1
|
Chen RH, Burke A, Cho JG, Alffenaar JW, Davies Forsman L. New Oxazolidinones for Tuberculosis: Are Novel Treatments on the Horizon? Pharmaceutics 2024; 16:818. [PMID: 38931939 PMCID: PMC11207443 DOI: 10.3390/pharmaceutics16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens.
Collapse
Affiliation(s)
- Ricky Hao Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Andrew Burke
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia;
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Jin-Gun Cho
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, NSW 2145, Australia;
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Lina Davies Forsman
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Infectious Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, SE-171 76 Stockholm, Sweden
| |
Collapse
|
2
|
Xu Q, Sang Y, Gao A, Li L. The effects of drug-drug interaction on linezolid pharmacokinetics: A systematic review. Eur J Clin Pharmacol 2024; 80:785-795. [PMID: 38421436 DOI: 10.1007/s00228-024-03652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Linezolid is a commonly used antibiotic in the clinical treatment of gram-positive bacterial infections. The impacts of drug interactions on the pharmacokinetics of linezolid are often overlooked. This manuscript aims to review the medications that affect the pharmacokinetics of linezolid. METHODS In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we queried the PubMed, Embase, and Cochrane Library for publications from database establishment to November 3, 2023, using the search terms: "Linezolid" and "interaction," or "interact," or "drug-drug interaction," or "co-treatment," or "cotreatment," or "combined," or "combination." RESULTS A total of 24 articles were included. Among the reported medication interactions, rifampicin, levothyroxine, venlafaxine, and phenobarbital could reduce the concentration of linezolid; clarithromycin, digoxin, cyclosporine, proton pump inhibitors, and amiodarone could increase the concentration of linezolid, while aztreonam, phenylpropanolamine, dextromethorphan, antioxidant vitamins, and magnesium-containing antacids had no significant effects on linezolid pharmacokinetics. The ratio of mean (ROM) of linezolid AUC in co-treatment with rifampicin to monotherapy was 0.67 (95%CI 0.58-0.77) and 0.63 (95%CI 0.43-0.91), respectively, in 2 studies, and co-treatment with 500 mg clarithromycin to monotherapy was 1.81 (95%CI 1.49-2.13). CONCLUSIONS This systematic review found that numerous drugs have an impact on the pharmacokinetics of linezolid, and the purported main mechanism may be that linezolid is the substrate of P-glycoprotein. In clinical practice, it is prudent to pay attention to the changes in linezolid pharmacokinetics caused by interactions. Conducting therapeutic drug monitoring (TDM) is beneficial to improve efficacy and reduce adverse reactions of linezolid.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, China
| | - Yanlei Sang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Gao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, China.
| |
Collapse
|
3
|
Marriott DJE, Cattaneo D. Why Product Information Should not be Set in Stone: Lessons from a Decade of Linezolid Therapeutic Drug Monitoring: An Opinion Paper. Ther Drug Monit 2023; 45:209-216. [PMID: 36920503 DOI: 10.1097/ftd.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia; and
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| |
Collapse
|
4
|
Jones AJ, Mathad JS, Dooley KE, Eke AC. Evidence for Implementation: Management of TB in HIV and Pregnancy. Curr HIV/AIDS Rep 2022; 19:455-470. [PMID: 36308580 PMCID: PMC9617238 DOI: 10.1007/s11904-022-00641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Pregnant people living with HIV (PLWH) are at especially high risk for progression from latent tuberculosis infection (LTBI) to active tuberculosis (TB) disease. Among pregnant PLWH, concurrent TB increases the risk of complications such as preeclampsia, intrauterine fetal-growth restriction, low birth weight, preterm-delivery, perinatal transmission of HIV, and admission to the neonatal intensive care unit. The grave impact of superimposed TB disease on maternal morbidity and mortality among PLWH necessitates clear guidelines for concomitant therapy and an understanding of the pharmacokinetics (PK) and potential drug-drug interactions (DDIs) between antitubercular (anti-TB) agents and antiretroviral therapy (ART) in pregnancy. RECENT FINDINGS This review discusses the currently available evidence on the use of anti-TB agents in pregnant PLWH on ART. Pharmacokinetic and safety studies of anti-TB agents during pregnancy and postpartum are limited, and available data on second-line and newer anti-TB agents used in pregnancy suggest that several research gaps exist. DDIs between ART and anti-TB agents can decrease plasma concentration of ART, with the potential for perinatal transmission of HIV. Current recommendations for the treatment of LTBI, drug-susceptible TB, and multidrug-resistant TB (MDR-TB) are derived from observational studies and case reports in pregnant PLWH. While the use of isoniazid, rifamycins, and ethambutol in pregnancy and their DDIs with various ARTs are well-characterized, there is limited data on the use of pyrazinamide and several new and second-line antitubercular drugs in pregnant PLWH. Further research into treatment outcomes, PK, and safety data for anti-TB agent use during pregnancy and postpartum is urgently needed.
Collapse
Affiliation(s)
- Amanda J Jones
- Department of Obstetrics & Gynecology, Christiana Care Health Services, 4755 Ogletown Stanton Road, Newark, DE, 19713, USA
| | - Jyoti S Mathad
- Center for Global Health, Department of Medicine and Obstetrics & Gynecology, Weill Cornell Medicine, 402 E 67th Street, 2nd floor, New York, NY, 10021, USA
| | - Kelly E Dooley
- Division of Clinical Pharmacology & Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, 21287, USA
| | - Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 228, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Lin B, Hu Y, Xu P, Xu T, Chen C, He L, Zhou M, Chen Z, Zhang C, Yu X, Fang L, Zhu J, Ji Y, Lin Q, Cao H, Dai Y, Lu X, Shi C, Li L, Wang C, Li X, Fang Q, Miao J, Zhu Z, Lin G, Zhan H, Lv S, Zhu Y, Cai X, Ying Y, Chen M, Xu Q, Zhang Y, Xu Y, Federico P, Jiang S, Dai H. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front Public Health 2022; 10:967311. [PMID: 36033811 PMCID: PMC9399604 DOI: 10.3389/fpubh.2022.967311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023] Open
Abstract
Linezolid is an oxazolidinone antibacterial drug, and its therapeutic drug monitoring and individualized treatment have been challenged since its approval. With the in-depth clinical research of linezolid, we have changed our attitude toward its therapeutic drug monitoring and our view of individualized treatment. On the basis of summarizing the existing clinical studies, and based on the practical experience of each expert in their respective professional fields, we have formed this expert consensus. Our team of specialists is a multidisciplinary team that includes pharmacotherapists, clinical pharmacology specialists, critical care medicine specialists, respiratory specialists, infectious disease specialists, emergency medicine specialists and more. We are committed to the safe and effective use of linezolid in patients in need, and the promotion of its therapeutic drug monitoring.
Collapse
Affiliation(s)
- Bin Lin
- Department of Pharmacy, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China,Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
| | - Yangmin Hu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Tao Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Chunyan Chen
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Le He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Zhangzhang Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junfeng Zhu
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanlan Ji
- Department of Pharmacy, Deqing People's Hospital, Huzhou, China
| | - Qun Lin
- Department of Pharmacy, Tiantai People's Hospital, Taizhou, China
| | - Hengbin Cao
- Department of Clinical Pharmacy, Huzhou Central Hospital, Huzhou, China
| | - Youqin Dai
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaoyan Lu
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Changcheng Shi
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Changjiang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xumei Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiongyan Fang
- Department of Pharmacy, Zhoushan Hospital, Zhoushan, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haichao Zhan
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shiwen Lv
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yalan Zhu
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xinjun Cai
- Department of Pharmacy, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meng Chen
- Department of Pharmacy, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiong Xu
- Department of Pharmacy, Putuo Hospital, Zhoushan, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Pea Federico
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy,SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Saiping Jiang
- Department of Clinical Pharmacy, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Saiping Jiang
| | - Haibin Dai
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China,Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Haibin Dai
| |
Collapse
|
6
|
Obach RS. Linezolid Metabolism Is Catalyzed by Cytochrome P450 2J2, 4F2, and 1B1. Drug Metab Dispos 2022; 50:413-421. [PMID: 35042700 DOI: 10.1124/dmd.121.000776] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 02/13/2025] Open
Abstract
The oxazolidinone antibacterial linezolid has been in clinical use for over 20 years, yet knowledge of the contributions of specific cytochrome (CYP) 450 enzymes to the metabolic clearance of this drug were mostly unknown. In this investigation, it was revealed that three P450 enzymes that had not been previously explored in linezolid metabolism, CYP2J2, CYP4F2, and CYP1B1, catalyzed the 2-hydroxylation and de-ethyleneation of the morpholine moiety of linezolid. The intrinsic clearance for linezolid metabolism in pooled human liver microsomes was low at 0.51 μL/min/mg protein, consistent with its in vivo clearance in humans, and the KM was high (>200 μM). In recombinant human P450 enzymes, a rank order of intrinsic clearance values for linezolid 2-hydroxylation were CYP2J2 ≫ CYP4F2 > CYP2C8 > CYP1B1 ≈ CYP2D6 ≈ CYP3A4 > CYP1A1 > CYP3A5, with nine other P450 enzymes showing no linezolid metabolism. The effect of selective inhibitors for these eight P450 enzymes on linezolid metabolism in pooled human liver microsomes was evaluated to provide estimates of the relative fractional contributions of these enzymes to linezolid metabolism. These experiments suggest that CYP2J2 and CYP4F2 contribute about 50% each to linezolid hepatic metabolism. It is proposed that the oxidative metabolic clearance of linezolid is primarily catalyzed by these two unusual P450 enzymes and that this explains the lack of observation of meaningful effects of common perpetrators of drug interactions on linezolid pharmacokinetics. SIGNIFICANCE STATEMENT: Linezolid is an important antibacterial drug, but the enzymes involved in its oxidative metabolism were unknown. In this study, evidence is shown that supports an important role for two enzymes not frequently associated with the metabolism of drugs: cytochrome P450 2J2 and cytochrome P450 4F2. These observations offer insight to understand the results of clinical drug-drug interaction studies conducted on linezolid.
Collapse
|
7
|
Chen CC, Liu WT, Lin SH. Lactic acidosis associated with standard dose linezolid in a kidney recipient with impaired renal function. Braz J Infect Dis 2021; 26:101701. [PMID: 34942159 PMCID: PMC9387469 DOI: 10.1016/j.bjid.2021.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Severe lactic acidosis, a mitochondrial toxicity caused by the recommended standard dosage of linezolid (LZD), may occur in patients with impaired renal function. We describe an adult male who underwent kidney transplantation with stably impaired renal function, severe dyspnea, and abdominal discomfort. He received a standard oral dose of LZD (600 mg twice daily) and azithromycin for three weeks with a reduced immunosuppressant dose due to pulmonary non-tuberculosis mycobacterial infection. He was alert and afebrile, with a blood pressure of 140/60 mmHg. Pertinent laboratory data showed: pH 7.12, PaCO2 13.6 mmHg; HCO3- 4.3 mmol/L and serum lactate 18.4 mmol/L. His trough serum LZD concentration reached toxic levels (21.4 μg/mL). With hemodialysis, his clinical symptoms improved, with a decline in serum LZD (9.8μg/mL) and lactate (3.2 mmol/L). Chronic standard dose LZD in patients with impaired renal function can lead to life-threatening lactic acidosis, especially in coexisting conditions that reduce LZD metabolism.
Collapse
Affiliation(s)
- Chien-Chou Chen
- Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Liu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
8
|
van der Laan LE, Garcia-Prats AJ, Schaaf HS, Winckler JL, Draper H, Norman J, Wiesner L, McIlleron H, Denti P, Hesseling AC. Pharmacokinetics and Drug-Drug Interactions of Abacavir and Lamuvudine Co-administered With Antituberculosis Drugs in HIV-Positive Children Treated for Multidrug-Resistant Tuberculosis. Front Pharmacol 2021; 12:722204. [PMID: 34690765 PMCID: PMC8531271 DOI: 10.3389/fphar.2021.722204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Given the high prevalence of multidrug-resistant (MDR)-TB in high HIV burden settings, it is important to identify potential drug-drug interactions between MDR-TB treatment and widely used nucleoside reverse transcriptase inhibitors (NRTIs) in HIV-positive children. Population pharmacokinetic models were developed for lamivudine (n = 54) and abacavir (n = 50) in 54 HIV-positive children established on NRTIs; 27 with MDR-TB (combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, fluoroquinolones, and amikacin), and 27 controls without TB. Two-compartment models with first-order elimination and transit compartment absorption described both lamivudine and abacavir pharmacokinetics, respectively. Allometric scaling with body weight adjusted for the effect of body size. Clearance was predicted to reach half its mature value ∼ 2 (lamivudine) and ∼ 3 (abacavir) months after birth, with completion of maturation for both drugs at ∼ 2 years. No significant difference was found in key pharmacokinetic parameters of lamivudine and abacavir when co-administered with routine drugs used for MDR-TB in HIV-positive children.
Collapse
Affiliation(s)
- Louvina E. van der Laan
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, Divisions of General Pediatrics and Adolescent Medicine and Global Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - H. Simon Schaaf
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jana L. Winckler
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Heather Draper
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennifer Norman
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anneke C. Hesseling
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic Drug Monitoring Can Improve Linezolid Dosing Regimens in Current Clinical Practice: A Review of Linezolid Pharmacokinetics and Pharmacodynamics. Ther Drug Monit 2021; 42:83-92. [PMID: 31652190 DOI: 10.1097/ftd.0000000000000710] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Linezolid is an antibiotic used to treat infections caused by drug-resistant gram-positive organisms, including vancomycin-resistant Enterococcus faecium, multi-drug resistant Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus. The adverse effects of linezolid can include thrombocytopenia and neuropathy, which are more prevalent with higher exposures and longer treatment durations. Although linezolid is traditionally administered at a standard 600 mg dose every 12 hours, the resulting exposure can vary greatly between patients and can lead to treatment failure or toxicity. The efficacy and toxicity of linezolid are determined by the exposure achieved in the patient; numerous clinical and population pharmacokinetics (popPK) studies have identified threshold measurements for both parameters. Several special populations with an increased need for linezolid dose adjustments have also been identified. Therapeutic Drug Monitoring (TDM) is a clinical strategy that assesses the response of an individual patient and helps adjust the dosing regimen to maximize efficacy while minimizing toxicity. Adaptive feedback control and model-informed precision dosing are additional strategies that use Bayesian algorithms and PK models to predict patient-specific drug exposure. TDM is a very useful tool for patient populations with sparse clinical data or known alterations in pharmacokinetics, including children, patients with renal insufficiency or those receiving renal replacement therapy, and patients taking co-medications known to interact with linezolid. As part of the clinical workflow, clinicians can use TDM with the thresholds summarized from the current literature to improve linezolid dosing for patients and maximize the probability of treatment success.
Collapse
Affiliation(s)
- Gauri G Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Robyn Konicki
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy.,Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children's Hospital Los Angeles; and.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | |
Collapse
|
10
|
Alffenaar JW, Märtson AG, Heysell SK, Cho JG, Patanwala A, Burch G, Kim HY, Sturkenboom MGG, Byrne A, Marriott D, Sandaradura I, Tiberi S, Sintchencko V, Srivastava S, Peloquin CA. Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clin Pharmacokinet 2021; 60:711-725. [PMID: 33751415 PMCID: PMC8195771 DOI: 10.1007/s40262-021-01000-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria can cause minimally symptomatic self-limiting infections to progressive and life-threatening disease of multiple organs. Several factors such as increased testing and prevalence have made this an emerging infectious disease. Multiple guidelines have been published to guide therapy, which remains difficult owing to the complexity of therapy, the potential for acquired resistance, the toxicity of treatment, and a high treatment failure rate. Given the long duration of therapy, complex multi-drug treatment regimens, and the risk of drug toxicity, therapeutic drug monitoring is an excellent method to optimize treatment. However, currently, there is little available guidance on therapeutic drug monitoring for this condition. The aim of this review is to provide information on the pharmacokinetic/pharmacodynamic targets for individual drugs used in the treatment of nontuberculous mycobacteria disease. Lacking data from randomized controlled trials, in vitro, in vivo, and clinical data were aggregated to facilitate recommendations for therapeutic drug monitoring to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jin-Gun Cho
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Respiratory and Sleep Medicine, Westmead Hospital, Westmead, NSW, Australia.,Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - Asad Patanwala
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gina Burch
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hannah Y Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony Byrne
- St. Vincent's Hospital Sydney, Heart Lung Clinic, Sydney, NSW, Australia
| | - Debbie Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Indy Sandaradura
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, Royal London Hospital, London, UK.,Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Vitali Sintchencko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Wentworthville, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Shashikant Srivastava
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pulmonary Immunology, UT Health Science Center at Tyler, Tyler, TX, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
12
|
Burke C, Jankute M, Moynihan P, Gonzalez Del Rio R, Li X, Esquivias J, Lelièvre J, Cox JAG, Sacchettini J, Besra GS. Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline. FASEB Bioadv 2020; 2:600-612. [PMID: 33089076 PMCID: PMC7566049 DOI: 10.1096/fba.2020-00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background Whole‐cell phenotypic screening is the driving force behind modern anti‐tubercular drug discovery efforts. Focus has shifted from screening for bactericidal scaffolds to screens incorporating target deconvolution. Target‐based screening aims to direct drug discovery toward known effective targets and avoid investing resources into unproductive lines of enquiry. The protein synthesis pipeline, including RNA polymerase and the ribosome, is a clinically proven target in Mycobacterium tuberculosis. Screening for new hits of this effective target pathway is an invaluable tool in the drug discovery arsenal. Methods Using M. tuberculosis H37Rv augmented with anhydrotetracycline‐inducible expression of mCherry, a phenotypic screen was developed for the identification of protein synthesis inhibitors in a medium throughput screening format. Results The assay was validated using known inhibitors of protein synthesis to show a dose‐dependent reduction in mCherry fluorescence. This was expanded to a proprietary screen of hypothetical protein synthesis hits and modified to include quantitative viability measurement of cells using resazurin. Conclusion Following the success of the proprietary screen, a larger scale screen of the GlaxoSmithKline anti‐tubercular library containing 2799 compounds was conducted. Combined single shot and dose‐response screening yielded 18 hits, 0.64% of all screened compounds.
Collapse
Affiliation(s)
- Christopher Burke
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | - Monika Jankute
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | - Patrick Moynihan
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | | | - Xiaojun Li
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas United States
| | - Jorge Esquivias
- Diseases of the Developing World GlaxoSmithKline Tres Cantos Madrid Spain
| | - Joël Lelièvre
- Diseases of the Developing World GlaxoSmithKline Tres Cantos Madrid Spain
| | | | - James Sacchettini
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas United States
| | - Gurdyal S Besra
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| |
Collapse
|
13
|
Wang Y, Bahar MA, Jansen AME, Kocks JWH, Alffenaar JWC, Hak E, Wilffert B, Borgsteede SD. Improving antibacterial prescribing safety in the management of COPD exacerbations: systematic review of observational and clinical studies on potential drug interactions associated with frequently prescribed antibacterials among COPD patients. J Antimicrob Chemother 2020; 74:2848-2864. [PMID: 31127283 PMCID: PMC6814093 DOI: 10.1093/jac/dkz221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Guidelines advise the use of antibacterials (ABs) in the management of COPD exacerbations. COPD patients often have multiple comorbidities, such as diabetes mellitus and cardiac diseases, leading to polypharmacy. Consequently, drug–drug interactions (DDIs) may frequently occur, and may cause serious adverse events and treatment failure. Objectives (i) To review DDIs related to frequently prescribed ABs among COPD patients from observational and clinical studies. (ii) To improve AB prescribing safety in clinical practice by structuring DDIs according to comorbidities of COPD. Methods We conducted a systematic review by searching PubMed and Embase up to 8 February 2018 for clinical trials, cohort and case–control studies reporting DDIs of ABs used for COPD. Study design, subjects, sample size, pharmacological mechanism of DDI and effect of interaction were extracted. We evaluated levels of DDIs and quality of evidence according to established criteria and structured the data by possible comorbidities. Results In all, 318 articles were eligible for review, describing a wide range of drugs used for comorbidities and their potential DDIs with ABs. DDIs between ABs and co-administered drugs could be subdivided into: (i) co-administered drugs altering the pharmacokinetics of ABs; and (ii) ABs interfering with the pharmacokinetics of co-administered drugs. The DDIs could lead to therapeutic failures or toxicities. Conclusions DDIs related to ABs with clinical significance may involve a wide range of indicated drugs to treat comorbidities in COPD. The evidence presented can support (computer-supported) decision-making by health practitioners when prescribing ABs during COPD exacerbations in the case of co-medication.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Muh Akbar Bahar
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Anouk M E Jansen
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Janwillem W H Kocks
- Department of General Practice and Elderly Care Medicine, Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Faculty of Medicine and Health, School of Pharmacy and Westmead Hospital, University of Sydney, Sydney, Australia
| | - Eelko Hak
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sander D Borgsteede
- Department of Clinical Decision Support, Health Base Foundation, Houten, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
15
|
Cerrone M, Bracchi M, Wasserman S, Pozniak A, Meintjes G, Cohen K, Wilkinson RJ. Safety implications of combined antiretroviral and anti-tuberculosis drugs. Expert Opin Drug Saf 2020; 19:23-41. [PMID: 31809218 PMCID: PMC6938542 DOI: 10.1080/14740338.2020.1694901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
Introduction: Antiretroviral and anti-tuberculosis (TB) drugs are often co-administered in people living with HIV (PLWH). Early initiation of antiretroviral therapy (ART) during TB treatment improves survival in patients with advanced HIV disease. However, safety concerns related to clinically significant changes in drug exposure resulting from drug-drug interactions, development of overlapping toxicities and specific challenges related to co-administration during pregnancy represent barriers to successful combined treatment for HIV and TB.Areas covered: Pharmacokinetic interactions of different classes of ART when combined with anti-TB drugs used for sensitive-, drug-resistant (DR) and latent TB are discussed. Overlapping drug toxicities, implications of immune reconstitution inflammatory syndrome (IRIS), safety in pregnancy and research gaps are also explored.Expert opinion: New antiretroviral and anti-tuberculosis drugs have been recently introduced and international guidelines updated. A number of effective molecules and clinical data are now available to build treatment regimens for PLWH with latent or active TB. Adopting a systematic approach that also takes into account the need for individualized variations based on the available evidence is the key to successfully integrate ART and TB treatment and improve treatment outcomes.
Collapse
Affiliation(s)
- Maddalena Cerrone
- Department of Medicine, Imperial College London, W2 1PG, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of HIV, Chelsea and Westminster Hospital NHS Trust, London, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - Margherita Bracchi
- Department of HIV, Chelsea and Westminster Hospital NHS Trust, London, UK
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory 7925, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anton Pozniak
- Department of HIV, Chelsea and Westminster Hospital NHS Trust, London, UK
- The London School of Hygiene & Tropical Medicine
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Robert J Wilkinson
- Department of Medicine, Imperial College London, W2 1PG, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory 7925, South Africa
- Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
16
|
Bolhuis MS, Akkerman OW, Sturkenboom MGG, Ghimire S, Srivastava S, Gumbo T, Alffenaar JWC. Linezolid-based Regimens for Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current Recommended Dose for TB Treatment. Clin Infect Dis 2019; 67:S327-S335. [PMID: 30496467 DOI: 10.1093/cid/ciy625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Linezolid has been successfully used for treatment of multidrug-resistant tuberculosis (MDR-TB). However, dose- and duration-related toxicity limit its use. Here, our aim was to search relevant pharmacokinetics (PK)/pharmacodynamics (PD) literature to identify the effective PK/PD index and to define the optimal daily dose and dosing frequency of linezolid in MDR-TB regimens. The systematic search resulted in 8 studies that met inclusion criteria. A significant PK variability was observed. Efficacy of linezolid seems to be driven by area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC). Literature is inconclusive about the preferred administration of a daily dose of 600 mg. To prevent development of drug resistance, an AUC/MIC ratio of 100 in the presence of a companion drug at relevant exposure is required. A daily dose of 600 mg seems appropriate to balance between efficacy and toxicity. Being a drug with a very narrow therapeutic window, linezolid treatment may benefit from a more personalized approach, that is, measuring actual MIC values and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Mathieu S Bolhuis
- Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen
| | - Onno W Akkerman
- Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen.,Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, The Netherlands
| | - Marieke G G Sturkenboom
- Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen
| | - Samiksha Ghimire
- Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jan-Willem C Alffenaar
- Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen
| |
Collapse
|
17
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
18
|
Millard J, Pertinez H, Bonnett L, Hodel EM, Dartois V, Johnson JL, Caws M, Tiberi S, Bolhuis M, Alffenaar JWC, Davies G, Sloan DJ. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. J Antimicrob Chemother 2019; 73:1755-1762. [PMID: 29584861 PMCID: PMC6005026 DOI: 10.1093/jac/dky096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023] Open
Abstract
Objectives The oxazolidinone linezolid is an effective component of drug-resistant TB treatment, but its use is limited by toxicity and the optimum dose is uncertain. Current strategies are not informed by clinical pharmacokinetic (PK)/pharmacodynamic (PD) data; we aimed to address this gap. Methods We defined linezolid PK/PD targets for efficacy (fAUC0–24:MIC >119 mg/L/h) and safety (fCmin <1.38 mg/L). We extracted individual-level linezolid PK data from existing studies on TB patients and performed meta-analysis, producing summary estimates of fAUC0–24 and fCmin for published doses. Combining these with a published MIC distribution, we performed Monte Carlo simulations of target attainment. Results The efficacy target was attained in all simulated individuals at 300 mg q12h and 600 mg q12h, but only 20.7% missed the safety target at 300 mg q12h versus 98.5% at 600 mg q12h. Although suggesting 300 mg q12h should be used preferentially, these data were reliant on a single centre. Efficacy and safety targets were missed by 41.0% and 24.2%, respectively, at 300 mg q24h and by 44.6% and 27.5%, respectively, at 600 mg q24h. However, the confounding effect of between-study heterogeneity on target attainment for q24h regimens was considerable. Conclusions Linezolid dosing at 300 mg q12h may retain the efficacy of the 600 mg q12h licensed dosing with improved safety. Data to evaluate commonly used 300 mg q24h and 600 mg q24h doses are limited. Comprehensive, prospectively obtained PK/PD data for linezolid doses in drug-resistant TB treatment are required.
Collapse
Affiliation(s)
- James Millard
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Africa Health Research Institute, Durban, South Africa
| | - Henry Pertinez
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Laura Bonnett
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Eva Maria Hodel
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - John L Johnson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, UK.,Birat-Nepal Medical Trust, Lazimpat, Kathmandu, Nepal
| | - Simon Tiberi
- Department of Infection, Barts Health National Health Service Trust, London, UK
| | - Mathieu Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Geraint Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
19
|
Bolhuis MS, Akkerman OW, Sturkenboom MGG, de Lange WCM, van der Werf TS, Touw DJ, Alffenaar JWC. Different Underlying Mechanism Might Explain the Absence of a Significant Difference in Area Under the Concentration–Time Curve of Linezolid for Different ABCB1 Genotypes. Ther Drug Monit 2019; 41:253-254. [DOI: 10.1097/ftd.0000000000000597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Sun F, Li Y, Chen Y, Guan W, Jiang X, Wang X, Ren P, Li J, Shi J, He G, Wu M, Tang P, Wang F, Sheng Y, Huang F, Zhou Z, Huang H, Hong L, Liu Q, Zhang Y, Zhang W. Introducing molecular testing of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a prospective cohort study. Eur Respir J 2019; 53:13993003.01770-2018. [PMID: 30578402 DOI: 10.1183/13993003.01770-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
The current treatment for multidrug-resistant tuberculosis (MDR-TB) takes a lengthy period of 18-24 months and has a poor cure rate of 50-60%. A multicenter, prospective cohort study was conducted to assess the role of testing for molecular susceptibility to pyrazinamide (PZA) in optimising treatment for MDR-TB.We assigned 76 patients to an optimised molecular susceptibility group and 159 patients to a regular treatment group where PZA susceptibility was not determined. Of these patients, 152 were matched after propensity score matching (76 in the optimised group and 76 in the regular group). Treatment success rate was measured in the propensity-matched cohort as the primary outcome.Patients in the optimised group achieved a higher treatment success rate than those in the regular group (76.3% versus 55.3%, p=0.006). Of 51 patients with isolates that were susceptible to PZA and who were receiving a 12-month regimen, 42 (82.4%) were treated successfully. The optimised group showed faster culture conversion than the regular group (p=0.024). After exclusion of pre-extensively drug-resistant TB (pre-XDR-TB), the treatment outcome in the optimised group was still better than the regular group (83.1% versus 62.1%, p=0.009).Introducing molecular susceptibility testing for PZA improved the treatment outcomes for MDR-TB without the use of new drugs. Introducing PZA for patients with PZA-susceptible (PZA-S) MDR-TB allows the current regimen to be shortened to 12 months with comparable success rates to the World Health Organization (WHO) recommended shorter regimen.
Collapse
Affiliation(s)
- Feng Sun
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,These authors contributed equally to this work
| | - Yang Li
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,These authors contributed equally to this work
| | - Yu Chen
- Dept of Tuberculosis, Henan Province Infectious Diseases Hospital, Zhengzhou, China.,These authors contributed equally to this work
| | - Wenlong Guan
- The Chest Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China.,These authors contributed equally to this work
| | - Xiangao Jiang
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China.,These authors contributed equally to this work
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.,These authors contributed equally to this work
| | - Pengfei Ren
- Dept of Tuberculosis, Henan Province Infectious Diseases Hospital, Zhengzhou, China
| | - Junlian Li
- The Chest Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
| | - Jichan Shi
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
| | - Guiqing He
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
| | - Meiying Wu
- Suzhou Fifth People's Hospital, Suzhou, China
| | - Peijun Tang
- Suzhou Fifth People's Hospital, Suzhou, China
| | - Fei Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunfeng Sheng
- Tuberculosis Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Fuli Huang
- Dept of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zumo Zhou
- People's Hospital of Zhuji, Zhuji, China
| | | | - Liang Hong
- Dept of Infectious Diseases, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, China
| | - Qihui Liu
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Dept of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
| | - Wenhong Zhang
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Linezolid Pharmacokinetics in South African Patients with Drug-Resistant Tuberculosis and a High Prevalence of HIV Coinfection. Antimicrob Agents Chemother 2019; 63:AAC.02164-18. [PMID: 30617089 DOI: 10.1128/aac.02164-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization (WHO) recently recommended that linezolid be prioritized in treatment regimens for drug-resistant tuberculosis (TB), but there are limited data on its pharmacokinetics (PK) in patients with this disease. We conducted an observational study to explore covariate effects on linezolid PK and to estimate the probability of PK/pharmacodynamic target attainment in South African patients with drug-resistant TB. Consecutive adults on linezolid-based regimens were recruited in Cape Town and underwent intensive PK sampling at steady state. Noncompartmental analysis was performed. Thirty participants were included: 15 HIV positive, 26 on the initial dose of 600 mg daily, and 4 participants on 300 mg daily after dose reduction for linezolid-related toxicity. There was a negative correlation between body weight and exposure, with 17.4% (95% confidence interval [CI], 0.1 to 31.7) decrease in area under the concentration-time curve from 0 to 24 h (AUC0-24) per 10-kg weight increment after adjustment for other covariates. Age was an independent predictor of trough concentration, with an estimated 43.4% (95% CI, 5.9 to 94.2) increase per 10-year increment in age. The standard 600-mg dose achieved the efficacy target of free AUC/MIC of >119 at wild-type MIC values (≤0.5 mg/liter), but the probability of target attainment dropped to 61.5% (95% CI, 40.6 to 79.8) at the critical concentration of 1 mg/liter. When dosed at 600 mg daily, trough concentrations were above the toxicity threshold of 2 mg/liter in 57.7% (95% CI, 36.9 to 76.6). This confirms the narrow therapeutic index of linezolid, and alternative dosing strategies should be explored.
Collapse
|
22
|
Hashimoto S, Honda K, Fujita K, Miyachi Y, Isoda K, Misaka K, Suga Y, Kato S, Tsuchiya H, Kato Y, Okajima M, Taniguchi T, Shimada T, Sai Y. Effect of coadministration of rifampicin on the pharmacokinetics of linezolid: clinical and animal studies. J Pharm Health Care Sci 2018; 4:27. [PMID: 30459957 PMCID: PMC6233381 DOI: 10.1186/s40780-018-0123-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background Combination therapy of linezolid (LZD) and rifampicin (RFP) may be more effective than monotherapy for treating gram-positive bacterial infections, but several studies have suggested that RFP decreases LZD exposures, thereby increasing the risk of therapeutic failure and emergence of LZD-resistant strains. However, the mechanism of the drug-drug interaction between LZD and RFP is unknown. Methods We conducted a prospective, open-label, uncontrolled clinical study in Japanese patients receiving LZD and RFP to evaluate the effect of coadministered RFP on the concentration of LZD. In animal study in rats, the influence of coadministered RFP on the pharmacokinetics of LZD administered intravenously or orally was examined. Intestinal permeability was investigated with an Ussing chamber to assess whether coadministered RFP alters the absorption process of LZD in the intestine. Results Our clinical study indicated that multiple doses of RFP reduced the dose-normalized trough concentration of LZD at the first assessment day by an average of 65%. In an animal study, we found that multiple doses of RFP significantly decreased the area under the concentration-time curve, the maximum concentration and the bioavailability of orally administered LZD by 48%, 54% and 48%, respectively. In contrast, the pharmacokinetics of intravenously administered LZD was unaffected by the RFP pretreatment. However, investigation of the intestinal permeability of LZD revealed no difference in absorptive or secretory transport of LZD in the upper, middle and lower intestinal tissues between RFP-pretreated and control rats, even though RFP induced gene expression of multidrug resistance protein 1a and multidrug resistance-associated protein 2. Conclusions Therapeutic drug monitoring may be important for avoiding subtherapeutic levels of LZD in the combination therapy. The drug-drug interaction between LZD and RFP may occur only after oral administration of LZD, but is not due to any change of intestinal permeability of LZD. Trial registration UMIN, UMIN000004322. Registered 4 October 2010.
Collapse
Affiliation(s)
- Satsuki Hashimoto
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan.,2Department of Medicinal Informatics, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kyoko Honda
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kohei Fujita
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Yuka Miyachi
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kazuya Isoda
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Ko Misaka
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Yukio Suga
- 3Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Satoshi Kato
- 4Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Hiroyuki Tsuchiya
- 4Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Yukio Kato
- 3Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Masaki Okajima
- 5Intensive Care Unit, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takumi Taniguchi
- 5Intensive Care Unit, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tsutomu Shimada
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan.,2Department of Medicinal Informatics, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Yoshimichi Sai
- 1Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan.,2Department of Medicinal Informatics, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
23
|
Lange C, Alghamdi WA, Al-Shaer MH, Brighenti S, Diacon AH, DiNardo AR, Grobbel HP, Gröschel MI, von Groote-Bidlingmaier F, Hauptmann M, Heyckendorf J, Köhler N, Kohl TA, Merker M, Niemann S, Peloquin CA, Reimann M, Schaible UE, Schaub D, Schleusener V, Thye T, Schön T. Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis. J Intern Med 2018; 284:163-188. [PMID: 29806961 DOI: 10.1111/joim.12780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to the World Health Organization (WHO), tuberculosis is the leading cause of death attributed to a single microbial pathogen worldwide. In addition to the large number of patients affected by tuberculosis, the emergence of Mycobacterium tuberculosis drug-resistance is complicating tuberculosis control in many high-burden countries. During the past 5 years, the global number of patients identified with multidrug-resistant tuberculosis (MDR-TB), defined as bacillary resistance at least against rifampicin and isoniazid, the two most active drugs in a treatment regimen, has increased by more than 20% annually. Today we experience a historical peak in the number of patients affected by MDR-TB. The management of MDR-TB is characterized by delayed diagnosis, uncertainty of the extent of bacillary drug-resistance, imprecise standardized drug regimens and dosages, very long duration of therapy and high frequency of adverse events which all translate into a poor prognosis for many of the affected patients. Major scientific and technological advances in recent years provide new perspectives through treatment regimens tailor-made to individual needs. Where available, such personalized treatment has major implications on the treatment outcomes of patients with MDR-TB. The challenge now is to bring these adances to those patients that need them most.
Collapse
Affiliation(s)
- C Lange
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - W A Alghamdi
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M H Al-Shaer
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - S Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A H Diacon
- Task Applied Science, Bellville, South Africa
- Division of Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A R DiNardo
- Section of Global and Immigrant Health, Baylor College of Medicine, Houston, TX, USA
| | - H P Grobbel
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - M I Gröschel
- Department of Pumonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | | | - M Hauptmann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - J Heyckendorf
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - N Köhler
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - T A Kohl
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - M Merker
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - S Niemann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - C A Peloquin
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M Reimann
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - U E Schaible
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
- Biochemical Microbiology & Immunochemistry, University of Lübeck, Lübeck, Germany
- LRA INFECTIONS'21, Borstel, Germany
| | - D Schaub
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - V Schleusener
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - T Thye
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - T Schön
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Pharmacokinetics and Drug-Drug Interactions of Lopinavir-Ritonavir Administered with First- and Second-Line Antituberculosis Drugs in HIV-Infected Children Treated for Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00420-17. [PMID: 29133558 DOI: 10.1128/aac.00420-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Lopinavir-ritonavir forms the backbone of current first-line antiretroviral regimens in young HIV-infected children. As multidrug-resistant (MDR) tuberculosis (TB) frequently occurs in young children in high-burden TB settings, it is important to identify potential interactions between MDR-TB treatment and lopinavir-ritonavir. We describe the pharmacokinetics of and potential drug-drug interactions between lopinavir-ritonavir and drugs routinely used for MDR-TB treatment in HIV-infected children. A combined population pharmacokinetic model was developed to jointly describe the pharmacokinetics of lopinavir and ritonavir in 32 HIV-infected children (16 with MDR-TB receiving treatment with combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, a fluoroquinolone, and amikacin and 16 without TB) who were established on a lopinavir-ritonavir-containing antiretroviral regimen. One-compartment models with first-order absorption and elimination for both lopinavir and ritonavir were combined into an integrated model. The dynamic inhibitory effect of the ritonavir concentration on lopinavir clearance was described using a maximum inhibition model. Even after adjustment for the effect of body weight with allometric scaling, a large variability in lopinavir and ritonavir exposure, together with strong correlations between the pharmacokinetic parameters of lopinavir and ritonavir, was detected. MDR-TB treatment did not have a significant effect on the bioavailability, clearance, or absorption rate constants of lopinavir or ritonavir. Most children (81% of children with MDR-TB, 88% of controls) achieved therapeutic lopinavir trough concentrations (>1 mg/liter). The coadministration of lopinavir-ritonavir with drugs routinely used for the treatment of MDR-TB was found to have no significant effect on the key pharmacokinetic parameters of lopinavir or ritonavir. These findings should be considered in the context of the large interpatient variability found in the present study and the study's modest sample size.
Collapse
|
25
|
Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions. Ther Drug Monit 2017; 38:573-8. [PMID: 27631464 DOI: 10.1097/ftd.0000000000000324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. METHODS Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. RESULTS Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin <0.4 mg/L). The median unbound fraction in all 20 patients was 90.9%. CONCLUSIONS Drug exposure after standard doses of linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.
Collapse
|
26
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Van Kampenhout E, Bolhuis MS, Alffenaar JWC, Oswald LM, Kerstjens HA, de Lange WC, van der Werf TS, Akkerman OW. Pharmacokinetics of moxifloxacin and linezolid during and after pregnancy in a patient with multidrug-resistant tuberculosis. Eur Respir J 2017; 49:49/3/1601724. [DOI: 10.1183/13993003.01724-2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/25/2016] [Indexed: 11/05/2022]
|
28
|
Applicability of a Single Time Point Strategy for the Prediction of Area Under the Concentration Curve of Linezolid in Patients: Superiority of Ctrough- over Cmax-Derived Linear Regression Models. Drugs R D 2016; 16:69-79. [PMID: 26747454 PMCID: PMC4767722 DOI: 10.1007/s40268-015-0117-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Objectives Linezolid, a oxazolidinone, was the first in class to be approved for the treatment of bacterial infections arising from both susceptible and resistant strains of Gram-positive bacteria. Since overt exposure of linezolid may precipitate serious toxicity issues, therapeutic drug monitoring (TDM) may be required in certain situations, especially in patients who are prescribed other co-medications. Methods Using appropriate oral pharmacokinetic data (single dose and steady state) for linezolid, both maximum plasma drug concentration (Cmax) versus area under the plasma concentration–time curve (AUC) and minimum plasma drug concentration (Cmin) versus AUC relationship was established by linear regression models. The predictions of the AUC values were performed using published mean/median Cmax or Cmin data and appropriate regression lines. The quotient of observed and predicted values rendered fold difference calculation. The mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (r), and the goodness of the AUC fold prediction were used to evaluate the two models. Results The Cmax versus AUC and trough plasma concentration (Ctrough) versus AUC models displayed excellent correlation, with r values of >0.9760. However, linezolid AUC values were predicted to be within the narrower boundary of 0.76 to 1.5-fold by a higher percentage by the Ctrough (78.3 %) versus Cmax model (48.2 %). The Ctrough model showed superior correlation of predicted versus observed values and RMSE (r = 0.9031; 28.54 %, respectively) compared with the Cmax model (r = 0.5824; 61.34 %, respectively). Conclusions A single time point strategy of using Ctrough level is possible as a prospective tool to measure the AUC of linezolid in the patient population.
Collapse
|
29
|
Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti Infect Ther 2016; 14:901-15. [PMID: 27532292 DOI: 10.1080/14787210.2016.1225498] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Linezolid is an oxazolidinone with potent activity against M tuberculosis, and improves culture conversion and cure rates when added to treatment regimens for drug resistant tuberculosis. However, linezolid has a narrow therapeutic window, and the optimal dosing strategy that minimizes the substantial toxicity associated with linezolid's prolonged use in tuberculosis treatment has not been determined, limiting the potential impact of this anti-mycobacterial agent. AREAS COVERED This paper aims to review and summarize the current knowledge on linezolid for the treatment of drug-resistant tuberculosis. The focus is on the pharmacokinetic-pharmacodynamic determinants of linezolid's efficacy and toxicity in tuberculosis, and how this relates to defining an optimal dose. Mechanisms of linezolid toxicity and resistance, and the potential role of therapeutic drug monitoring are also covered. Expert commentary: Prospective pharmacokinetic-pharmacodynamic studies are required to define optimal therapeutic targets and to inform improved linezolid dosing strategies for drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Sean Wasserman
- a Division of Infectious Diseases and HIV Medicine, Department of Medicine , University of Cape Town , Cape Town , South Africa
| | - Graeme Meintjes
- a Division of Infectious Diseases and HIV Medicine, Department of Medicine , University of Cape Town , Cape Town , South Africa.,b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences , University of Cape Town , Cape Town , South Africa
| | - Gary Maartens
- c Division of Clinical Pharmacology, Department of Medicine , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
30
|
Schito M, Migliori GB, Fletcher HA, McNerney R, Centis R, D'Ambrosio L, Bates M, Kibiki G, Kapata N, Corrah T, Bomanji J, Vilaplana C, Johnson D, Mwaba P, Maeurer M, Zumla A. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. Clin Infect Dis 2016; 61Suppl 3:S102-18. [PMID: 26409271 DOI: 10.1093/cid/civ609] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required.
Collapse
Affiliation(s)
- Marco Schito
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, Arizona
| | - Giovanni Battista Migliori
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine
| | | | - Rosella Centis
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Lia D'Ambrosio
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Matthew Bates
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Nathan Kapata
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Tumena Corrah
- Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital
| | - Jamshed Bomanji
- Department of Nuclear Imaging, University College London Hospitals NHS Foundation Trust, United Kingdom
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Ctra. de Can Ruti, Camí de les Escoles, Barcelona, Spain
| | - Daniel Johnson
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter Mwaba
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Markus Maeurer
- Therapeutic Immunology, Departments of Laboratory Medicine and Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
31
|
Characterization of 22 Antituberculosis Drugs for Inhibitory Interaction Potential on Organic Anionic Transporter Polypeptide (OATP)-Mediated Uptake. Antimicrob Agents Chemother 2016; 60:3096-105. [PMID: 26976869 DOI: 10.1128/aac.02765-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/06/2016] [Indexed: 12/21/2022] Open
Abstract
We investigated the inhibitory interaction potential of 22 currently marketed antituberculosis (TB) drugs on organic anion-transporting polypeptide 1B1 (OATP1B1)-, OATP2B1-, and OATP1B3-mediated uptake using in vitro Xenopus oocytes and HEK cells. Rifabutin, ethambutol, amoxicillin, linezolid, p-amino salicylic acid, and rifapentine exhibited mild to moderate inhibitory effects on OATP-mediated uptake of estrone-3 sulfate, estradiol 17β-d-glucuronide, and rosuvastatin. The 50% inhibitory concentration (IC50) values of rifabutin, amoxicillin, ethambutol, p-amino salicylic acid, and linezolid were 35.4, 36.2, 57.6, 72.6, and 65.9 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B1 (OATP1B1) and 28.8, 28.9, 53.9, 31.5, and 61.0 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B3 (OATP1B3). Streptomycin and linezolid showed greater inhibition of organic anionic transporter polypeptide 2B1 (OATP2B1)-mediated uptake, with IC50 values of 33.2 and 35.6 μM, respectively, along with mild inhibition of other drugs. Furthermore, rifabutin, amoxicillin, and rifapentine significantly inhibited OATP1B1-mediated rosuvastatin uptake, with IC50 values of 12.3, 13.0, and 11.0 μM, respectively, which showed a similar profile to estrone-3 sulfate uptake. The calculated R values ([I]u inlet,max/Ki, where [I]u inlet,max represents the maximum estimated inhibitor concentration inlet to the liver and Ki is the inhibition constant) as the drug-drug interaction (DDI) indexes of PAS, ethambutol, and amoxicillin were 26.1, 6.5, and 4.3 for OATP1B1 and 52.0, 8.0, and 4.6 for OATP1B3, and those for streptomycin, amikacin, and linezolid were 5.0, 4.2, and 4.4 for OATP2B1, respectively, suggesting a higher possibility of in vivo DDIs. This study is the first comprehensive report to show the novel inhibitory potential of 22 marketed anti-TB drugs on OATP-mediated uptake, providing evidence for future in vivo clinical DDI studies.
Collapse
|
32
|
Bolhuis MS, Tiberi S, Sotgiu G, De Lorenzo S, Kosterink JG, van der Werf TS, Migliori GB, Alffenaar JW. Is there still room for therapeutic drug monitoring of linezolid in patients with tuberculosis? Eur Respir J 2016; 47:1288-90. [DOI: 10.1183/13993003.02185-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 11/05/2022]
|
33
|
Cattaneo D, Alffenaar JW, Neely M. Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opin Drug Metab Toxicol 2016; 12:533-44. [DOI: 10.1517/17425255.2016.1166204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angels, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angels, CA, USA
| |
Collapse
|
34
|
Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis 2016; 32:101-4. [PMID: 25809764 DOI: 10.1016/j.ijid.2014.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/24/2022] Open
Abstract
In this article we describe the key role of tuberculosis (TB) treatment, the challenges (mainly the emergence of drug resistance), and the opportunities represented by the correct approach to drug dosage, based on the existing control and elimination strategies. In this context, the role and contribution of therapeutic drug monitoring (TDM) is discussed in detail. Treatment success in multidrug-resistant (MDR) TB cases is low (62%, with 7% failing or relapsing and 9% dying) and in extensively drug-resistant (XDR) TB cases is even lower (40%, with 22% failing or relapsing and 15% dying). The treatment of drug-resistant TB is also more expensive (exceeding €50,000 for MDR-TB and €160,000 for XDR-TB) and more toxic if compared to that prescribed for drug-susceptible TB. Appropriate dosing of first- and second-line anti-TB drugs can improve the patient's prognosis and lower treatment costs. TDM is based on the measurement of drug concentrations in blood samples collected at appropriate times and subsequent dose adjustment according to the target concentration. The 'dried blood spot' technique offers additional advantages, providing the rationale for discussions regarding a possible future network of selected, quality-controlled reference laboratories for the processing of dried blood spots of difficult-to-treat patients from reference TB clinics around the world.
Collapse
|
35
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
36
|
Kwon YS, Koh WJ. Synthetic investigational new drugs for the treatment of tuberculosis. Expert Opin Investig Drugs 2015; 25:183-93. [PMID: 26576631 DOI: 10.1517/13543784.2016.1121993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health concern. And while there are treatments already on the market, there is a demand for new drugs that are effective and safe against Mycobacterium tuberculosis, which reduce the number of drugs and the duration of treatment in both drug-susceptible TB and multidrug-resistant TB (MDR-TB). AREA COVERED This review covers promising novel investigational TB drugs that are currently under development. Specifically, the authors review the efficacy of novel agents for the treatment of TB in preclinical, phase I and phase II clinical trials. The authors also review the safety and tolerability profiles of these drugs. EXPERT OPINION Bedaquiline and delamanid are the most promising novel drugs for the treatment of MDR-TB, each having high efficacy and tolerability. However, the best regimen for achieving better outcomes and reducing adverse drug reactions remains to be determined, with safety concerns regarding cardiac events due to QT prolongation still to be addressed. Pretomanid is a novel drug that potentially shortens the duration of treatment in both drug-susceptible and drug-resistant TB in combination with moxifloxacin and pyrazinamide. Linezolid shows marked efficacy in the treatment of MDR-TB and extensively drug-resistant TB (XDR-TB), but the drug is known to cause significant adverse drug reactions, including peripheral neuropathy, optic neuropathy and myelosuppression. These adverse reactions must be considered prior to prescribing long-term usage of this drug.
Collapse
Affiliation(s)
- Yong-Soo Kwon
- a Department of Internal Medicine , Chonnam National University Hospital , Gwangju , South Korea
| | - Won-Jung Koh
- b Division of Pulmonary and Critical Care Medicine, Department of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
37
|
Arbex MA, de Siqueira HR, D'Ambrosio L, Migliori GB. The challenge of managing extensively drug-resistant tuberculosis at a referral hospital in the state of São Paulo, Brazil: a report of three cases. J Bras Pneumol 2015; 41:554-9. [PMID: 26785966 PMCID: PMC4723008 DOI: 10.1590/s1806-37562015000000299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022] Open
Abstract
Here, we report the cases of three patients diagnosed with extensively drug-resistant tuberculosis and admitted to a referral hospital in the state of São Paulo, Brazil, showing the clinical and radiological evolution, as well as laboratory test results, over a one-year period. Treatment was based on the World Health Organization guidelines, with the inclusion of a new proposal for the use of a combination of antituberculosis drugs (imipenem and linezolid). In the cases studied, we show the challenge of creating an acceptable, effective treatment regimen including drugs that are more toxic, are more expensive, and are administered for longer periods. We also show that treatment costs are significantly higher for such patients, which could have an impact on health care systems, even after hospital discharge. We highlight the fact that in extreme cases, such as those reported here, hospitalization at a referral center seems to be the most effective strategy for providing appropriate treatment and increasing the chance of cure. In conclusion, health professionals and governments must make every effort to prevent cases of multidrug-resistant and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Marcos Abdo Arbex
- . Hospital Nestor Goulart Reis, Secretaria de Estado da Saúde do Estado de São Paulo, Américo Brasiliense (SP) Brasil
- . Curso de Medicina, Centro Universitário de Araraquara, Araraquara (SP) Brasil
| | - Hélio Ribeiro de Siqueira
- . Disciplina de Pneumologia e Tisiologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ) Brasil
- . Ambulatório de Tuberculose, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ) Brasil
| | - Lia D'Ambrosio
- . WHO Collaborating Centre for TB and Lung Diseases, Istituto Scientifico, Fondazione Salvatore Maugeri, Tradate, Italia
- . Public Health Consulting Group, Lugano, Switzerland
| | - Giovanni Battista Migliori
- . WHO Collaborating Centre for TB and Lung Diseases, Istituto Scientifico, Fondazione Salvatore Maugeri, Tradate, Italia
| |
Collapse
|
38
|
Douros A, Grabowski K, Stahlmann R. Drug–drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol 2015; 11:1849-59. [DOI: 10.1517/17425255.2015.1098617] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Bruhn DF, Scherman MS, Liu J, Scherbakov D, Meibohm B, Böttger EC, Lenaerts AJ, Lee RE. In vitro and in vivo Evaluation of Synergism between Anti-Tubercular Spectinamides and Non-Classical Tuberculosis Antibiotics. Sci Rep 2015; 5:13985. [PMID: 26365087 PMCID: PMC4568539 DOI: 10.1038/srep13985] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
Spectinamides are new semi-synthetic spectinomycin derivatives with potent anti-tubercular activity. The reported synergism of the precursor spectinomycin with other antibiotics prompted us to examine whether spectinamides sensitize M. tuberculosis to other antibiotics not traditionally used in the treatment of tuberculosis to potentially expand therapeutic options for MDR/XDR Tuberculosis. Whole cell synergy checkerboard screens were performed using the laboratory strain M. tuberculosis H37Rv, lead spectinamide 1599, and a broad panel of 27 antibiotics. In vitro, 1599 synergized with 11 drugs from 6 antibiotic classes. The observed synergy was tested against clinical isolates confirming synergy with Clarithromycin, Doxycycline and Clindamycin, combinations of which were taken forward for in vivo efficacy determination. Co-administration of 1599 and clarithromycin provided additional bacterial killing in a mouse model of acute tuberculosis infection, but not in a chronic infection model. Further studies indicated that mismatched drug exposure profiles likely permitted induction of phenotypic clarithromycin resistance and subsequent loss of synergism. These studies highlight the importance of validating in vitro synergism and the challenge of matching drug exposures to obtain a synergistic outcome in vivo. Results from this study indicate that a 1599 clarithromycin combination is potentially viable, providing the drug exposures can be carefully monitored.
Collapse
Affiliation(s)
- David F. Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael S. Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Dimitri Scherbakov
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Anne J. Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Bolhuis MS, Tiberi S, Sotgiu G, De Lorenzo S, Kosterink JGW, van der Werf TS, Migliori GB, Alffenaar JWC. Linezolid tolerability in multidrug-resistant tuberculosis: a retrospective study. Eur Respir J 2015; 46:1205-7. [PMID: 26160870 DOI: 10.1183/13993003.00606-2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Mathieu S Bolhuis
- Dept of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Simon Tiberi
- Dept of Infection, Barts Healthcare NHS Trust, London, UK
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Biomedical Sciences, University of Sassari, Research, Medical Education and Professional Development Unit, AOU Sassari, Italy
| | - Saverio De Lorenzo
- E. Morelli Hospital AOVV, Reference Center for MDR-TB and HIV-TB, Sondalo, Italy
| | - Jos G W Kosterink
- Dept of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Dept of Pharmacy, Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Tjip S van der Werf
- University of Groningen, University Medical Center Groningen, Dept of Internal Medicine, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonary Disease and Tuberculosis, Groningen, The Netherlands
| | - Giovanni Battista Migliori
- WHO Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S Maugeri, Care and Research Institute, Tradate, Italy
| | - Jan-Willem C Alffenaar
- Dept of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
van der Paardt AF, Wilffert B, Akkerman OW, de Lange WC, van Soolingen D, Sinha B, van der Werf TS, Kosterink JG, Alffenaar JWC. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J 2015; 46:444-55. [DOI: 10.1183/09031936.00147014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/20/2015] [Indexed: 01/16/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs.Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis drug by the World Health Organization; however, its role or efficacy in the treatment of MDR-TB is unclear. A systematic review of the literature was conducted to summarise the evidence for the activity of macrolides against MDR-TB, by evaluating in vitro, in vivo and clinical studies. PubMed and Embase were searched for English language articles up to May 2014.Even though high minimum inhibitory concentration values are usually found, suggesting low activity against Mycobacterium tuberculosis, the potential benefits of macrolides are their accumulation in the relevant compartments and cells in the lungs, their immunomodulatory effects and their synergistic activity with other anti-TB drugs.A future perspective may be use of more potent macrolide analogues to enhance the activity of the treatment regimen.
Collapse
|
42
|
D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res 2015; 1:00010-2015. [PMID: 27730131 PMCID: PMC5005131 DOI: 10.1183/23120541.00010-2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/06/2022] Open
Abstract
Over 480 000 cases of multidrug-resistant (MDR) tuberculosis (TB) occur every year globally, 9% of them being affected by extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. The treatment of MDR/XDR-TB is unfortunately long, toxic and expensive, and the success rate largely unsatisfactory (<20% among cases with resistance patterns beyond XDR). The aim of this review is to summarise the available evidence-based updated international recommendations to manage MDR/XDR-TB, and to update the reader on the role of newly developed drugs (delamanid, bedaquiline and pretomanid) as well as repurposed drugs (linezolid and meropenem clavulanate, among others) used to treat these conditions within new regimens. A nonsystematic review based on historical trials results as well as on recent literature and World Health Organization (WHO) guidelines has been performed, with special focus on the approach to managing MDR/XDR-TB. The new, innovative global public health interventions, recently approved by WHO and known as the “End TB Strategy”, support the vision of a TB-free world with zero death, disease and suffering due to TB. Adequate, universally accessed treatment is a pre-requisite to reach TB elimination. New shorter, cheap, safe and effective anti-TB regimens are necessary to boost TB elimination. The new WHO post-2015 End TB Strategy will support the efforts that research on new drugs and regimens requireshttp://ow.ly/LnJER
Collapse
Affiliation(s)
- Lia D'Ambrosio
- WHO Collaborating Centre for Tuberculosis & Lung Diseases, Fondazione S. Maugeri, IRCCS, Tradate, Italy; These authors contributed equally
| | - Rosella Centis
- WHO Collaborating Centre for Tuberculosis & Lung Diseases, Fondazione S. Maugeri, IRCCS, Tradate, Italy; These authors contributed equally
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari - Research, Medical Education and Professional Development Unit, AOU Sassari, Sassari, Italy
| | - Emanuele Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - Antonio Spanevello
- Pneumology Unit, Fondazione Maugeri, IRCCS, Tradate, Italy; Dept of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | | |
Collapse
|
43
|
Hughes J, Isaakidis P, Andries A, Mansoor H, Cox V, Meintjes G, Cox H. Linezolid for multidrug-resistant tuberculosis in HIV-infected and -uninfected patients. Eur Respir J 2015; 46:271-4. [PMID: 25837033 DOI: 10.1183/09031936.00188114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/03/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Jennifer Hughes
- Médecins Sans Frontières (MSF)/Doctors without Borders, Cape Town, South Africa
| | | | | | | | - Vivian Cox
- Médecins Sans Frontières (MSF)/Doctors without Borders, Cape Town, South Africa
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, and Dept of Medicine, University of Cape Town (UCT), Cape Town, South Africa Dept of Medicine, Imperial College London, London, UK
| | - Helen Cox
- Division of Medical Microbiology, and Institute for Infectious Disease and Molecular Medicine, UCT, Cape Town, South Africa
| |
Collapse
|
44
|
Salfinger M, Migliori GB. Bedaquiline: 10 years later, the drug susceptibility testing protocol is still pending. Eur Respir J 2015; 45:317-21. [DOI: 10.1183/09031936.00199814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Abstract
PURPOSE OF REVIEW Recent advances in the development of new drugs and regimens provide hope that well tolerated, effective, and shorter-duration treatments for tuberculosis (TB) will become available. This review covers the recent trials of new TB drugs and regimens. RECENT FINDINGS Moxifloxacin and levofloxacin have equally good efficacy and safety in the early phase of treatment of multidrug-resistant TB (MDR-TB), and linezolid has the potential to cure refractory cases of MDR-TB. Bedaquiline and delamanid may be the best drug candidates for enhancing treatment options for MDR-TB. New chemicals, such as sutezolid, AZD5847, PA-824, SQ109, and BTZ043, show potent activity against Mycobacterium tuberculosis. Late-generation fluoroquinolones in combination with the first-line and second-line anti-TB drugs have been used to shorten the treatment duration in drug-susceptible and MDR-TB. SUMMARY New drugs and new combination regimens in clinical trials are expected to increase therapeutic efficacy and shorten treatment duration in both drug-susceptible and drug-resistant TB.
Collapse
Affiliation(s)
- Yong-Soo Kwon
- aDepartment of Internal Medicine, Chonnam National University Hospital, Gwangju bDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea *Yong-Soo Kwon and Byeong-Ho Jeong contributed equally to the writing of this work
| | | | | |
Collapse
|
46
|
Srivastava S. Minimum inhibitory concentration, pharmacokinetics/pharmacodynamics and therapeutic drug monitoring: An integrated approach for multidrug-resistant tuberculosis. Lung India 2015. [DOI: 10.4103/0970-2113.159600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Sotgiu G, Centis R, D'Ambrosio L, Castiglia P, Migliori GB. Low minimal inhibitory concentrations of linezolid against multidrug-resistant tuberculosis strains. Eur Respir J 2014; 45:287-9. [DOI: 10.1183/09031936.00135014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother 2014; 58:3168-76. [PMID: 24663015 DOI: 10.1128/aac.02278-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Predicting drug-drug interactions (DDIs) related to cytochrome P450 (CYP), such as CYP3A4 and one of the major drug transporters, P-glycoprotein (P-gp), is crucial in the development of future chemotherapeutic regimens to treat tuberculosis (TB) and TB/AIDS coinfection cases. We evaluated the effects of 30 anti-TB drugs, novel candidates, macrolides, and representative antiretroviral drugs on human CYP3A4 activity using a commercially available screening kit for CYP3A4 inhibitors and a human hepatocyte, HepaRG. Moreover, in order to estimate the interactions of these drugs with human P-gp, screening for substrates was performed. For some substrates, P-gp inhibition tests were carried out using P-gp-expressing MDCK cells. As a result, almost all the compounds showed the expected effects on human CYP3A4 both in the in vitro screening and in HepaRG cells. Importantly, the unproven mechanisms of DDIs caused by WHO group 5 drugs, thioamides, and p-aminosalicylic acid were elucidated. Intriguingly, clofazimine (CFZ) exhibited weak inductive effects on CYP3A4 at >0.25 μM in HepaRG cells, while an inhibitory effect was observed at 1.69 μM in the in vitro screening, suggesting that CFZ autoinduces CYP3A4 in the human liver. Our method, based on one of the pharmacokinetics parameters in humans, provides more practical information associated with not only DDIs but also with drug metabolism.
Collapse
|
49
|
Garcia-Prats AJ, Rose PC, Hesseling AC, Schaaf HS. Linezolid for the treatment of drug-resistant tuberculosis in children: A review and recommendations. Tuberculosis (Edinb) 2014; 94:93-104. [DOI: 10.1016/j.tube.2013.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/11/2013] [Accepted: 10/20/2013] [Indexed: 11/30/2022]
|