1
|
Daniel MY, Ternisien C, Castet S, Falaise C, D'Oiron R, Volot F, Itzhar N, Pan-Petesch B, Jeanpierre E, Paris C, Zawadzki C, Desvages M, Dupont A, Veyradier A, Repessé Y, Babuty A, Trossaërt M, Boisseau P, Denis CV, Lenting PJ, Goudemand J, Rauch A, Susen S. Type 2N von Willebrand disease: genotype drives different bleeding phenotypes and treatment needs. J Thromb Haemost 2024; 22:2702-2712. [PMID: 38992343 DOI: 10.1016/j.jtha.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Type 2 Normandy von Willebrand disease (VWD2N) is usually perceived as a mild bleeding disorder that can be treated with desmopressin (DDAVP). However, VWD2N patients can be compound heterozygous or homozygous for different variants, with p.Arg854Gln (R854Q) being the most frequent causative one. There are limited data about the impact of 2N variants on VWD2N phenotype and DDAVP response. OBJECTIVES This study aims to describe the phenotype of VWD2N, including DDAVP response, according to genotype. METHODS VWD2N patients with a complete genotype/phenotype characterization by the French reference center for VWD, including MCMDM-1VWD bleeding score, were eligible to be included in the study. Results of the DDAVP trial were also collected. RESULTS A total of 123 VWD2N patients from the French registry were included in this study. Results were stratified according to the presence (R854QPos, n = 114) or absence (R854QNeg, n = 9) of at least 1 R854Q allele. Three R854QPos subgroups were further individualized: patients homozygous (R854QHmz, n = 55), compound heterozygous for R854Q and a null allele (R854Q/3, n = 48), or compound heterozygous for R854Q and another 2N variant (R854Q/2N, n = 11). FVIII C levels were significantly lower in R854QNeg and R854Q/3 patients compared with R854QHmz ones (P < .001 and P < .0001, respectively). R854QNeg patients were diagnosed earlier due to bleeding symptoms and had a higher bleeding score than R854QPos patients (P < .001). In DDAVP trial, FVIII:C survival was lower in VWD type 2N than in type 1 patients. R854QPos patients had a heterogeneous DDAVP response, which was best predicted by baseline FVIII:C level. CONCLUSION The heterogeneous genetic background of VWD2N drives different bleeding phenotypes and response patterns to DDAVP, underlining the clinical relevance of DDAVP trial to identify patients potentially eligible to alternative therapeutic options.
Collapse
Affiliation(s)
- Mélanie Y Daniel
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France. https://twitter.com/DanielMelanieMD
| | | | - Sabine Castet
- Bordeaux University Hospital, Hemostasis Clinical Center, Bordeaux, France
| | - Céline Falaise
- Hemostasis Clinical Center, Marseille University Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Roseline D'Oiron
- Reference Center for Hemophilia and Rare Congenital Bleeding Disorders, Bicêtre Hospital Assistance Publique-Hôpitaux de Paris, University of Paris-Saclay and Unité Mixte de Recherche_S1176, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France
| | - Fabienne Volot
- Hemostasis Clinical Center, Dijon University Hospital, Dijon, France
| | - Nathalie Itzhar
- Laboratory of Haemostasis, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Emmanuelle Jeanpierre
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Camille Paris
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | | | | | - Annabelle Dupont
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Agnès Veyradier
- Laboratory of Haemostasis, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yohann Repessé
- Laboratory and Clinical Hemostasis, Caen University Hospital, Caen, France
| | - Antoine Babuty
- Haemostasis Clinical Center, Nantes University Hospital, Nantes, France
| | - Marc Trossaërt
- Haemostasis Clinical Center, Nantes University Hospital, Nantes, France
| | - Pierre Boisseau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Cécile V Denis
- Hémostase Inflammation Thrombose U1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Hémostase Inflammation Thrombose U1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jenny Goudemand
- Hematology and Transfusion, Lille University Hospital, Lille, France
| | - Antoine Rauch
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Sophie Susen
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France.
| |
Collapse
|
2
|
Seidizadeh O, Baronciani L, Lillicrap D, Peyvandi F. Application of genetic testing for the diagnosis of von Willebrand disease. J Thromb Haemost 2024; 22:2115-2128. [PMID: 38762018 PMCID: PMC11548015 DOI: 10.1016/j.jtha.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
von Willebrand disease (VWD) is the most frequent inherited bleeding disorder, with an estimated symptomatic prevalence of 1 per 1000 in the general population. VWD is characterized by defects in the quantity, quality, or multimeric structure of von Willebrand factor (VWF), a glycoprotein being hemostatically essential in circulation. VWD is classified into 3 principal types: low VWF/type 1 with partial quantitative deficiency of VWF, type 3 with virtual absence of VWF, and type 2 with functional abnormalities of VWF, being classified as 2A, 2B, 2M, and 2N. A new VWD type has been officially recognized by the ISTH SSC on von Willebrand factor which has also been discussed by the joint ASH/ISTH/NHF/WFH 2021 guidelines (ie, type 1C), indicating patients with quantitative deficiency due to an enhanced VWF clearance. With the advent of next-generation sequencing technologies, the process of genetic diagnosis has substantially changed and improved accuracy. Therefore, nowadays, patients with type 3 and severe type 1 VWD can benefit from genetic testing as much as type 2 VWD. Specifically, genetic testing can be used to confirm or differentiate a VWD diagnosis, as well as to provide genetic counseling. The focus of this manuscript is to discuss the current knowledge on VWD molecular pathophysiology and the application of genetic testing for VWD diagnosis.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy. https://twitter.com/OmidSeidi
| | - Luciano Baronciani
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/DavidLillicrap
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Seidizadeh O, Eikenboom JCJ, Denis CV, Flood VH, James P, Lenting PJ, Baronciani L, O'Donnell JS, Lillicrap D, Peyvandi F. von Willebrand disease. Nat Rev Dis Primers 2024; 10:51. [PMID: 39054329 DOI: 10.1038/s41572-024-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
von Willebrand disease (VWD) is the most common inherited bleeding disorder. The disorder is characterized by excessive mucocutaneous bleeding. The most common bleeding manifestations of this condition include nosebleeds, bruising, bleeding from minor wounds, menorrhagia or postpartum bleeding in women as well as bleeding after surgery. Other less frequent symptoms include gastrointestinal bleeding, haematomas or haemarthroses. VWD pathophysiology is complex and results from defects in von Willebrand factor (VWF) glycoprotein. Quantitative deficiencies are responsible for type 1 VWD with a partial decrease of VWF and type 3 with the complete absence of VWF. Qualitative abnormalities cause type 2 VWD, being further divided into types 2A, 2B, 2M and 2N. Although common, VWD is at risk of misdiagnosis, overdiagnosis and underdiagnosis owing to several factors, including complex diagnosis, variability of bleeding symptoms, presence of external variables (blood groups and other physiological modifiers such as exercise, thyroid hormones, oestrogens, and ageing), and lack of disease awareness among non-specialist health-care providers. Establishing the correct VWD diagnosis requires an array of specialized phenotypic assays and/or molecular genetic testing of the VWF gene. The management of bleeding includes increasing endogenous VWF levels with desmopressin or infusion of exogenous VWF concentrates (plasma-derived or recombinant). Fibrinolytic inhibitors, topical haemostatic agents and hormonal therapies are used as effective adjunctive measures.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jeroen C J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cécile V Denis
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Veronica H Flood
- Department of Paediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paula James
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Luciano Baronciani
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy.
| |
Collapse
|
4
|
Seidizadeh O, Baronciani L, Colpani P, Cozzi G, Ciavarella A, Siboni SM, Peyvandi F. Variant p.Tyr1584Cys: a frequent von Willebrand factor variant in search of von Willebrand disease. Res Pract Thromb Haemost 2024; 8:102451. [PMID: 38947547 PMCID: PMC11211879 DOI: 10.1016/j.rpth.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Omid Seidizadeh
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luciano Baronciani
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Colpani
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Cozzi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Ciavarella
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Maria Siboni
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Seidizadeh O, Mollica L, Zambarbieri S, Baronciani L, Cairo A, Colpani P, Cozzi G, Pagliari MT, Ciavarella A, Siboni SM, Peyvandi F. Type 2M/2A von Willebrand disease: a shared phenotype between type 2M and 2A. Blood Adv 2024; 8:1725-1736. [PMID: 38315875 PMCID: PMC10997909 DOI: 10.1182/bloodadvances.2024012626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
ABSTRACT Four variants have been continuously subjected to debate and received different von Willebrand disease (VWD) classifications: p.R1315L, p.R1315C, p.R1374H, and p.R1374C. We chose to comprehensively investigate these variants with full set of VWD tests, protein-modeling predictions and applying structural biology. Patients with p.R1315L, p.R1315C, p.R1374H, and p.R1374C were included. A group with type 2A and 2M was included to better understand similarities and differences. Patients were investigated for phenotypic assays and underlying disease mechanisms. We applied deep protein modeling predictions and structural biology to elucidate the causative effects of variants. Forty-three patients with these variants and 70 with 2A (n = 35) or 2M (n = 35) were studied. Patients with p.R1315L, p.R1374H, or p.R1374C showed a common phenotype between 2M and 2A using von Willebrand factor (VWF):GPIbR/VWF:Ag and VWF:CB/VWF:Ag ratios and VWF multimeric profile, whereas p.R1315C represented a type 2M phenotype. There was an overall reduced VWF synthesis or secretion in 2M and cases with p.R1315L, p.R1374H, and p.R1374C, but not in 2A. Reduced VWF survival was observed in most 2A (77%), 2M (80%), and all 40 cases with p.R1315L, p.R1374H, and p.R1374C. These were the only variants that fall at the interface between the A1-A2 domains. p.R1315L/C mutants induce more compactness and internal mobility, whereas p.R1374H/C display a more extended overall geometry. We propose a new classification of type 2M/2A for p.R1315L, p.R1374H, and p.R1374C because they share a common phenotype with 2M and 2A. Our structural analysis shows the unique location of these variants on the A1-A2 domains and their distinctive effect on VWF.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Serena Zambarbieri
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Paola Colpani
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Giovanna Cozzi
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Alessandro Ciavarella
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Simona M. Siboni
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
6
|
Seidizadeh O, Cairo A, Baronciani L, Valenti L, Peyvandi F. Population-based prevalence and mutational landscape of von Willebrand disease using large-scale genetic databases. NPJ Genom Med 2023; 8:31. [PMID: 37845247 PMCID: PMC10579253 DOI: 10.1038/s41525-023-00375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Von Willebrand disease (VWD) is a common bleeding disorder caused by mutations in the von Willebrand factor gene (VWF). The true global prevalence of VWD has not been accurately established. We estimated the worldwide and within-population prevalence of inherited VWD by analyzing exome and genome data of 141,456 individuals gathered by the genome Aggregation Database (gnomAD). We also extended our data deepening by mining the main databases containing VWF variants i.e., the Leiden Open Variation Database (LOVD) and the Human Gene Mutation Database (HGMD) with the goal to explore the global mutational spectrum of VWD. A total of 4,313 VWF variants were identified in the gnomAD population, of which 505 were predicted to be pathogenic or already reported to be associated with VWD. Among the 282,912 alleles analyzed, 31,785 were affected by the aforementioned variants. The global prevalence of dominant VWD in 1000 individuals was established to be 74 for type 1, 3 for 2A, 3 for 2B and 6 for 2M. The global prevalences for recessive VWD forms (type 2N and type 3) were 0.31 and 0.7 in 1000 individuals, respectively. This comprehensive analysis provided a global mutational landscape of VWF by means of 927 already reported variants in the HGMD and LOVD datasets and 287 novel pathogenic variants identified in the gnomAD. Our results reveal that there is a considerably higher than expected prevalence of putative disease alleles and variants associated with VWD and suggest that a large number of VWD patients are undiagnosed.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Colpani P, Baronciani L, Stufano F, Cozzi G, Boscarino M, Pagliari MT, Biguzzi E, Peyvandi F. A comparative study in patients with type 2 von Willebrand disease using 4 different platelet-dependent von Willebrand factor assays. Res Pract Thromb Haemost 2023; 7:100139. [PMID: 37215093 PMCID: PMC10192922 DOI: 10.1016/j.rpth.2023.100139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Background Several assays are now available to evaluate platelet-dependent von Willebrand factor (VWF) activity. Objective To report the results obtained using 4 different assays in patients with von Willebrand disease (VWD) carrying variants mainly in the A1 domain, which is critical for VWF binding to glycoprotein Ib (GPIb) and ristocetin. Methods We evaluated 4 different assays, 2 gain-of-function mutant GPIb binding (VWF:GPIbM) and 2 ristocetin cofactor (VWF:RCo) assays, in 76 patients with type 2 VWD. Patients and healthy controls were tested using VWF:GPIbM enzyme-linked immunosorbent assay (ELISA), VWF:GPIbM automated, VWF:RCo aggregometric, and VWF:RCo automated assays. Results There was a good correlation (Pearson's r>0.82) and agreement (Bland-Altman plots assessment) between the 4 assays, although several outliers existed among the type 2B without high-molecular-weight multimers (HMWM). The VWF activity/VWF:antigen ratios, calculated for each assay, were used to establish the percentage of a correct diagnosis of type 2 (ratio<0.60) in these patients: VWF:RCo aggregometric, 2A(100%), 2M(78%), 2M/2A(100%), 2B(68%); VWF:RCo automated, 2A(88%), 2M(89%), 2M/2A(100%), 2B(63%); VWF:GPIbM ELISA, 2A(96%), 2M(67%), 2M/2A(67%), 2B(0%); VWF:GPIbM automated, 2A(73%), 2M(44%), 2M/2A(75%), 2B(84%). In type 2B patients with HMWM, all assays gave a ratio ≥0.60. Conclusion The VWF:GPIbM-automated assay is the most effective to diagnose as type 2 the 2B variants, whereas the VWF:RCo assays are the most effective in detecting 2M and 2M/2A variants. The VWF:GPIbM ELISA greatly overestimates the activity of the type 2B patients lacking HMWM. In this study, the use of a VWF activity/VWF:antigen ratio cut-off of 0.70 halved the number of misdiagnosed patients.
Collapse
Affiliation(s)
- Paola Colpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Francesca Stufano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Giovanna Cozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Marco Boscarino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Eugenia Biguzzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Seidizadeh O, Baronciani L, Pagliari MT, Cozzi G, Colpani P, Cairo A, Siboni SM, Biguzzi E, Peyvandi F. Genetic determinants of enhanced von Willebrand factor clearance from plasma. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1112-1122. [PMID: 36754679 DOI: 10.1016/j.jtha.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Enhanced von Willebrand factor (VWF) clearance from plasma is associated with von Willebrand disease (VWD). However, the genetic background of this disease mechanism is not well defined. OBJECTIVE To determine VWF variants that are associated with reduced VWF survival. METHODS Two hundred fifty-four patients with VWD (type 1 = 50 and type 2 = 204) were investigated, and the results were compared with 120 healthy controls. The patients were comprehensively characterized for phenotypic and genetic features. The ratio of VWF propeptide (VWFpp)/VWF antigen (VWFpp ratio) was used to establish in each patient the VWF clearance state. RESULTS Out of 92 variants associated with type 1 (7 were novel) and type 2 VWD, 19 had a VWFpp ratio ranging from 1.7 to 2.2, 24 had a VWFpp ratio between 2.3 and 2.9, and 24 variants had a ratio of ≥3. The VWFpp median ratio in healthy controls was 0.98 (0.55-1.6) so that a cut-off value of >1.6 was considered an indicator of accelerated VWF clearance from plasma. An enhanced VWF clearance was observed in 34% of type 1 cases, 100% of type 1 Vicenza cases, 81% of 2A cases, 77% of 2B cases, 88% of 2M cases, and 36% of 2N cases. CONCLUSIONS An accelerated VWF clearance was found in most patients with type 2A, 2B, and 2M VWD, with a lower proportion of type 1 and 2N. Sixty-seven different variants alone or in combination with other variants were associated with an increased VWFpp ratio. The variants with the highest VWFpp ratio were mostly located in the D3-A1 VWF domains.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Giovanna Cozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Paola Colpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Simona Maria Siboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Eugenia Biguzzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy.
| |
Collapse
|