1
|
Wang L, Wang J, Li J, Walz T, Coller BS. An αIIbβ3 monoclonal antibody traps a semiextended conformation and allosterically inhibits large ligand binding. Blood Adv 2024; 8:4398-4409. [PMID: 38968144 PMCID: PMC11375269 DOI: 10.1182/bloodadvances.2024013177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Monoclonal antibodies (mAbs) have provided valuable information regarding the structure and function of platelet αIIbβ3. Protein disulfide isomerase (PDI) has been implicated in αIIbβ3 activation and binds to thrombin-activated αIIbβ3. Using human platelets as the immunogen, we identified a new mAb (R21D10) that inhibits the binding of PDI to platelets activated with thrombin receptor-activating peptide (T6). R21D10 also partially inhibited T6-induced fibrinogen and PAC-1 binding to platelets, as well as T6- and adenosine 5'-diphosphate-induced platelet aggregation. Mutual competition experiments showed that R21D10 does not inhibit the binding of mAbs 10E5 (anti-αIIb cap domain) or 7E3 (anti-β3 β-I domain), and immunoblot studies indicated that R21D10 binds to β3. The dissociation of αIIbβ3 by EDTA had a minimal effect on R21D10 binding. Cryogenic electron microscopy of the αIIbβ3-R21D10 Fab complex revealed that R21D10 binds to the β3 integrin-epidermal growth factor 1 (I-EGF1) domain and traps an intermediate conformation of αIIbβ3 with semiextended leg domains. The binding of R21D10 produces a major structural change in the β3 I-EGF2 domain associated with a new interaction between the β3 I-EGF2 and αIIb thigh domains, which may prevent the swing-out motion of the β3 hybrid domain required for high-affinity ligand binding and protect αIIbβ3 from EDTA-induced dissociation. R21D10 partially reversed the ligand binding priming effect of eptifibatide, suggesting that it could convert the swung-out conformation into a semiextended conformation. We concluded that R21D10 inhibits ligand binding to αIIbβ3 via a unique allosteric mechanism, which may or may not be related to its inhibition of PDI binding.
Collapse
Affiliation(s)
- Lu Wang
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Jialing Wang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Jihong Li
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Barry S. Coller
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| |
Collapse
|
2
|
Aleman M, Arepally GM, Baglin T, Buitrago L, Davizon-Castillo P, Dayal S, Flick MJ, Gerber G, Hisada Y, Kolev K, O’Loghlen A, Rezaie AR, Sparkenbaugh EM, Stavrou EX, Ünlü B, Vercellotti GM. Coagulation and platelet biology at the intersection of health and disease: illustrated capsules of the 11th Symposium on Hemostasis at the University of North Carolina. Res Pract Thromb Haemost 2024; 8:102395. [PMID: 38699410 PMCID: PMC11063502 DOI: 10.1016/j.rpth.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 05/05/2024] Open
Abstract
The University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology. In keeping with the tradition of the conference, we expect novel cross-disciplinary collaborations to result from bringing together fundamental scientists and physician-scientists from different backgrounds and perspectives. The aim of these collaborations is to springboard the next generation of important advances in the field. This year's program was designed to discuss Coagulation and Platelet Biology at the Intersection of Health and Disease. The goal is to develop a better understanding of the pathophysiologic mechanisms leading to hemostatic and thrombotic disorders as this understanding is critical for the continued development of safe and efficacious therapeutics. Included in this review article are illustrated capsules provided by our speakers that highlight the main conclusions of the invited talks.
Collapse
Affiliation(s)
- Maria Aleman
- Blood Research Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gowthami M. Arepally
- Division of Hematology, Duke University Medical Center, Durham, North Carolina, USA
| | - Trevor Baglin
- Centessa Pharmaceuticals plc, Cheshire, United Kingdom
| | - Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| | - Pavel Davizon-Castillo
- Department of Pediatrics Hematology/Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Matthew J. Flick
- Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gloria Gerber
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohei Hisada
- Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alireza R. Rezaie
- Department of Biochemistry and Molecular Biology, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Erica M. Sparkenbaugh
- Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Evi X. Stavrou
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medicine Service, Section of Hematology-Oncology, Louise Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Betül Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Gandhi PS, Zivkovic M, Østergaard H, Bonde AC, Elm T, Løvgreen MN, Schluckebier G, Johansson E, Olsen OH, Olsen EHN, de Bus IA, Bloem K, Alskär O, Rea CJ, Bjørn SE, Schutgens RE, Sørensen B, Urbanus RT, Faber JH. A bispecific antibody approach for the potential prophylactic treatment of inherited bleeding disorders. NATURE CARDIOVASCULAR RESEARCH 2024; 3:166-185. [PMID: 39196196 PMCID: PMC11358003 DOI: 10.1038/s44161-023-00418-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/19/2023] [Indexed: 08/29/2024]
Abstract
Inherited bleeding disorders such as Glanzmann thrombasthenia (GT) lack prophylactic treatment options. As a result, serious bleeding episodes are treated acutely with blood product transfusions or frequent, repeated intravenous administration of recombinant activated coagulation factor VII (rFVIIa). Here we describe HMB-001, a bispecific antibody designed to bind and accumulate endogenous FVIIa and deliver it to sites of vascular injury by targeting it to the TREM (triggering receptor expressed on myeloid cells)-like transcript-1 (TLT-1) receptor that is selectively expressed on activated platelets. In healthy nonhuman primates, HMB-001 prolonged the half-life of endogenous FVIIa, resulting in its accumulation. Mouse bleeding studies confirmed antibody-mediated potentiation of FVIIa hemostatic activity by TLT-1 targeting. In ex vivo models of GT, HMB-001 localized FVIIa on activated platelets and potentiated fibrin-dependent platelet aggregation. Taken together, these results indicate that HMB-001 has the potential to offer subcutaneous prophylactic treatment to prevent bleeds in people with GT and other inherited bleeding disorders, with a low-frequency dosing regimen.
Collapse
Affiliation(s)
| | - Minka Zivkovic
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | | | | | | | | | | - Ole H Olsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Karien Bloem
- Sanquin Diagnostic Services, Amsterdam, Netherlands
| | | | | | | | - Roger E Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Rolf T Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | | |
Collapse
|
4
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
5
|
Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res Pract Thromb Haemost 2023; 7:100023. [PMID: 36760777 PMCID: PMC9903854 DOI: 10.1016/j.rpth.2022.100023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
A State of the Art lecture titled "Blood Clot Contraction: Mechanisms, Pathophysiology, and Disease" was presented at the International Society on Thrombosis and Haemostasis (ISTH) Congress in 2022. This was a systematic description of blood clot contraction or retraction, driven by activated platelets and causing compaction of the fibrin network along with compression of the embedded erythrocytes. The consequences of clot contraction include redistribution of the fibrin-platelet meshwork toward the periphery of the clot and condensation of erythrocytes in the core, followed by their deformation from the biconcave shape into polyhedral cells (polyhedrocytes). These structural signatures of contraction have been found in ex vivo thrombi derived from various locations, which indicated that clots undergo intravital contraction within the blood vessels. In hemostatic clots, tightly packed polyhedrocytes make a nearly impermeable seal that stems bleeding and is impaired in hemorrhagic disorders. In thrombosis, contraction facilitates the local blood flow by decreasing thrombus obstructiveness, reducing permeability, and changing susceptibility to fibrinolytic enzymes. However, in (pro)thrombotic conditions, continuous background platelet activation is followed by platelet exhaustion, refractoriness, and impaired intravital clot contraction, which is associated with weaker thrombi predisposed to embolization. Therefore, assays that detect imperfect in vitro clot contraction have potential diagnostic and prognostic values for imminent or ongoing thrombosis and thrombotic embolism. Collectively, the contraction of blood clots and thrombi is an underappreciated and understudied process that has a pathogenic and clinical significance in bleeding and thrombosis of various etiologies. Finally, we have summarized relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
7
|
Wang Z, Xu Y, Sun Y, Wang S, Dong M. Novel homozygous silent mutation of ITGB3 gene caused Glanzmann thrombasthenia. Front Pediatr 2022; 10:1062900. [PMID: 36704147 PMCID: PMC9871544 DOI: 10.3389/fped.2022.1062900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited disease characterized by mucocutaneous bleeding due to the abnormalities in quantity or quality of platelet membrane GP IIb (CD41) or GP IIIa (CD61). GP IIb and GP IIIa are encoded by the ITGA2B and ITGB3 genes, respectively. Herein, we described a 7-year-old Chinese boy of the consanguineous couple who was diagnosed with GT based on the typical clinical manifestations, absence of blood clot retraction and the reduced expression of CD41 and CD61 in platelets. A homozygous silent variant c.1431C > T (p. G477=) of the ITGB3 gene was identified by the Whole-exome sequencing and confirmed by Sanger sequencing. The variant was predicted to affect the splicing. RT-PCR and sequencing revealed that the variant caused a deletion of 95 base pairs and frameshift, and subsequently created a premature stop codon in exon 10 of ITGB3 (p. G477Afs*30). It was indicated that the variant c.1431C > T (p. G477=) of ITGB3 was the cause for Glanzmann thrombasthenia. Our findings expanded the mutation spectrum and provided the information for the genetic counseling, prenatal diagnosis and preimplantation genetic testing (PGT).
Collapse
Affiliation(s)
- Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Yixi Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Shuang Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| |
Collapse
|