1
|
Jaramillo S, Scherer M, Szu-Tu C, Beneyto-Calabuig S, Müller-Tidow C, Schlenk RF, Hundemer M, Velten L, Pabst C. Late-onset NPM1 mutation in a MYC-amplified relapsed/refractory acute myeloid leukemia patient treated with gemtuzumab ozogamicin and glasdegib. Haematologica 2024; 109:3811-3815. [PMID: 38813731 PMCID: PMC11532717 DOI: 10.3324/haematol.2023.284922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Sonia Jaramillo
- Department of Internal Medicine V, Heidelberg University Hospital
| | - Michael Scherer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona
| | - Chelsea Szu-Tu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona
| | - Sergi Beneyto-Calabuig
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Germany; Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg
| | - Richard F Schlenk
- Department of Internal Medicine V, Heidelberg University Hospital, Germany; NCT-Trial Center, National Center of Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center
| | - Michael Hundemer
- Department of Internal Medicine V, Heidelberg University Hospital
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona
| | - Caroline Pabst
- Department of Internal Medicine V, Heidelberg University Hospital, Germany; Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg.
| |
Collapse
|
2
|
Castaño-Díez S, Álamo JR, López-Guerra M, Gómez-Hernando M, Zugasti I, Jiménez-Vicente C, Guijarro F, López-Oreja I, Esteban D, Charry P, Torrecillas V, Mont-de Torres L, Cortés-Bullich A, Bataller Á, Guardia A, Munárriz D, Carcelero E, Riu G, Triguero A, Tovar N, Vela D, Beà S, Costa D, Colomer D, Rozman M, Esteve J, Díaz-Beyá M. Chronic myelomonocytic leukemia with NPM1 mutation or acute myeloid leukemia? Oncologist 2024:oyae246. [PMID: 39349391 DOI: 10.1093/oncolo/oyae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/20/2024] [Indexed: 10/02/2024] Open
Abstract
The 2022 WHO revision and the ICC classification have recently modified the diagnostic criteria for chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia. However, there is no consensus on whether CMML with NPM1 mutation (NPM1mut) should be diagnosed as AML. Nowadays, it is a subject of discussion because of its diagnostic and therapeutic implications. Therefore, we describe a case of a patient diagnosed with CMML NPM1mut and briefly review the literature to highlight the uncertainty about how to classify a CMML with NPM1 mutation. We emphasize the importance of a comprehensive molecular study, which is crucial to optimize the individualized treatment of patients, enabling them to access targeted therapies.
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
| | - José Ramón Álamo
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Gómez-Hernando
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Inés Zugasti
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Irene López-Oreja
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Paola Charry
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | | | | | | | - Álex Bataller
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Ares Guardia
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Munárriz
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Gisela Riu
- Pharmacy Service, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Triguero
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Natalia Tovar
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Dolors Vela
- Hematology Department, Hospital General de Granollers, Granollers, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Rozman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Marina Díaz-Beyá
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Badalona, Spain
| |
Collapse
|
3
|
Cai X, Liu Y, Li H, Que Y, Xiao M, Wang Y, Wang X, Li D. XPO1 inhibition displays anti-leukemia efficacy against DNMT3A-mutant acute myeloid leukemia via downregulating glutathione pathway. Ann Hematol 2024; 103:2311-2322. [PMID: 38519605 DOI: 10.1007/s00277-024-05706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Acute myeloid leukemia (AML) patients with DNA methyltransferase 3A (DNMT3A) mutation display poor prognosis, and targeted therapy is not available currently. Our previous study identified increased expression of Exportin1 (XPO1) in DNMT3AR882H AML patients. Therefore, we further investigated the therapeutic effect of XPO1 inhibition on DNMT3AR882H AML. Three types of DNMT3AR882H AML cell lines were generated, and XPO1 was significantly upregulated in all DNMT3AR882H cells compared with the wild-type (WT) cells. The XPO1 inhibitor selinexor displayed higher potential in the inhibition of proliferation, promotion of apoptosis, and blockage of the cell cycle in DNMT3AR882H cells than WT cells. Selinexor also significantly inhibited the proliferation of subcutaneous tumors in DNMT3AR882H AML model mice. Primary cells with DNMT3A mutations were more sensitive to selinexor in chemotherapy-naive AML patients. RNA sequencing of selinexor treated AML cells revealed that the majority of metabolic pathways were downregulated after selinexor treatment, with the most significant change in the glutathione metabolic pathway. Glutathione inhibitor L-Buthionine-(S, R)-sulfoximine (BSO) significantly enhanced the apoptosis-inducing effect of selinexor in DNMT3AWT/DNMT3AR882H AML cells. In conclusion, our work reveals that selinexor displays anti-leukemia efficacy against DNMT3AR882H AML via downregulating glutathione pathway. Combination of selinexor and BSO provides novel therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimei Que
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Schiroli G, Kartha V, Duarte FM, Kristiansen TA, Mayerhofer C, Shrestha R, Earl A, Hu Y, Tay T, Rhee C, Buenrostro JD, Scadden DT. Cell of origin epigenetic priming determines susceptibility to Tet2 mutation. Nat Commun 2024; 15:4325. [PMID: 38773071 PMCID: PMC11109152 DOI: 10.1038/s41467-024-48508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.
Collapse
Affiliation(s)
- Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Vinay Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Trine A Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Rojesh Shrestha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Mistry JJ, Young KA, Colom Díaz PA, Maestre IF, Levine RL, Trowbridge JJ. Mesenchymal Stromal Cell Senescence Induced by Dnmt3a -Mutant Hematopoietic Cells is a Targetable Mechanism Driving Clonal Hematopoiesis and Initiation of Hematologic Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587254. [PMID: 38585779 PMCID: PMC10996614 DOI: 10.1101/2024.03.28.587254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Clonal hematopoiesis (CH) can predispose to blood cancers due to enhanced fitness of mutant hematopoietic stem and progenitor cells (HSPCs), but the mechanisms driving this progression are not understood. We hypothesized that malignant progression is related to microenvironment-remodelling properties of CH-mutant HSPCs. Single-cell transcriptomic profiling of the bone marrow microenvironment in Dnmt3a R878H/+ mice revealed signatures of cellular senescence in mesenchymal stromal cells (MSCs). Dnmt3a R878H/+ HSPCs caused MSCs to upregulate the senescence markers SA-β-gal, BCL-2, BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo . This effect was cell contact-independent and can be replicated by IL-6 or TNFα, which are produced by Dnmt3a R878H/+ HSPCs. Depletion of senescent MSCs in vivo reduced the fitness of Dnmt3a R878H/+ hematopoietic cells and the progression of CH to myeloid neoplasms using a sequentially inducible Dnmt3a ; Npm1 -mutant model. Thus, Dnmt3a -mutant HSPCs reprogram their microenvironment via senescence induction, creating a self-reinforcing niche favoring fitness and malignant progression. Statement of Significance Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic stem and progenitor cells drives clonal hematopoiesis and initiation of hematologic malignancy.
Collapse
|
6
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
7
|
Wallace L, Obeng EA. Noncoding rules of survival: epigenetic regulation of normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1273046. [PMID: 38028538 PMCID: PMC10644717 DOI: 10.3389/fmolb.2023.1273046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Hematopoiesis is an essential process for organismal development and homeostasis. Epigenetic regulation of gene expression is critical for stem cell self-renewal and differentiation in normal hematopoiesis. Increasing evidence shows that disrupting the balance between self-renewal and cell fate decisions can give rise to hematological diseases such as bone marrow failure and leukemia. Consequently, next-generation sequencing studies have identified various aberrations in histone modifications, DNA methylation, RNA splicing, and RNA modifications in hematologic diseases. Favorable outcomes after targeting epigenetic regulators during disease states have further emphasized their importance in hematological malignancy. However, these targeted therapies are only effective in some patients, suggesting that further research is needed to decipher the complexity of epigenetic regulation during hematopoiesis. In this review, an update on the impact of the epigenome on normal hematopoiesis, disease initiation and progression, and current therapeutic advancements will be discussed.
Collapse
Affiliation(s)
| | - Esther A. Obeng
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
8
|
Falini B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am J Hematol 2023; 98:1452-1464. [PMID: 37317978 DOI: 10.1002/ajh.26989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional chaperone protein that is localized in the nucleolus but continuously shuttles between the nucleus and cytoplasm. NPM1 mutations occur in about one-third of AML, are AML-specific, usually involve exon 12 and are frequently associated with FLT3-ITD, DNMT3A, TET2, and IDH1/2 mutations. Because of its unique molecular and clinico-pathological features, NPM1-mutated AML is regarded as a distinct leukemia entity in both the International Consensus Classification (ICC) and the 5th edition of the World Health Organization (WHO) classification of myeloid neoplasms. All NPM1 mutations generate leukemic mutants that are aberrantly exported in the cytoplasm of the leukemic cells and are relevant to the pathogenesis of the disease. Here, we focus on recently identified functions of the NPM1 mutant at chromatin level and its relevance in driving HOX/MEIS gene expression. We also discuss yet controversial issues of the ICC/WHO classifications, including the biological and clinical significance of therapy-related NPM1-mutated AML and the relevance of blasts percentage in defining NPM1-mutated AML. Finally, we address the impact of new targeted therapies in NPM1-mutated AML with focus on CAR T cells directed against NPM1/HLA neoepitopes, as well as XPO1 and menin inhibitors.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
9
|
Othman J, Meggendorfer M, Tiacci E, Thiede C, Schlenk R, Dillon R, Stasik S, Venanzi A, Bertoli S, Delabesse E, Dumas PY, Pigneux A, Bidet A, Gilkes AF, Thomas I, Voso MT, Rambaldi A, Brunetti L, Perriello VM, Andresen V, Gjertsen BT, Martelli MP, Récher C, Röllig C, Bornhäuser M, Serve H, Müller-Tidow C, Baldus CD, Haferlach T, Russell N, Falini B. Overlapping features of therapy-related and de novo NPM1-mutated AML. Blood 2023; 141:1846-1857. [PMID: 36508705 DOI: 10.1182/blood.2022018108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.
Collapse
Affiliation(s)
- Jad Othman
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
| | | | - Enrico Tiacci
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Christian Thiede
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Richard Schlenk
- Department of Hematology/Oncology and NCT Trial Center, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg, Germany
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Sebastian Stasik
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Alessandra Venanzi
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Sarah Bertoli
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | | | - Arnaud Pigneux
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Audrey Bidet
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Amanda F Gilkes
- Department of Hematology and Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ian Thomas
- Department of Hematology and Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vincenzo M Perriello
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Vibeke Andresen
- Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Bjorn T Gjertsen
- Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Christian Récher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christoph Röllig
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Martin Bornhäuser
- University Hospital, Medical Clinic I, Dresden University of Technology, Dresden, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology/Oncology and NCT Trial Center, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Nigel Russell
- Department of Haematology, Guy's and St Thomas Hospitals NHS Trust, London, United Kingdom
- Nottingham University, Nottingham, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
11
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|