1
|
Mack A, Vanden Hoek T, Du X. Thromboinflammation and the Role of Platelets. Arterioscler Thromb Vasc Biol 2024; 44:1175-1180. [PMID: 38776384 DOI: 10.1161/atvbaha.124.320149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- Andrew Mack
- Department of Pharmacology and Regenerative Medicine (A.M., X.D.), University of Illinois, Chicago
| | - Terry Vanden Hoek
- Department of Emergency Medicine (T.V.H.), University of Illinois, Chicago
| | - Xiaoping Du
- Department of Pharmacology and Regenerative Medicine (A.M., X.D.), University of Illinois, Chicago
| |
Collapse
|
2
|
Juffermans NP, Gözden T, Brohi K, Davenport R, Acker JP, Reade MC, Maegele M, Neal MD, Spinella PC. Transforming research to improve therapies for trauma in the twenty-first century. Crit Care 2024; 28:45. [PMID: 38350971 PMCID: PMC10865682 DOI: 10.1186/s13054-024-04805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Improvements have been made in optimizing initial care of trauma patients, both in prehospital systems as well as in the emergency department, and these have also favorably affected longer term outcomes. However, as specific treatments for bleeding are largely lacking, many patients continue to die from hemorrhage. Also, major knowledge gaps remain on the impact of tissue injury on the host immune and coagulation response, which hampers the development of interventions to treat or prevent organ failure, thrombosis, infections or other complications of trauma. Thereby, trauma remains a challenge for intensivists. This review describes the most pressing research questions in trauma, as well as new approaches to trauma research, with the aim to bring improved therapies to the bedside within the twenty-first century.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Tarik Gözden
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Ross Davenport
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Jason P Acker
- Canadian Blood Services, Innovation and Portfolio Management, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael C Reade
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Marc Maegele
- Department of Trauma and Orthopedic Surgery Cologne-Merheim Medical Center Institute of Research, Operative Medicine University Witten-Herdecke, Cologne, Germany
| | - Matthew D Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip C Spinella
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Moore SA, Rollins-Raval MA, Gillette JM, Kiss JE, Triulzi DJ, Yazer MH, Paul JS, Leeper CM, Neal MD, Raval JS. Therapeutic plasma exchange is feasible and tolerable in severely injured patients with trauma-induced coagulopathy. Trauma Surg Acute Care Open 2024; 9:e001126. [PMID: 38196934 PMCID: PMC10773431 DOI: 10.1136/tsaco-2023-001126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 01/11/2024] Open
Abstract
Objectives Trauma-induced coagulopathy (TIC) occurs in a subset of severely injured trauma patients. Despite having achieved surgical hemostasis, these individuals can have persistent bleeding, clotting, or both in conjunction with deranged coagulation parameters and typically require transfusion support with plasma, platelets, and/or cryoprecipitate. Due to the multifactorial nature of TIC, targeted interventions usually do not have significant clinical benefits. Therapeutic plasma exchange (TPE) is a non-specific modality of removing and replacing a patient's plasma in a euvolemic manner that can temporarily normalize coagulation parameters and remove deleterious substances, and may be beneficial in such patients with TIC. Methods In a prospective case series, TPE was performed in severely injured trauma patients diagnosed with TIC and transfusion requirement. These individuals all underwent a series of at least 3 TPE procedures performed once daily with plasma as the exclusive replacement fluid. Demographic, injury, laboratory, TPE, and outcome data were collected and analyzed. Results In total, 7 patients received 23 TPE procedures. All patients had marked improvements in routine coagulation parameters, platelet counts, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activities, inflammatory markers including interleukin-6 concentrations, and organ system injuries after completion of their TPE treatments. All-cause mortality rates at 1 day, 7 days, and 30 days were 0%, 0%, and 43%, respectively, and all patients for whom TPE was initiated within 24 hours after injury survived to the 30-day timepoint. Surgical, critical care, and apheresis nursing personnel who were surveyed were universally positive about the utilization of TPE in this patient population. These procedures were tolerated well with the most common adverse event being laboratory-diagnosed hypocalcemia. Conclusion TPE is feasible and tolerable in severely injured trauma patients with TIC. However, many questions remain regarding the application of TPE for these critically ill patients including identification of the optimal injured population, ideal time of treatment initiation, appropriate treatment intensity, and concurrent use of adjunctive treatments. Level of evidence Level V.
Collapse
Affiliation(s)
- Sarah A Moore
- Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marian A Rollins-Raval
- Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jennifer M Gillette
- Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph E Kiss
- Medicine, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Darrell J Triulzi
- Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Mark H Yazer
- Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Jasmeet S Paul
- Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Matthew D Neal
- Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jay S Raval
- Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Barton JC, Anderson C, Miranda FZ, Kelley R, Kremer Hovinga JA, Terrell D, Vesely SK, George JN, Muia J. Cattle-FRETS71, a novel fluorogenic substrate with broad applicability for characterizing ADAMTS13 properties and function. J Thromb Haemost 2023; 21:3393-3401. [PMID: 37633642 PMCID: PMC10840809 DOI: 10.1016/j.jtha.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Current ADAMTS13 activity assays are important for diagnosing thrombotic thrombocytopenic purpura (TTP) but are unreliable to assay ADAMTS13 activity in animal models. The Cattle-FRETS71 assay is capable of detecting ADAMTS13 activity in plasma from multiple animal species, making it a potentially useful reagent at all stages of clinical research. The performance of Cattle-FRETS71 in TTP diagnosis is not yet known. OBJECTIVES We evaluated the performance of the Cattle-FRETS71 substrate against the human FRETS-rVWF71 and the FRETS-VWF73 commercial substrates in human plasma and serum samples to validate its utility in diagnosing TTP in patients. METHODS Internal validation was performed using heparinized plasma samples (n = 81). External validation was a blinded study using serum samples from the Oklahoma TTP Registry (n = 118, collected 2004-2014) that had been initially assayed by FRETS-VWF73 within 1 year of collection. Additional validation was performed with citrated plasma samples with variable ADAMTS13 activities (n = 32) that were analyzed by FRETS-VWF73. RESULTS There was an excellent correlation (r = 0.94) between Cattle-FRETS71 and FRETS-rVWF71 for assayed heparinized plasma samples (n = 81). Assay results between Cattle-FRETS71 and FRETS-VWF73 of Oklahoma TTP Registry serum samples (n = 118) and citrated plasma samples (n = 32) were comparably good (r = 0.81 and r = 0.85, respectively). CONCLUSION The Cattle-FRETS71 assay is comparable with other assays in quantifying ADAMTS13 activity in human plasma collected from patients with documented or suspected TTP. The versatility of Cattle-FRETS71, combined with its specificity and sensitivity, makes it a useful tool for the standardization of ADAMTS13 activity across basic and clinical research paradigms.
Collapse
Affiliation(s)
- John Cameron Barton
- Oklahoma State University College of Osteopathic Medicine, Tulsa, Oklahoma, USA
| | - Cooper Anderson
- Oklahoma State University College of Osteopathic Medicine at the Cherokee Nation, Tahlequah, Oklahoma, USA
| | - Frida Z Miranda
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Rachel Kelley
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Johanna A Kremer Hovinga
- Department of Hematology and Central Hematological Laboratory, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deirdra Terrell
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sara K Vesely
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James N George
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Muia
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA.
| |
Collapse
|
5
|
Van Meerbeeck X, Janssen L, Vleut R, Verdonck P, Gadisseur A, De Paep R, Verbrugghe W, Jorens P. Thrombotic microangiopathy after traumatic brain injury: A case report and review of the literature. Clin Case Rep 2023; 11:e7838. [PMID: 37692157 PMCID: PMC10491750 DOI: 10.1002/ccr3.7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Key Clinical Message This case report supports that trauma can rarely cause thrombotic microangiopathy (TMA). Early recognition is important due to a high mortality of untreated TMA, but diagnosis can be delayed by attributing lab abnormalities as due to blood loss. Abstract Major trauma can provoke coagulopathy, ranging from hypo- to hypercoagulation. Thrombotic microangiopathy (TMA), characterized by hemolytic anemia, renal failure, thrombocytopenia, and intravascular hemolysis, results in bleeding tendency but also microvascular thrombosis. We report a rare case of isolated traumatic brain injury leading to TMA treated with plasmapheresis.
Collapse
Affiliation(s)
- Xavier Van Meerbeeck
- Department of Intensive Care MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Leen Janssen
- Department of Intensive Care MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Rowena Vleut
- Department of NephrologyAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Philip Verdonck
- Department of Emergency MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Alain Gadisseur
- Department of HematologyAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Rudi De Paep
- Department of Intensive Care MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Walter Verbrugghe
- Department of Intensive Care MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| | - Philippe Jorens
- Department of Intensive Care MedicineAntwerp University Hospital, University of AntwerpEdegemBelgium
| |
Collapse
|
6
|
Zeineddin A, Wu F, Dong JF, Vesselinov R, Neal MD, Corash L, Pati S, Kozar RA. Early lyophilized cryoprecipitate enhances the ADAMTS13/VWF ratio to reduce systemic endotheliopathy and lessen lung injury in a mouse multiple-trauma hemorrhage model. J Trauma Acute Care Surg 2023; 95:S137-S143. [PMID: 37211640 PMCID: PMC10389395 DOI: 10.1097/ta.0000000000004065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Recent studies in severely injured patients suggest an important role of von Willebrand Factor (VWF) and ADAMTS13 in the endotheliopathy of trauma (EoT). We hypothesized that the early use of cryoprecipitate would be effective as an endothelial protector by supplementing physiologic VWF and ADAMTS13 to reverse the EoT. We tested a pathogen-reduced lyophilized cryoprecipitate (LPRC) that could expedite the early administration of cryoprecipitate in the battlefield. METHODS A mouse multiple-trauma model with uncontrolled hemorrhage (UCH) from liver injury was utilized followed by hypotensive resuscitation (mean arterial pressure, 55-60) × 3 hours with lactated Ringer's (LR), fresh frozen plasma (FFP), conventional pathogen-reduced cryoprecipitate (CC), and LPRC. Blood was collected for measurement of syndecan-1, VWF, and ADAMTS13 by ELISA. Lungs were stained for histopathologic injury and syndecan-1 and bronchial alveolar lavage (BAL) fluid harvested for protein as an indicator of permeability. Statistical analysis was by ANOVA followed by Bonferroni correction. RESULTS Following multiple trauma and UCH, blood loss was similar across groups. Mean volume of resuscitation was higher in the LR group compared with the other resuscitation groups. Lung histopathologic injury, syndecan-1 immunostaining and BAL protein were higher with LR compared with resuscitation with FFP and CC, while LPRC further reduced BAL compared with FFP and CC. The ADAMTS13/VWF ratio was significantly lower in LR but improved with FFP and CC, comparable to shams while LPRC further increased this ratio. CONCLUSION The protective effects of CC and LPRC were comparable to FFP in ameliorating the EoT in our murine multiple trauma and UCH model. Lyophilized cryoprecipitate may also provide additional benefit by enhancing the ADAMTS13/VWF ratio. These data provide evidence of the safety and efficacy of LPRC and warrants further investigation for its potential application in military settings once approved for human administration.
Collapse
|
7
|
Patel NM, Collotta D, Aimaretti E, Ferreira Alves G, Kröller S, Coldewey SM, Collino M, Thiemermann C. Inhibition of the JAK/STAT Pathway With Baricitinib Reduces the Multiple Organ Dysfunction Caused by Hemorrhagic Shock in Rats. Ann Surg 2023; 278:e137-e146. [PMID: 35837955 PMCID: PMC10249600 DOI: 10.1097/sla.0000000000005571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate (a) the effects of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway inhibitor (baricitinib) on the multiple organ dysfunction syndrome (MODS) in a rat model of hemorrhagic shock (HS) and (b) whether treatment with baricitinib attenuates the activation of JAK/STAT, NF-κB, and NLRP3 caused by HS. BACKGROUND Posttraumatic MODS, which is in part due to excessive systemic inflammation, is associated with high morbidity and mortality. The JAK/STAT pathway is a regulator of numerous growth factor and cytokine receptors and, hence, is considered a potential master regulator of many inflammatory signaling processes. However, its role in trauma-hemorrhage is unknown. METHODS An acute HS rat model was performed to determine the effect of baricitinib on MODS. The activation of JAK/STAT, NF-κB, and NLRP3 pathways were analyzed by western blotting in the kidney and liver. RESULTS We demonstrate here for the first time that treatment with baricitinib (during resuscitation following severe hemorrhage) attenuates the organ injury and dysfunction and the activation of JAK/STAT, NF-κB, and NLRP3 pathways caused by HS in the rat. CONCLUSIONS Our results point to a role of the JAK/STAT pathway in the pathophysiology of the organ injury and dysfunction caused by trauma/hemorrhage and indicate that JAK inhibitors, such as baricitinib, may be repurposed for the treatment of the MODS after trauma and/or hemorrhage.
Collapse
Affiliation(s)
- Nikita M. Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Debora Collotta
- Department of Neurosciences “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Ho JW, Quan C, Gauger MA, Alam HB, Li Y. ROLE OF PEPTIDYLARGININE DEIMINASE AND NEUTROPHIL EXTRACELLULAR TRAPS IN INJURIES: FUTURE NOVEL DIAGNOSTICS AND THERAPEUTIC TARGETS. Shock 2023; 59:247-255. [PMID: 36597759 PMCID: PMC9957939 DOI: 10.1097/shk.0000000000002052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Injuries lead to an early systemic inflammatory state with innate immune system activation. Neutrophil extracellular traps (NETs) are a complex of chromatin and proteins released from the activated neutrophils. Although initially described as a response to bacterial infections, NETs have also been identified in the sterile postinjury inflammatory state. Peptidylarginine deiminases (PADs) are a group of isoenzymes that catalyze the conversion of arginine to citrulline, termed citrullination or deimination. PAD2 and PAD4 have been demonstrated to play a role in NET formation through citrullinated histone 3. PAD2 and PAD4 have a variety of substrates with variable organ distribution. Preclinical and clinical studies have evaluated the role of PADs and NETs in major trauma, hemorrhage, burns, and traumatic brain injury. Neutrophil extracellular trap formation and PAD activation have been shown to contribute to the postinjury inflammatory state leading to a detrimental effect on organ systems. This review describes our current understanding of the role of PAD and NET formation following injury and burn. This is a new field of study, and the emerging data appear promising for the future development of targeted biomarkers and therapies in trauma.
Collapse
Affiliation(s)
- Jessie W. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Chao Quan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Megan A. Gauger
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
9
|
Song Y, Liu Q, Zhang Y, Zhang H, Li B. Clinical Efficacy of Medical Dextrose Tincture Liquid in the Treatment of Facial Photoaging. Dermatol Pract Concept 2023; 13:dpc.1301a15. [PMID: 36892373 PMCID: PMC9946104 DOI: 10.5826/dpc.1301a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Exogenous aging mainly refers to photo-aging, which is caused by environmental factors including ultraviolet exposure. Dextran is a homopolysaccharide composed of glucose as monosaccharide, and glucose units are connected by glycosidic bonds. OBJECTIVES The purpose of this study was to explore the clinical efficacy of medical dextrose tincture liquid (medical dextrose tincture) in the treatment of facial photoaging. METHODS Thirty-four volunteers were included in the randomized double-blind study. According to the random number table method, the subjects were randomized into control and treatment groups. The subjects in the control and treatment groups were treated with medical hyaluronic acid gel and medical dextrose tincture, respectively. They received mesotherapy therapy three times with an interval of 28 days between treatments. Video image acquisition was performed before treatment and 28 days after treatment. Skin moisture content, glossiness, heme content, collagen density, and elasticity were tested. The subjective evaluations of subjects and doctors before and after treatment were compared. RESULTS Compared with the pre-treatment baseline, medical dextran tincture significantly increased skin moisture retention, skin gloss, and skin collagen density (p<0.001). Additionally, the skin retraction time was significantly reduced, and the skin retraction time was also markedly decreased after treatment with medical dextran tincture (p<0.001). The effects of medical dextran tincture were more significant in comparison with medical hyaluronic acid gel (p<0.05). The subjective evaluation results of doctors showed that after 84 days of treatment, the overall skin photoaging score was significantly reduced (p<0.001). The subjective evaluation results of volunteers showed that the various skin problems of more than 50% of volunteers were improved after treatment. CONCLUSION Medical dextran tincture has obvious effects of moisturizing, increasing luster, improving skin redness, increasing skin collagen content and enhancing skin elasticity.
Collapse
Affiliation(s)
- Yuexing Song
- Department of Cosmetic Dermatology, Xi'an EVERCARE Medical Beauty Hospital, Xi'an, China
| | - Qiuhui Liu
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| | - Yihan Zhang
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| | - Huina Zhang
- Beijing Evercare Medical Technology Group Co., Ltd, Beijing, China
| | - Bin Li
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| |
Collapse
|
10
|
Dong JF, Zhang F, Zhang J. Detecting traumatic brain injury-induced coagulopathy: What we are testing and what we are not. J Trauma Acute Care Surg 2023; 94:S50-S55. [PMID: 35838367 PMCID: PMC9805481 DOI: 10.1097/ta.0000000000003748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Coagulopathy after traumatic brain injury (TBI) is common and has been closely associated with poor clinical outcomes for the affected patients. Traumatic brain injury-induced coagulopathy (TBI-IC) is consumptive in nature and evolves rapidly from an injury-induced hypercoagulable state. Traumatic brain injury-induced coagulopathy defined by laboratory tests is significantly more frequent than clinical coagulopathy, which often manifests as secondary, recurrent, or delayed intracranial or intracerebral hemorrhage. This disparity between laboratory and clinical coagulopathies has hindered progress in understanding the pathogenesis of TBI-IC and developing more accurate and predictive tests for this severe TBI complication. In this review, we discuss laboratory tests used in clinical and research studies to define TBI-IC, with specific emphasis on what the tests detect and what they do not. We also offer perspective on developing more accurate and predictive tests for this severe TBI complication.
Collapse
Affiliation(s)
- Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Fangyi Zhang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Institute of Neurology, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
DeYoung V, Singh K, Kretz CA. Mechanisms of ADAMTS13 regulation. J Thromb Haemost 2022; 20:2722-2732. [PMID: 36074019 PMCID: PMC9826392 DOI: 10.1111/jth.15873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Recombinant ADAMTS13 is currently undergoing clinical trials as a treatment for hereditary thrombotic thrombocytopenic purpura, a lethal microvascular condition resulting from ADAMTS13 deficiency. Preclinical studies have also demonstrated its efficacy in treating arterial thrombosis and inflammation without causing bleeding, suggesting that recombinant ADAMTS13 may have broad applicability as an antithrombotic agent. Despite this progress, we currently do not understand the mechanisms that regulate ADAMTS13 activity in vivo. ADAMTS13 evades canonical means of protease regulation because it is secreted as an active enzyme and has a long half-life in circulation, suggesting that it is not inhibited by natural protease inhibitors. Although shear can spatially and temporally activate von Willebrand factor to capture circulating platelets, it is also required for cleavage by ADAMTS13. Therefore, spatial and temporal regulation of ADAMTS13 activity may be required to stabilize von Willebrand factor-platelet strings at sites of vascular injury. This review outlines potential mechanisms that regulate ADAMTS13 in vivo including shear-dependency, local inactivation, and biochemical and structural regulation of substrate binding. Recently published structural data of ADAMTS13 is discussed, which may help to generate novel hypotheses for future research.
Collapse
Affiliation(s)
- Veronica DeYoung
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Kanwal Singh
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Colin A. Kretz
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| |
Collapse
|
12
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
13
|
Platelet Transfusion for Trauma Resuscitation. CURRENT TRAUMA REPORTS 2022. [DOI: 10.1007/s40719-022-00236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
To review the role of platelet transfusion in resuscitation for trauma, including normal platelet function and alterations in behavior following trauma, blood product transfusion ratios and the impact of platelet transfusion on platelet function, platelet function assays, risks of platelet transfusion and considerations for platelet storage, and potential adjunct therapies and synthetic platelets.
Recent Findings
Platelets are a critical component of clot formation and breakdown following injury, and in addition to these hemostatic properties, have a complex role in vascular homeostasis, inflammation, and immune function. Evidence supports that platelets are activated following trauma with several upregulated functions, but under conditions of severe injury and shock are found to be impaired in their hemostatic behaviors. Platelets should be transfused in balanced ratios with red blood cells and plasma during initial trauma resuscitation as this portends improved outcomes including survival. Multiple coagulation assays can be used for goal-directed resuscitation for traumatic hemorrhage; however, these assays each have drawbacks in terms of their ability to measure platelet function. While resuscitation with balanced transfusion ratios is supported by the literature, platelet transfusion carries its own risks such as bacterial infection and lung injury. Platelet supply is also limited, with resource-intensive storage requirements, making exploration of longer-term storage options and novel platelet-based therapeutics attractive. Future focus on a deeper understanding of the biology of platelets following trauma, and on optimization of novel platelet-based therapeutics to maintain hemostatic effects while improving availability should be pursued.
Summary
While platelet function is altered following trauma, platelets should be transfused in balanced ratios during initial resuscitation. Severe injury and shock can impair platelet function, which can persist for several days following the initial trauma. Assays to guide resuscitation following the initial period as well as storage techniques to extend platelet shelf life are important areas of investigation.
Collapse
|