1
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
2
|
Li Q, Hujiaaihemaiti M, Wang J, Uddin MN, Li MY, Aierken A, Wu Y. Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4153-4177. [PMID: 36899621 DOI: 10.3934/mbe.2023194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND The deregulated genetic factors are critically associated with idiopathic pulmonary arterial hypertension (IPAH) development and progression. However, the identification of hub-transcription factors (TFs) and miRNA-hub-TFs co-regulatory network-mediated pathogenesis in IPAH remains lacking. METHODS We used GSE48149, GSE113439, GSE117261, GSE33463, and GSE67597 for identifying key genes and miRNAs in IPAH. We used a series of bioinformatics approaches, including R packages, protein-protein interaction (PPI) network, and gene set enrichment analysis (GSEA) to identify the hub-TFs and miRNA-hub-TFs co-regulatory networks in IPAH. Also, we employed a molecular docking approach to evaluate the potential protein-drug interactions. RESULTS We found that 14 TFs encoding genes, including ZNF83, STAT1, NFE2L3, and SMARCA2 are upregulated, and 47 TFs encoding genes, including NCOR2, FOXA2, NFE2, and IRF5 are downregulated in IPAH relative to the control. Then, we identified the differentially expressed 22 hub-TFs encoding genes, including four upregulated (STAT1, OPTN, STAT4, and SMARCA2) and 18 downregulated (such as NCOR2, IRF5, IRF2, MAFB, MAFG, and MAF) TFs encoding genes in IPAH. The deregulated hub-TFs regulate the immune system, cellular transcriptional signaling, and cell cycle regulatory pathways. Moreover, the identified differentially expressed miRNAs (DEmiRs) are involved in the co-regulatory network with hub-TFs. The six hub-TFs encoding genes, including STAT1, MAF, CEBPB, MAFB, NCOR2, and MAFG are consistently differentially expressed in the peripheral blood mononuclear cells of IPAH patients, and these hub-TFs showed significant diagnostic efficacy in distinguishing IPAH cases from the healthy individuals. Moreover, we revealed that the co-regulatory hub-TFs encoding genes are correlated with the infiltrations of various immune signatures, including CD4 regulatory T cells, immature B cells, macrophages, MDSCs, monocytes, Tfh cells, and Th1 cells. Finally, we discovered that the protein product of STAT1 and NCOR2 interacts with several drugs with appropriate binding affinity. CONCLUSIONS The identification of hub-TFs and miRNA-hub-TFs co-regulatory networks may provide a new avenue into the mechanism of IPAH development and pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Minawaer Hujiaaihemaiti
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Ming-Yuan Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Alidan Aierken
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
3
|
Dotan Y, Stewart J, Gangemi A, Wang H, Aneja A, Chakraborty B, Dass C, Zhao H, Marchetti N, D'Alonzo G, Cordova FC, Criner G, Mamary AJ. Pulmonary vasculopathy in explanted lungs from patients with interstitial lung disease undergoing lung transplantation. BMJ Open Respir Res 2021; 7:7/1/e000532. [PMID: 32661103 PMCID: PMC7359183 DOI: 10.1136/bmjresp-2019-000532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/21/2020] [Accepted: 06/03/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) causes increased morbidity and mortality in patients with interstitial lung diseases (ILD). Classification schemes, while well-characterised for the vasculopathy of idiopathic PH, have been applied, unchallenged, to ILD-related PH. We evaluated pulmonary arterial histopathology in explanted human lung tissue from patients who were transplanted for advanced fibrotic ILD. METHODS Lung explants from 38 adult patients who underwent lung transplantation were included. Patients were divided into three groups: none, mild/moderate and severe PH by mean pulmonary artery pressure (mPAP) measured at pre lung transplantation right heart catheterisation (RHC). Grading of pulmonary vasculopathy according to Heath and Edwards scheme, and prelung transplantation evaluation data were compared between the groups. RESULTS 38 patients with fibrotic ILDs were included, the majority (21) with idiopathic pulmonary fibrosis. Of the 38 patients, 18 had severe PH, 13 had mild/moderate PH and 7 had no PH by RHC. 16 of 38 patients had severe pulmonary arterial vasculopathy including vascular occlusion with intimal fibrosis and/or plexiform lesions. There were no correlations between mPAP and lung diffusion with the severity of pulmonary arterial pathological grade (Spearman's rho=0.14, p=0.34, rho=0.11, p=0.49, respectively). CONCLUSIONS Patients with end stage ILD had severe pulmonary arterial vasculopathy in their explanted lungs irrespective of the presence and/or severity of PH as measured by RHC. These findings suggest that advanced pulmonary arterial vasculopathy is common in patients with advanced fibrotic ILD and may develop prior to the clinical detection of PH by RHC.
Collapse
Affiliation(s)
- Yaniv Dotan
- Pulmonary and Critical Care Medicine, St Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Jeffrey Stewart
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew Gangemi
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - He Wang
- Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Amandeep Aneja
- Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Bhaidharbi Chakraborty
- Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Chandra Dass
- Department of Clinical Radiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gilbert D'Alonzo
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Francis C Cordova
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Albert James Mamary
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Ruffenach G, Hong J, Vaillancourt M, Medzikovic L, Eghbali M. Pulmonary hypertension secondary to pulmonary fibrosis: clinical data, histopathology and molecular insights. Respir Res 2020; 21:303. [PMID: 33208169 PMCID: PMC7677848 DOI: 10.1186/s12931-020-01570-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) developing secondarily in pulmonary fibrosis (PF) patients (PF-PH) is a frequent co-morbidity. The high prevalence of PH in PF patients is very concerning since the presence of PH is a strong predictor of mortality in PF patients. Until recently, PH was thought to arise solely from fibrotic destruction of the lung parenchyma, leading to hypoxic vasoconstriction and loss of vascular bed density. Thus, potential cellular and molecular dysregulation of vascular remodeling as a driver of PF-PH has been under-investigated. The recent demonstrations that there is no correlation between the severity of the fibrosis and development of PH, along with the finding that significant vascular histological and molecular differences exist between patients with and without PH have shifted the etiological paradigm of PF-PH. This review aims to provide a comprehensive translational overview of PH in PF patients from clinical diagnosis and outcome to the latest understanding of the histology and molecular pathophysiology of PF-PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mylène Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
5
|
Verleden SE, Braubach P, Kuehnel M, Dickgreber N, Brouwer E, Tittmann P, Laenger F, Jonigk D. Molecular approach to the classification of chronic fibrosing lung disease-there and back again. Virchows Arch 2020; 478:89-99. [PMID: 33169196 DOI: 10.1007/s00428-020-02964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Chronic diffuse parenchymal lung disease (DPLD) is an umbrella term for a very heterogeneous group of lung diseases. Over the last decades, clinical, radiological and histopathological criteria have been established to define and separate these entities. More recently the clinical utility of this approach has been challenged as a unifying concept of pathophysiological mechanisms and a shared response to therapy across the disease spectrum have been described. In this review, we discuss molecular motifs for subtyping and the prediction of prognosis focusing on genetics and markers found in the blood, lavage and tissue. As a purely molecular classification so far lacks sufficient sensitivity and specificity for subtyping, it is not routinely used and not implemented in international guidelines. However, a better molecular characterization of lung disease with a more precise identification of patients with, for example, a risk for rapid disease progression would facilitate more accurate treatment decisions and hopefully contribute to better patients' outcomes.
Collapse
Affiliation(s)
- Stijn E Verleden
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
- BREATHE Lab, Department of CHROMETA, KU Leuven, Leuven, Belgium.
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Nicolas Dickgreber
- Department of Respiratory Medicine and Thoracic Oncology, Ibbenbueren General Hospital, Ibbenbueren, Germany
| | - Emily Brouwer
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Pauline Tittmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Florian Laenger
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover, Germany
| |
Collapse
|
6
|
Otálora-Otálora BA, Florez M, López-Kleine L, Canas Arboleda A, Grajales Urrego DM, Rojas A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front Genet 2019; 10:1260. [PMID: 31867044 PMCID: PMC6908522 DOI: 10.3389/fgene.2019.01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Epidemiological and clinical evidence points cancer comorbidity with pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could be associated with the establishment of tumoral processes. Objective: To propose a bioinformatic pipeline for the identification of all deregulated genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer establishment, and therefore could be important for the acquisition of the hallmarks of cancer. Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing normal and diseases-related lung tissue were selected to identify hub differentiated expressed genes (DEGs) in common between lung pathologies and lung cancer, along with transcriptional regulators through the utilization of specialized libraries from R language. DAVID bioinformatics tool for gene enrichment analyses was used to identify genes with experimental evidence associated to tumoral processes and signaling pathways. Coexpression networks of DEGs and TFs in lung cancer establishment were created with Coexnet library, and a survival analysis of the main hub genes was made. Results: Two hundred ten DEGs were identified in common between lung cancer and other lung diseases related to the acquisition of tumoral characteristics, which are coexpressed in a lung cancer network with TFs, suggesting that could be related to the establishment of the tumoral pathology in lung. The comparison of the coexpression networks of lung cancer and other lung diseases allowed the identification of common connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes and signaling pathways, that haven´t been studied to experimentally validate their role in the early stages of lung cancer. Some of the TFs identified showed a correlation between its expression levels and the survival of lung cancer patients. Conclusion: Our findings indicate that lung diseases share genes with lung cancer which are coexpressed in lung cancer, and might be able to explain the epidemiological observations that point to direct and inverse comorbid associations between some chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.
Collapse
Affiliation(s)
| | - Mauro Florez
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Zhang L, Chen S, Zeng X, Lin D, Li Y, Gui L, Lin MJ. Revealing the pathogenic changes of PAH based on multiomics characteristics. J Transl Med 2019; 17:231. [PMID: 31331330 PMCID: PMC6647123 DOI: 10.1186/s12967-019-1981-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pulmonary artery hypertension (PAH), which is characterized by an increase in pulmonary circulation blood pressure, is a fatal disease, and its pathogenesis remains unclear. METHODS In this study, RNA sequencing (RNA-seq), tandem mass tags (TMT) and reduced representation bisulfite sequencing (RRBS) were performed to detect the levels of mRNA, protein, and DNA methylation in pulmonary arteries (PAs), respectively. To screen the possible pathways and proteins related to PAH, pathway enrichment analysis and protein-protein interaction (PPI) network analysis were performed. For selected genes, differential expression levels were confirmed at both the transcriptional and translational levels by real-time PCR and Western blot analyses, respectively. RESULTS A total of 362 differentially expressed genes (|Fold-change| > 1.5 and p < 0.05), 811 differentially expressed proteins (|Fold-change| > 1.2 and p < 0.05) and 76,562 differentially methylated regions (1000 bp slide windows, 500 bp overlap, p < 0.05, and |Fold-change| > 1.2) were identified when the PAH group (n = 15) was compared with the control group (n = 15). Through an integrated analysis of the characteristics of the three omic analyses, a multiomics table was constructed. Additionally, pathway enrichment analysis showed that the differentially expressed proteins were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways and ten Gene Ontology (GO) terms for the PAH group compared with the control group. Moreover, protein-protein interaction (PPI) networks were constructed to identify hub genes. Finally, according to the genes identified in the PPI and the protein expression fold-change, nine key genes and their associated proteins were verified by real-time PCR and Western blot analyses, including Col4a1, Itga5, Col2a1, Gstt1, Gstm3, Thbd, Mgst2, Kng1 and Fgg. CONCLUSIONS This study conducted multiomic characteristic profiling to identify genes that contribute to the hypoxia-induced PAH model, identifying new avenues for basic PAH research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shaokun Chen
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xixi Zeng
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dacen Lin
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yumei Li
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Longxin Gui
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mo-Jun Lin
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Vukmirovic M, Kaminski N. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:87. [PMID: 29670881 PMCID: PMC5894436 DOI: 10.3389/fmed.2018.00087] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Abstract
Transcriptome analysis is a powerful tool in the study of pulmonary vascular disease and pulmonary hypertension. Pulmonary hypertension is a disease process that consists of several unique pathologies sharing a common clinical definition, that of elevated pressure within the pulmonary circulation. As such, it has become increasingly important to identify both similarities and differences among the different classes of pulmonary hypertension. Transcriptome analysis has been an invaluable tool both in the basic science research on animal models as well as clinical research among the various different groups of pulmonary hypertension. This work has identified new potential candidate genes, implicated numerous biochemical and molecular pathways in diseased onset and progression, developed gene signatures to appropriately classify types of pulmonary hypertension and severity of illness, and identified novel gene mutations leading to hereditary forms of the disease.
Collapse
Affiliation(s)
- Dustin R Fraidenburg
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Wang Y, Yella J, Chen J, McCormack FX, Madala SK, Jegga AG. Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm Med 2017; 17:133. [PMID: 29058630 PMCID: PMC5649521 DOI: 10.1186/s12890-017-0472-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) is a fatal fibrotic lung disease occurring predominantly in middle-aged and older adults. The traditional diagnostic classification of IPF is based on clinical, radiological, and histopathological features. However, the considerable heterogeneity in IPF presentation suggests that differences in gene expression profiles can help to characterize and distinguish disease severity. Methods We used data-driven unsupervised clustering analysis, combined with a knowledge-based approach to identify and characterize IPF subgroups. Results Using transcriptional profiles on lung tissue from 131 patients with IPF/UIP and 12 non-diseased controls, we identified six subgroups of IPF that generally correlated with the disease severity and lung function decline. Network-informed clustering identified the most severe subgroup of IPF that was enriched with genes regulating inflammatory processes, blood pressure and branching morphogenesis of the lung. The differentially expressed genes in six subgroups of IPF compared to healthy control include transcripts of extracellular matrix, epithelial-mesenchymal cell cross-talk, calcium ion homeostasis, and oxygen transport. Further, we compiled differentially expressed gene signatures to identify unique gene clusters that can segregate IPF from normal, and severe from mild IPF. Additional validations of these signatures were carried out in three independent cohorts of IPF/UIP. Finally, using knowledge-based approaches, we identified several novel candidate genes which may also serve as potential biomarkers of IPF. Conclusions Discovery of unique and redundant gene signatures for subgroups in IPF can be greatly facilitated through unsupervised clustering. Findings derived from such gene signatures may provide insights into pathogenesis of IPF and facilitate the development of clinically useful biomarkers. Electronic supplementary material The online version of this article (10.1186/s12890-017-0472-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunguan Wang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaswanth Yella
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Horimasu Y, Ishikawa N, Taniwaki M, Yamaguchi K, Hamai K, Iwamoto H, Ohshimo S, Hamada H, Hattori N, Okada M, Arihiro K, Ohtsuki Y, Kohno N. Gene expression profiling of idiopathic interstitial pneumonias (IIPs): identification of potential diagnostic markers and therapeutic targets. BMC MEDICAL GENETICS 2017; 18:88. [PMID: 28821283 PMCID: PMC5562997 DOI: 10.1186/s12881-017-0449-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic fibrosing idiopathic interstitial pneumonia (IIP) is characterized by alveolar epithelial damage, activation of fibroblast proliferation, and loss of normal pulmonary architecture and function. This study aims to investigate the genetic backgrounds of IIP through gene expression profiling and pathway analysis, and to identify potential biomarkers that can aid in diagnosis and serve as novel therapeutic targets. METHODS RNA extracted from lung specimens of 12 patients with chronic fibrosing IIP was profiled using Illumina Human WG-6 v3 BeadChips, and Ingenuity Pathway Analysis was performed to identify altered functional and canonical signaling pathways. For validating the results from gene expression analysis, immunohistochemical staining of 10 patients with chronic fibrosing IIP was performed. RESULTS Ninety-eight genes were upregulated in IIP patients relative to control subjects. Some of the upregulated genes, namely desmoglein 3 (DSG3), protocadherin gamma-A9 (PCDHGA9) and discoidin domain-containing receptor 1 (DDR1) are implicated in cell-cell interaction and/or adhesion; some, namely collagen type VII, alpha 1 (COL7A1), contactin-associated protein-like 3B (CNTNAP3B) and mucin-1 (MUC1) are encoding the extracellular matrix molecule or the molecules involved in cell-matrix interactions; and the others, namely CDC25C and growth factor independent protein 1B (GFI1B) are known to affect cell proliferation by affecting the progression of cell cycle or regulating transcription. According to pathway analysis, alternated pathways in IIP were related to cell death and survival and cellular growth and proliferation, which are more similar to cancer than to inflammatory response and immunological diseases. Using immunohistochemistry, we further validate that DSG3, the most highly upregulated gene, shows higher expression in chronic fibrosing IIP lung as compared to control lung. CONCLUSION We identified several genes upregulated in chronic fibrosing IIP patients as compared to control, and found genes and pathways implicated in cancer, rather than in inflammatory or immunological disease to play important roles in the pathogenesis of IIPs. Moreover, DSG3 is a novel potential biomarker for chronic fibrosing IIP with its significantly high expression in IIP lung.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530 Japan
| | - Masaya Taniwaki
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kosuke Hamai
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Morihito Okada
- Department of Surgical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, 2-6-5 Ohtemachi, Matsuyama, 790-0067 Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
12
|
Horimasu Y, Ishikawa N, Iwamoto H, Ohshimo S, Hamada H, Hattori N, Okada M, Arihiro K, Ohtsuki Y, Kohno N. Clinical and molecular features of rapidly progressive chronic hypersensitivity pneumonitis. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2017; 34:48-57. [PMID: 32476822 DOI: 10.36141/svdld.v34i1.5388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Background: Chronic hypersensitivity pneumonitis (CHP) is characterized by varying degrees of inflammation and fibrosis of the lungs caused by a variety of inhaled antigens. Despite extensive efforts to minimize exposure to the antigens, patients with CHP sometimes experience rapid deterioration of their pulmonary functions, resulting in death within a few years. Objectives: This study aimed to define clearly the clinical and molecular features of patients with rapidly progressive CHP. Methods: Annual decline in pulmonary functions and its association with clinical variables was evaluated in 43 patients with CHP. The RNA from frozen lung specimens of nine patients with rapidly progressive CHP and normal control subjects was profiled using Illumina HumanWG-6 v3 Expression BeadChips, and an Ingenuity Pathway Analysis was performed to identify the altered functional and canonical signaling pathways. Results: Patients with more than 10% annual decline in forced vital capacity and those with more than 15% annual decline in diffusion capacity for carbon monoxide showed significantly poor overall survival rates (p=0.002 and p=0.001, respectively). According to the gene expression analysis, 160 genes, including cystatin SN (CST1), ephrin-A2 (EFNA2), and wingless-type MMTV integration site family, member 7B (WNT7B) were upregulated, and pathways related to inflammatory responses and autoimmune diseases were differentially expressed. Conclusion: Greater annual decline in pulmonary function can predict poorer prognosis of patients with CHP. Genes and pathways related to inflammatory responses and autoimmune diseases have potential roles in the pathogenesis of rapidly progressive CHP, suggesting their potential as diagnostic biomarkers and/or therapeutic targets. (Sarcoidosis Vasc Diffuse Lung Dis 2017; 34: 48-57).
Collapse
Affiliation(s)
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine.,Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan
| | | | | | | | | | - Morihito Okada
- Surgical Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, Matsuyama, Ehime 790-0067, Japan
| | | |
Collapse
|
13
|
Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary hypertension. Eur Respir J 2016; 48:229-41. [PMID: 27076594 PMCID: PMC5009873 DOI: 10.1183/13993003.02030-2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. Comprehensive overview of compartment-specific microarray studies of material from pulmonary hypertension patientshttp://ow.ly/YEFO2
Collapse
Affiliation(s)
- Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Kaarteenaho R, Lappi-Blanco E. Tissue is an issue in the search for biomarkers in idiopathic pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:3. [PMID: 25733981 PMCID: PMC4346107 DOI: 10.1186/s13069-015-0020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/15/2015] [Indexed: 02/06/2023]
Abstract
Biological markers, i.e., biomarkers, in lung tissue may make it possible to connect cell biological phenomena to the pathogenetic mechanisms in idiopathic pulmonary fibrosis (IPF). This review focuses on the lung tissue biomarkers, which have been compared with relevant clinical endpoints or with the most common differential diagnostic lung diseases. In addition, studies conducted on lung tissue samples and investigated by transcriptomic or proteomic methodologies have been included. Several studies have observed changes in alveolar epithelium and extracellular matrix supporting the current hypotheses of the pathogenesis of IPF. In many studies, however, alterations in inflammatory cells have been revealed, a phenomenon not currently incorporated into pathogenetic theories. Combining lung tissue material with other non-solid organs with clinically meaningful endpoints may prove to be the most beneficial approach in the search for non-invasive biomarkers.
Collapse
Affiliation(s)
- Riitta Kaarteenaho
- Respiratory Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland ; Respiratory Research Unit, Department of Internal Medicine, University of Oulu, Oulu, Finland ; Unit of Medicine and Clinical Research, Pulmonary Division, University of Eastern Finland, Kuopio, Finland ; Center for Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, Oulu University Hospital, Oulu, Finland ; Department of Pathology, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Marriott S, Baskir RS, Gaskill C, Menon S, Carrier EJ, Williams J, Talati M, Helm K, Alford CE, Kropski JA, Loyd J, Wheeler L, Johnson J, Austin E, Nozik-Grayck E, Meyrick B, West JD, Klemm DJ, Majka SM. ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. Am J Physiol Cell Physiol 2014; 307:C684-98. [PMID: 25122876 PMCID: PMC4200000 DOI: 10.1152/ajpcell.00114.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-β1 (TGF-β1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-β1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-β1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.
Collapse
Affiliation(s)
- Shennea Marriott
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Rubin S Baskir
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennesse
| | - Christa Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Swapna Menon
- Pulmonary Vascular Research Institute Kochi and AnalyzeDat Consulting Services, Kerala, India
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Janice Williams
- Vanderbilt Ingram Cancer Center, Electron Microscopy-Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Megha Talati
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Karen Helm
- Cancer Center Flow Cytometry Shared Resource, University of Colorado, Aurora, Colorado
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - James Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Lisa Wheeler
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Joyce Johnson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Eva Nozik-Grayck
- Department of Pediatrics or Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado; and
| | - Barbara Meyrick
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse; Vanderbilt Pulmonary Circulation Center, Vanderbilt University, Nashville, Tennessee
| | - Dwight J Klemm
- Department of Pediatrics or Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado; and
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Pulmonary Circulation Center, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennesse;
| |
Collapse
|
16
|
West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin D, Ware LB, Wheeler L, Hong CC, Meyrick B, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM. Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C415-30. [PMID: 24871858 PMCID: PMC4154073 DOI: 10.1152/ajpcell.00057.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/24/2022]
Abstract
Understanding differences in gene expression that increase risk for pulmonary arterial hypertension (PAH) is essential to understanding the molecular basis for disease. Previous studies on patient samples were limited by end-stage disease effects or by use of nonadherent cells, which are not ideal to model vascular cells in vivo. These studies addressed the hypothesis that pathological processes associated with PAH may be identified via a genetic signature common across multiple cell types. Expression array experiments were initially conducted to analyze cell types at different stages of vascular differentiation (mesenchymal stromal and endothelial) derived from PAH patient-specific induced pluripotent stem (iPS) cells. Molecular pathways that were altered in the PAH cell lines were then compared with those in fibroblasts from 21 patients, including those with idiopathic and heritable PAH. Wnt was identified as a target pathway and was validated in vitro using primary patient mesenchymal and endothelial cells. Taken together, our data suggest that the molecular lesions that cause PAH are present in all cell types evaluated, regardless of origin, and that stimulation of the Wnt signaling pathway was a common molecular defect in both heritable and idiopathic PAH.
Collapse
Affiliation(s)
- James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Christa Gaskill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Shennea Marriott
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Rubin Baskir
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ganna Bilousova
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | | | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Swapna Menon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Johnathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Lisa Wheeler
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Charles C Hong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Veterans Administration Hospital, Nashville, Tennessee
| | - Barbara Meyrick
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - James E Loyd
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Dwight J Klemm
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Susan M Majka
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee; Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India; and
| |
Collapse
|
17
|
Pathak RR, Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 2014; 33:1239-60. [PMID: 24802001 PMCID: PMC4396816 DOI: 10.1159/000358693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|