer stem cells is the mitochondria. In addition, mitochondria have a core role in autophagy and cell death and are the main source of reactive oxygen species (ROS) generation. Overall, growing evidence now shows that mitochondrial activities and pathways have changed to adapt with different types of leukemia, thus mitochondrial metabolism could be targeted for blood malignancy therapy. This review focuses on the function of mitochondria in LSC of the different leukemia types.
Collapse
Affiliation(s)
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Sayed
- Genomics Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Metabolic Profiling during Acute Myeloid Leukemia Progression Using Paired Clinical Bone Marrow Serum Samples. Metabolites 2021; 11:metabo11090586. [PMID: 34564403 PMCID: PMC8471543 DOI: 10.3390/metabo11090586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolic changes reflect the characteristics of patients with acute myeloid leukemia (AML) caused by genetic variations, which are important in establishing AML treatment. However, little is known about the metabolic profile of patients with genetic variation-induced AML. Furthermore, the metabolites differ with disease progression. Here, metabolites in the bone marrow serum of ten patients with AML and healthy individuals were analyzed using gas chromatography–mass spectrometry. Compared with that in healthy individuals, expression of most metabolites decreased in patients with AML; hydroxylamine, 2-hydroxybutyric acid, monomethylphosphate, and ethylphosphate expression was unusually increased in the patients. We further examined serial metabolite changes across the initial diagnosis, postremission, and relapse phases. Patients with relapse showed increased metabolite expression compared with those in the diagnostic phase, confirming that patients with AML had aggressively modified leukemic cells. However, a clear difference in metabolite distribution was not observed between the diagnosis and complete remission phases, suggesting that the metabolic microenvironment did not change significantly despite complete remission. Interestingly, metabolite profiles differed with genetic variations in leukemic cells. Our results, which were obtained using paired samples collected during AML progression, provide valuable insights for identifying vulnerable targets in the AML metabolome and developing new treatment strategies.
Collapse
|
25
|
Stergiou IE, Kapsogeorgou EK. Autophagy and Metabolism in Normal and Malignant Hematopoiesis. Int J Mol Sci 2021; 22:8540. [PMID: 34445246 PMCID: PMC8395194 DOI: 10.3390/ijms22168540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
26
|
From the (Epi)Genome to Metabolism and Vice Versa; Examples from Hematologic Malignancy. Int J Mol Sci 2021; 22:ijms22126321. [PMID: 34204821 PMCID: PMC8231625 DOI: 10.3390/ijms22126321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Hematologic malignancies comprise a heterogeneous group of neoplasms arising from hematopoietic cells or their precursors and most commonly presenting as leukemias, lymphomas, and myelomas. Genetic analyses have uncovered recurrent mutations which initiate or accumulate in the course of malignant transformation, as they provide selective growth advantage to the cell. These include mutations in genes encoding transcription factors and epigenetic regulators of metabolic genes, as well as genes encoding key metabolic enzymes. The resulting alterations contribute to the extensive metabolic reprogramming characterizing the transformed cell, supporting its increased biosynthetic needs and allowing it to withstand the metabolic stress that arises as a consequence of increased metabolic rates and changes in its microenvironment. Interestingly, this cross-talk is bidirectional, as metabolites also signal back to the nucleus and, via their widespread effects on modulating epigenetic modifications, shape the chromatin landscape and the transcriptional programs of the cell. In this article, we provide an overview of the main metabolic changes and relevant genetic alterations that characterize malignant hematopoiesis and discuss how, in turn, metabolites regulate epigenetic events during this process. The aim is to illustrate the intricate interrelationship between the genome (and epigenome) and metabolism and its relevance to hematologic malignancy.
Collapse
|
27
|
A novel fusion protein TBLR1-RARα acts as an oncogene to induce murine promyelocytic leukemia: identification and treatment strategies. Cell Death Dis 2021; 12:607. [PMID: 34117212 PMCID: PMC8196070 DOI: 10.1038/s41419-021-03889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and its fusion partners. For decades, the advent of all-trans retinoic acid (ATRA) synergized with arsenic trioxide (As2O3) has turned most APL from highly fatal to highly curable. TBLR1-RARα (TR) is the tenth fusion gene of APL identified in our previous study, with its oncogenic role in the pathogenesis of APL not wholly unraveled. In this study, we found the expression of TR in mouse hematopoietic progenitors induces blockade of differentiation with enhanced proliferative capacity in vitro. A novel murine transplantable leukemia model was then established by expressing TR fusion gene in lineage-negative bone marrow mononuclear cells. Characteristics of primary TR mice revealed a rapid onset of aggressive leukemia with bleeding diathesis, which recapitulates human APL more accurately than other models. Despite the in vitro sensitivity to ATRA-induced cell differentiation, neither ATRA monotherapy nor combination with As2O3 confers survival benefit to TR mice, consistent with poor clinical outcome of APL patients with TR fusion gene. Based on histone deacetylation phenotypes implied by bioinformatic analysis, HDAC inhibitors demonstrated significant survival superiority in the survival of TR mice, yielding insights into clinical efficacy against rare types of APL.
Collapse
|
28
|
Dembitz V, Gallipoli P. The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia. Front Oncol 2021; 11:665291. [PMID: 34094959 PMCID: PMC8170311 DOI: 10.3389/fonc.2021.665291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite significant recent advances in our understanding of the biology and genetics of acute myeloid leukemia (AML), current AML therapies are mostly based on a backbone of standard chemotherapy which has remained mostly unchanged for over 20 years. Several novel therapies, mostly targeting neomorphic/activating recurrent mutations found in AML patients, have only recently been approved following encouraging results, thus providing the first evidence of a more precise and personalized approach to AML therapy. Rewired metabolism has been described as a hallmark of cancer and substantial evidence of its role in AML establishment and maintenance has been recently accrued in preclinical models. Interestingly, unique metabolic changes are generated by specific AML recurrent mutations or in response to diverse AML therapies, thus creating actionable metabolic vulnerabilities in specific patient groups. In this review we will discuss the current evidence supporting a role for rewired metabolism in AML pathogenesis and how these metabolic changes can be leveraged to develop novel personalized therapies.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|