1
|
Bdaiwi AS, Willmering MM, Woods JC, Walkup LL, Cleveland ZI. Quantifying Spatial Distribution of Ventilation Defects in Multiple Pulmonary Diseases With Hyperpolarized 129Xenon MRI. J Magn Reson Imaging 2024. [PMID: 39434582 DOI: 10.1002/jmri.29627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Hyperpolarized 129Xe MRI assesses lung ventilation, often using the ventilation defect percentage (VDP). Unlike VDP, defect distribution index (DDI) quantifies spatial clustering of defects. PURPOSE To quantify spatial distribution of 129Xe ventilation defects using DDI across pulmonary diseases. STUDY TYPE Retrospective. SUBJECTS Four hundred twenty-one subjects (age = 23.1 ± 17.1, female = 230), comprising healthy controls (N = 60) and subjects with obstructive conditions (asthma [N = 25], bronchiolitis obliterans syndrome [BOS, N = 18], cystic fibrosis [CF, N = 90], lymphangioleiomyomatosis [LAM, N = 50]), restrictive conditions (bleomycin-treated cancer survivors [BLEO, N = 14]; fibrotic lung diseases [FLD, N = 92]), bone marrow transplantation (BMT, N = 53), and bronchopulmonary dysplasia (BPD, N = 19). FIELD STRENGTH/SEQUENCE 3 T, two-dimensional multi-slice gradient echo. ASSESSMENT Whole-lung mean DDI was extracted from DDI maps; correlated with VDP (percent of pixels <60% of whole-lung mean signal intensity) and pulmonary function tests (PFTs) including FEV1, FVC, and FEV1/FVC. DDI and DDI/VDP, a marker of defect clustering, were compared across diseases. STATISTICAL TESTS Pearson correlation analysis and Kruskal-Wallis tests. P < 0.0056 for disease groups, P < 0.0125 for categories. RESULTS DDI was significantly elevated in BMT (8.3 ± 11.5), BOS (30.1 ± 57.5), BPD (16.0 ± 46.8), CF (15.4 ± 27.2), and LAM (12.6 ± 34.2) compared to controls (1.8 ± 3.1). DDI correlated significantly with VDP in all groups (r ≥ 0.56) except BLEO, and with PFTs in CF, FLD, and LAM (r ≥ 0.56). Obstructive groups had significantly higher mean DDI (14.0 ± 32.0) than controls (1.8 ± 3.0) and restrictive groups (4.0 ± 12.0). DDI/VDP was significantly lower in the restrictive group (0.6 ± 0.6) than controls (0.8 ± 0.6) and obstructive group (1.0 ± 1.0). DATA CONCLUSION DDI may provide insights into the distribution of ventilation defects across diseases. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Collier GJ, Smith LJ, Saunders LC, Swift AJ, Marshall H, Stewart NJ, Norquay G, Hughes PJC, Thomspson AAR, Wild JM. Age, sex, and lung volume dependence of dissolved xenon-129 MRI gas exchange metrics. Magn Reson Med 2024; 92:1471-1483. [PMID: 38726472 DOI: 10.1002/mrm.30133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.
Collapse
Affiliation(s)
- Guilhem J Collier
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Laura C Saunders
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Helen Marshall
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - A A Roger Thomspson
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Matheson AM, Tanimoto A, Woods JC. Imaging in Pediatric Lung Disease: Current Practice and Future Directions. Clin Chest Med 2024; 45:569-585. [PMID: 39069322 DOI: 10.1016/j.ccm.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pediatric diseases present differently from adult diseases and imaging forms a cornerstone of modern pediatric care through differential diagnosis, disease monitoring, and measuring response to therapy. Imaging is especially well suited to providing novel insights into the underlying mechanisms driving disease through structural and functional imaging. In this review, we describe key imaging findings in standard-of-care and state-of-the-art techniques in pediatric and adult diseases with origins in childhood. We examine applications in small airways disease, large airway disease, diseases of maturity, interstitial lung disease, neuromuscular disease, congenital disease, and pulmonary infection.
Collapse
Affiliation(s)
- Alexander M Matheson
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Aki Tanimoto
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Cincinnati Bronchopulmonary Dysplasia Center, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Bdaiwi AS, Svoboda AM, Murdock KE, Hendricks A, Hossain MM, Kramer EL, Brewington JJ, Willmering MM, Woods JC, Walkup LL, Cleveland ZI. Quantifying abnormal alveolar microstructure in cystic fibrosis lung disease via hyperpolarized 129Xe diffusion MRI. J Cyst Fibros 2024; 23:926-935. [PMID: 38997823 PMCID: PMC11410525 DOI: 10.1016/j.jcf.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
RATIONALE Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted 129Xe MRI is a non-invasive and validated measure of lung microstructure. In this work, we investigate microstructural changes in people with CF (pwCF) relative to age-matched, healthy subjects using comprehensive imaging and analysis involving pulmonary-function tests (PFTs), and 129Xe MRI. METHODS 38 healthy subjects (age 6-40; 17.2 ± 9.5 years) and 39 pwCF (age 6-40; 15.6 ± 8.0 years) underwent 129Xe-diffusion MRI and PFTs. The distribution of diffusion measurements (i.e., apparent diffusion coefficients (ADC) and morphometric parameters) was assessed via linear binning (LB). The resulting volume percentages of bins were compared between controls and pwCF. Mean ADC and morphometric parameters were also correlated with PFTs. RESULTS Mean whole-lung ADC correlated significantly with age (P < 0.001) for both controls and CF, and with PFTs (P < 0.05) specifically for pwCF. Although there was no significant difference in mean ADC between controls and pwCF (P = 0.334), age-adjusted LB indicated significant voxel-level diffusion (i.e., ADC and morphometric parameters) differences in pwCF compared to controls (P < 0.05). CONCLUSIONS 129Xe diffusion MRI revealed microstructural abnormalities in CF lung disease. Smaller microstructural size may reflect compression from overall higher lung density due to interstitial inflammation, fibrosis, or other pathological changes. While elevated microstructural size may indicate emphysema-like remodeling due to chronic inflammation and infection.
Collapse
Affiliation(s)
- Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Alexandra M Svoboda
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Kyle E Murdock
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Alexandra Hendricks
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Md M Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Elizabeth L Kramer
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - John J Brewington
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Department of Physics, University of Cincinnati, Cincinnati, United States
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Riley M, Arigliani M, Davies G, Aurora P. Looking beyond LCI: Multiple breath washout phase III slope derived indices and their application in chronic respiratory disease in children. Pediatr Pulmonol 2024. [PMID: 39031489 DOI: 10.1002/ppul.27177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
The multiple breath washout (MBW) test is widely reported in the context of Lung Clearance Index (LCI). LCI reflects global ventilation inhomogeneity but does not provide information regarding the localization of disease along the respiratory tree. The MBW-derived normalized phase III slope (SnIII) indices (Scond and Sacin), instead, can distinguish between convective-dependent and diffusion-convection-dependent ventilation inhomogeneity considered to occur within the conductive and acinar airways, respectively. In cystic fibrosis, Scond tends to become abnormal even earlier than LCI and spirometry. The value of Scond and Sacin in clinical practice has been recently explored in other respiratory conditions, including asthma, primary ciliary dyskinesia, bronchopulmonary dysplasia, bronchiolitis obliterans, and sickle cell disease. In this narrative review we offer an overview on the theoretical background, potentialities, and limitations of SnIII analysis in children, including challenges and feasibility aspects. Moreover, we summarize current evidence on the use of SnIII-derived indices across different groups of pediatric chronic respiratory disease and we highlight the gaps in knowledge that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mollie Riley
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health (UCL GOS ICH), London, UK
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michele Arigliani
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health (UCL GOS ICH), London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Gwyneth Davies
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Population, Policy and Practice Research and Teaching Department, UCL GOS ICH, London, UK
| | - Paul Aurora
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health (UCL GOS ICH), London, UK
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Wojsyk-Banaszak I, Więckowska B, Szczepankiewicz A, Stachowiak Z, Andrzejewska M, Juchnowicz J, Kycler M, Famulska P, Osińska M, Jończyk-Potoczna K. MRI and Pulmonary Function Tests' Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. J Clin Med 2023; 12:5136. [PMID: 37568538 PMCID: PMC10419458 DOI: 10.3390/jcm12155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Magnetic resonance imaging (MRI) of the chest is becoming more available in the detection and monitoring of early changes in lung function and structure in patients with cystic fibrosis (CF). The aim of this study was to assess the relationship between pulmonary function tests (PFT) and perfusion deficits in CF children measured by MRI. We performed a retrospective analysis of the perfusion lung MRI scans and the results of spirometry, oscillometry, body plethysmography, single-breath carbon monoxide uptake, and multiple-breath washout technique (MBW). There were statistically significant correlations between the MRI perfusion scores and MBW parameters (2.5% LCI, M1/M0, M2/M0), spirometry parameters (FEV1, FVC, FEF25/75), reactance indices in impulse oscillometry (X5Hz, X10Hz), total lung capacity (TLC) measured in single breath carbon monoxide uptake, markers of air-trapping in body plethysmography (RV, RV/TLC), and the diffusing capacity of the lungs for carbon monoxide. We also observed significant differences in the aforementioned PFT variables between the patient groups divided based on perfusion scores. We noted a correlation between markers of functional lung deficits measured by the MRI and PFTs in CF children. MRI perfusion abnormalities were reflected sooner in the course of the disease than PFT abnormalities.
Collapse
Affiliation(s)
- Irena Wojsyk-Banaszak
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (B.W.); (J.J.)
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (A.S.); (Z.S.)
| | - Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (A.S.); (Z.S.)
| | - Marta Andrzejewska
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Jerzy Juchnowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (B.W.); (J.J.)
| | - Maciej Kycler
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (M.A.); (M.K.)
| | - Paulina Famulska
- Pediatric and Cystic Fibrosis Department, Pediatric Hospital in Gdańsk, 80-308 Gdańsk, Poland; (P.F.); (M.O.)
| | - Marta Osińska
- Pediatric and Cystic Fibrosis Department, Pediatric Hospital in Gdańsk, 80-308 Gdańsk, Poland; (P.F.); (M.O.)
| | | |
Collapse
|
7
|
Kirkness JP, Dusting J, Eikelis N, Pirakalathanan P, DeMarco J, Shiao SL, Fouras A. Association of x-ray velocimetry (XV) ventilation analysis compared to spirometry. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1148310. [PMID: 37440838 PMCID: PMC10335741 DOI: 10.3389/fmedt.2023.1148310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction X-ray Velocimetry (XV) ventilation analysis is a 4-dimensional imaging-based method for quantifying regional ventilation, aiding in the assessment of lung function. We examined the performance characteristics of XV ventilation analysis by examining correlation to spirometry and measurement repeatability. Methods XV analysis was assessed in 27 patients receiving thoracic radiotherapy for non-lung cancer malignancies. Measurements were obtained pre-treatment and at 4 and 12-months post-treatment. XV metrics such as ventilation defect percent (VDP) and regional ventilation heterogeneity (VH) were compared to spirometry at each time point, using correlation analysis. Repeatability was assessed between multiple runs of the analysis algorithm, as well as between multiple breaths in the same patient. Change in VH and VDP in a case series over 12 months was used to determine effect size and estimate sample sizes for future studies. Results VDP and VH were found to significantly correlate with FEV1 and FEV1/FVC (range: -0.36 to -0.57; p < 0.05). Repeatability tests demonstrated that VDP and VH had less than 2% variability within runs and less than 8% change in metrics between breaths. Three cases were used to illustrate the advantage of XV over spirometry, where XV indicated a change in lung function that was either undetectable or delayed in detection by spirometry. Case A demonstrated an improvement in XV metrics over time despite stable spirometric values. Case B demonstrated a decline in XV metrics as early as 4-months, although spirometric values did not change until 12-months. Case C demonstrated a decline in XV metrics at 12 months post-treatment while spirometric values remained normal throughout the study. Based on the effect sizes in each case, sample sizes ranging from 10 to 38 patients would provide 90% power for future studies aiming to detect similar changes. Conclusions The performance and safety of XV analysis make it ideal for both clinical and research applications across most lung indications. Our results support continued research and provide a basis for powering future studies using XV as an endpoint to examine lung health and determine therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | | | - John DeMarco
- Department of Radiation Oncology and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L. Shiao
- Department of Radiation Oncology and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
8
|
Marshall H, Voskrebenzev A, Smith LJ, Biancardi AM, Kern AL, Collier GJ, Wielopolski PA, Ciet P, Tiddens HAWM, Vogel‐Claussen J, Wild JM. 129 Xe and Free-Breathing 1 H Ventilation MRI in Patients With Cystic Fibrosis: A Dual-Center Study. J Magn Reson Imaging 2023; 57:1908-1921. [PMID: 36218321 PMCID: PMC10946578 DOI: 10.1002/jmri.28470] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Free-breathing 1 H ventilation MRI shows promise but only single-center validation has yet been performed against methods which directly image lung ventilation in patients with cystic fibrosis (CF). PURPOSE To investigate the relationship between 129 Xe and 1 H ventilation images using data acquired at two centers. STUDY TYPE Sequence comparison. POPULATION Center 1; 24 patients with CF (12 female) aged 9-47 years. Center 2; 7 patients with CF (6 female) aged 13-18 years, and 6 healthy controls (6 female) aged 21-31 years. Data were acquired in different patients at each center. FIELD STRENGTH/SEQUENCE 1.5 T, 3D steady-state free precession and 2D spoiled gradient echo. ASSESSMENT Subjects were scanned with 129 Xe ventilation and 1 H free-breathing MRI and performed pulmonary function tests. Ventilation defect percent (VDP) was calculated using linear binning and images were visually assessed by H.M., L.J.S., and G.J.C. (10, 5, and 8 years' experience). STATISTICAL TESTS Correlations and linear regression analyses were performed between 129 Xe VDP, 1 H VDP, FEV1 , and LCI. Bland-Altman analysis of 129 Xe VDP and 1 H VDP was carried out. Differences in metrics were assessed using one-way ANOVA or Kruskal-Wallis tests. RESULTS 129 Xe VDP and 1 H VDP correlated strongly with; each other (r = 0.84), FEV1 z-score (129 Xe VDP r = -0.83, 1 H VDP r = -0.80), and LCI (129 Xe VDP r = 0.91, 1 H VDP r = 0.82). Bland-Altman analysis of 129 Xe VDP and 1 H VDP from both centers had a bias of 0.07% and limits of agreement of -16.1% and 16.2%. Linear regression relationships of VDP with FEV1 were not significantly different between 129 Xe and 1 H VDP (P = 0.08), while 129 Xe VDP had a stronger relationship with LCI than 1 H VDP. DATA CONCLUSION 1 H ventilation MRI shows large-scale agreement with 129 Xe ventilation MRI in CF patients with established lung disease but may be less sensitive to subtle ventilation changes in patients with early-stage lung disease. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany
| | - Laurie J. Smith
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| | - Alberto M. Biancardi
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| | - Agilo L. Kern
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany
| | - Guilhem J. Collier
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| | | | - Pierluigi Ciet
- Department of Radiology and Nuclear medicineErasmus MCRotterdamThe Netherlands
- Department of Pediatric Pulmonology and AllergologySophia Children's Hospital, Erasmus MCRotterdamThe Netherlands
| | - Harm A. W. M. Tiddens
- Department of Radiology and Nuclear medicineErasmus MCRotterdamThe Netherlands
- Department of Pediatric Pulmonology and AllergologySophia Children's Hospital, Erasmus MCRotterdamThe Netherlands
| | - Jens Vogel‐Claussen
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany
| | - Jim M. Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| |
Collapse
|
9
|
Munidasa S, Zanette B, Couch M, Grimm R, Seethamraju R, Dumas MP, Wee W, Au J, Braganza S, Li D, Woods J, Ratjen F, Santyr G. Inter- and intravisit repeatability of free-breathing MRI in pediatric cystic fibrosis lung disease. Magn Reson Med 2023; 89:2048-2061. [PMID: 36576212 DOI: 10.1002/mrm.29566] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study is to assess the intra- and interscan repeatability of free-breathing phase-resolved functional lung (PREFUL) MRI in stable pediatric cystic fibrosis (CF) lung disease in comparison to static breath-hold hyperpolarized 129-xenon MRI (Xe-MRI) and pulmonary function tests. METHODS Free-breathing 1-hydrogen MRI and Xe-MRI were acquired from 15 stable pediatric CF patients and seven healthy age-matched participants on two visits, 1 month apart. Same-visit MRI scans were also performed on a subgroup of the CF patients. Following the PREFUL algorithm, regional ventilation (RVent) and regional flow volume loop cross-correlation maps were determined from the free-breathing data. Ventilation defect percentage (VDP) was determined from RVent maps (VDPRVent ), regional flow volume loop cross-correlation maps (VDPCC ), VDPRVent ∪ VDPCC , and multi-slice Xe-MRI. Repeatability was evaluated using Bland-Altman analysis, coefficient of repeatability (CR), and intraclass correlation. RESULTS Minimal bias and no significant differences were reported for all PREFUL MRI and Xe-MRI VDP parameters between intra- and intervisits (all P > 0.05). Repeatability of VDPRVent , VDPCC , VDPRVent ∪ VDPCC , and multi-slice Xe-MRI were lower between the two-visit scans (CR = 14.81%, 15.36%, 16.19%, and 9.32%, respectively) in comparison to the same-day scans (CR = 3.38%, 2.90%, 1.90%, and 3.92%, respectively). pulmonary function tests showed high interscan repeatability relative to PREFUL MRI and Xe-MRI. CONCLUSION PREFUL MRI, similar to Xe-MRI, showed high intravisit repeatability but moderate intervisit repeatability in CF, which may be due to inherent disease instability, even in stable patients. Thus, PREFUL MRI may be considered a suitable outcome measure for future treatment response studies.
Collapse
Affiliation(s)
- Samal Munidasa
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcus Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Siemens Healthcare Limited, Montreal, Quebec, Canada
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Ravi Seethamraju
- MR Collaborations North East, Siemens Healthineers, Malvern, Pennsylvania, USA
| | - Marie-Pier Dumas
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wallace Wee
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacky Au
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Braganza
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Woods
- Center for Pulmonary Imaging Research, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Felix Ratjen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Abstract
The need for airway imaging is defined by the limited sensitivity of common clinical tests like spirometry, lung diffusion (DLCO) and blood gas analysis to early changes of peripheral airways and to inhomogeneous regional distribution of lung function deficits. Therefore, X-ray and computed tomography (CT) are frequently used to complement the standard tests.As an alternative, magnetic resonance imaging (MRI) offers radiation-free lung imaging, but at lower spatial resolution. Non-contrast enhanced MRI shows healthy airways down to the first subsegmental level/4th order (CT: eighth). Bronchiectasis can be identified by wall thickening and fluid accumulation. Smaller airways become visible, when altered by peribronchiolar inflammation or mucus retention (tree-in-bud sign).The strength of MRI is functional imaging. Dynamic, time-resolved MRI directly visualizes expiratory airway collapse down to the lobar level (CT: segmental level). Obstruction of even smaller airways becomes visible as air trapping on the expiratory scans. MRI with hyperpolarized noble gases (3He, 129Xe) directly shows the large airways and peripheral lung ventilation. Dynamic contrast-enhanced MRI (DCE MRI) indirectly shows airway dysfunction as perfusion deficits resulting from hypoxic vasoconstriction of the dependent lung volumes. Further promising scientific approaches such as non-contrast enhanced, ventilation-/perfusion-weighted MRI from periodic signal changes of respiration and blood flow are in development.In summary, MRI of the lungs and airways excels with its unique combination of morphologic and functional imaging capacities for research (e.g., in chronic obstructive lung disease or asthma) as well as for clinical imaging (e.g., in cystic fibrosis).
Collapse
Affiliation(s)
- Juergen Biederer
- Christian-Albrechts-Universität zu Kiel, Faculty of Medicine, Kiel, Germany.,University of Latvia, Faculty of Medicine, Raina bulvaris, Riga, Latvia.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Im Neuenheimer Feld, Heidelberg, Germany.,Department of Diagnostic and interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Chan HF, Smith LJ, Biancardi AM, Bray J, Marshall H, Hughes PJC, Collier GJ, Rao M, Norquay G, Swift AJ, Hart K, Cousins M, Watkins WJ, Wild JM, Kotecha S. Image Phenotyping of Preterm-Born Children Using Hyperpolarized 129Xe Lung Magnetic Resonance Imaging and Multiple-Breath Washout. Am J Respir Crit Care Med 2023; 207:89-100. [PMID: 35972833 PMCID: PMC9952860 DOI: 10.1164/rccm.202203-0606oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Rationale: Preterm birth is associated with low lung function in childhood, but little is known about the lung microstructure in childhood. Objectives: We assessed the differential associations between the historical diagnosis of bronchopulmonary dysplasia (BPD) and current lung function phenotypes on lung ventilation and microstructure in preterm-born children using hyperpolarized 129Xe ventilation and diffusion-weighted magnetic resonance imaging (MRI) and multiple-breath washout (MBW). Methods: Data were available from 63 children (aged 9-13 yr), including 44 born preterm (⩽34 weeks' gestation) and 19 term-born control subjects (⩾37 weeks' gestation). Preterm-born children were classified, using spirometry, as prematurity-associated obstructive lung disease (POLD; FEV1 < lower limit of normal [LLN] and FEV1/FVC < LLN), prematurity-associated preserved ratio of impaired spirometry (FEV1 < LLN and FEV1/FVC ⩾ LLN), preterm-(FEV1 ⩾ LLN) and term-born control subjects, and those with and without BPD. Ventilation heterogeneity metrics were derived from 129Xe ventilation MRI and SF6 MBW. Alveolar microstructural dimensions were derived from 129Xe diffusion-weighted MRI. Measurements and Main Results: 129Xe ventilation defect percentage and ventilation heterogeneity index were significantly increased in preterm-born children with POLD. In contrast, mean 129Xe apparent diffusion coefficient, 129Xe apparent diffusion coefficient interquartile range, and 129Xe mean alveolar dimension interquartile range were significantly increased in preterm-born children with BPD, suggesting changes of alveolar dimensions. MBW metrics were all significantly increased in the POLD group compared with preterm- and term-born control subjects. Linear regression confirmed the differential effects of obstructive disease on ventilation defects and BPD on lung microstructure. Conclusion: We show that ventilation abnormalities are associated with POLD, and BPD in infancy is associated with abnormal lung microstructure.
Collapse
Affiliation(s)
- Ho-Fung Chan
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Laurie J. Smith
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Alberto M. Biancardi
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jody Bray
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen Marshall
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Paul J. C. Hughes
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Guilhem J. Collier
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. Swift
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Kylie Hart
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - W. John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jim M. Wild
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| |
Collapse
|
13
|
Whitfield CA, Horsley A, Jensen OE, Horn FC, Collier GJ, Smith LJ, Wild JM. Model-based Bayesian inference of the ventilation distribution in patients with cystic fibrosis from multiple breath washout, with comparison to ventilation MRI. Respir Physiol Neurobiol 2022; 302:103919. [PMID: 35562095 DOI: 10.1016/j.resp.2022.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Indices of ventilation heterogeneity (VH) from multiple breath washout (MBW) have been shown to correlate well with VH indices derived from hyperpolarised gas ventilation MRI. Here we report the prediction of ventilation distributions from MBW data using a mathematical model, and the comparison of these predictions with imaging data. METHODS We developed computer simulations of the ventilation distribution in the lungs to model MBW measurement with 3 parameters: σV, determining the extent of VH; V0, the lung volume; and VD, the dead-space volume. These were inferred for each individual from supine MBW data recorded from 25 patients with cystic fibrosis (CF) using approximate Bayesian computation. The fitted models were used to predict the distribution of gas imaged by 3He ventilation MRI measurements collected from the same visit. RESULTS The MRI indices measured (I1/3, the fraction of pixels below one-third of the mean intensity and ICV, the coefficient of variation of pixel intensity) correlated strongly with those predicted by the MBW model fits (r=0.93,0.88 respectively). There was also good agreement between predicted and measured MRI indices (mean bias ± limits of agreement: I1/3:-0.003±0.118 and ICV:-0.004±0.298). Fitted model parameters were robust to truncation of MBW data. CONCLUSION We have shown that the ventilation distribution in the lung can be inferred from an MBW signal, and verified this using ventilation MRI. The Bayesian method employed extracts this information with fewer breath cycles than required for LCI, reducing acquisition time required, and gives uncertainty bounds, which are important for clinical decision making.
Collapse
Affiliation(s)
- Carl A Whitfield
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK; Department of Mathematics, University of Manchester, Manchester, UK.
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Oliver E Jensen
- Department of Mathematics, University of Manchester, Manchester, UK
| | - Felix C Horn
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, UK
| | - Laurie J Smith
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, UK
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, UK
| |
Collapse
|
14
|
Bourke C, Devadason S, Ditcham W, Depiazzi J, Everard ML. Controlled inhalation improves central and peripheral deposition in cystic fibrosis patients with moderate lung disease. J Paediatr Child Health 2022; 58:1066-1068. [PMID: 35174574 PMCID: PMC9303168 DOI: 10.1111/jpc.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
AIM With progressive impairment of lung function, deposition of inhaled drug in the lungs becomes progressively more central, limiting its effectiveness. This pilot study explored the possibility that long slow inhalations might improve delivery of aerosol to the lung periphery in cystic fibrosis patients with moderate lung disease. METHODS Five subjects aged 12-18 years (mean FEV1 72%; range 63-80%) inhaled a radiolabelled aerosol from a jet nebuliser on two occasions. Two inhalation techniques were compared: breathing tidally from a standard continuous output nebuliser and using long slow inhalations from the AKITA® JET system. RESULTS Long slow breaths resulted in much lower oropharyngeal deposition with higher lung doses. Importantly, the peripheral lung increased proportionately. The increased lung dose is attributable to more of the larger inhaled droplets passing into the lower airways. This would be expected to increase the central deposition unless significantly more of the smaller droplets were able to penetrate deeper into the lungs. The data support improved delivery of drug to the distal lung when compared with tidal breathing. CONCLUSION These pilot data suggest that this approach may prove to be clinically relevant in improving the efficacy of inhaled medication in those with moderate-severe lung disease.
Collapse
Affiliation(s)
- Crystal Bourke
- Physiotherapy DepartmentPerth Children's HospitalPerthWestern AustraliaAustralia
| | - Sunalene Devadason
- Division of Paediatrics, Medical SchoolUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - William Ditcham
- Division of Paediatrics, Medical SchoolUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Julie Depiazzi
- Physiotherapy DepartmentPerth Children's HospitalPerthWestern AustraliaAustralia
| | - Mark L Everard
- Division of Paediatrics, Medical SchoolUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
15
|
Stewart NJ, Smith LJ, Chan HF, Eaden JA, Rajaram S, Swift AJ, Weatherley ND, Biancardi A, Collier GJ, Hughes D, Klafkowski G, Johns CS, West N, Ugonna K, Bianchi SM, Lawson R, Sabroe I, Marshall H, Wild JM. Lung MRI with hyperpolarised gases: current & future clinical perspectives. Br J Radiol 2022; 95:20210207. [PMID: 34106792 PMCID: PMC9153706 DOI: 10.1259/bjr.20210207] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James A Eaden
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nicholas D Weatherley
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David Hughes
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Christopher S Johns
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Noreen West
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Kelechi Ugonna
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Stephen M Bianchi
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Rod Lawson
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Ian Sabroe
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
16
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
17
|
Valk A, Willers C, Shahim K, Pusterla O, Bauman G, Sandkühler R, Bieri O, Wyler F, Latzin P. Defect distribution index: A novel metric for functional lung MRI in cystic fibrosis. Magn Reson Med 2021; 86:3224-3235. [PMID: 34337778 PMCID: PMC9292253 DOI: 10.1002/mrm.28947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
Purpose Lung impairment from functional MRI is frequently assessed as defect percentage. The defect distribution, however, is currently not quantified. The purpose of this work was to develop a novel measure that quantifies how clustered or scattered defects in functional lung MRI appear, and to evaluate it in pediatric cystic fibrosis. Theory The defect distribution index (DDI) calculates a score for each lung voxel categorized as defected. The index increases according to how densely and how far an expanding circle around a defect voxel contains more than 50% defect voxels. Methods Fractional ventilation and perfusion maps of 53 children with cystic fibrosis were previously acquired with matrix pencil decomposition MRI. In this work, the DDI is compared to a visual score of 3 raters who evaluated how clustered the lung defects appear. Further, spearman correlations between DDI and lung function parameters were determined. Results The DDI strongly correlates with the visual scoring (r = 0.90 for ventilation; r = 0.88 for perfusion; P < .0001). Although correlations between DDI and defect percentage are moderate to strong (r = 0.61 for ventilation; r = 0.75 for perfusion; P < .0001), the DDI distinguishes between patients with comparable defect percentage. Conclusion The DDI is a novel measure for functional lung MRI. It provides complementary information to the defect percentage because the DDI assesses defect distribution rather than defect size. The DDI is applicable to matrix pencil MRI data of cystic fibrosis patients and shows very good agreement with human perception of defect distributions. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Anne Valk
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Paediatric Pulmonology and Allergology, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Corin Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kamal Shahim
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orso Pusterla
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Robin Sandkühler
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
The effect of acute maximal exercise on the regional distribution of ventilation using ventilation MRI in CF. J Cyst Fibros 2021; 20:625-631. [DOI: 10.1016/j.jcf.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
|
19
|
Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes (Basel) 2021; 12:genes12060803. [PMID: 34070354 PMCID: PMC8229033 DOI: 10.3390/genes12060803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) lung disease has the greatest impact on the morbidity and mortality of patients suffering from this autosomal-recessive multiorgan disorder. Although CF is a monogenic disorder, considerable phenotypic variability of lung disease is observed in patients with CF, even in those carrying the same mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene or CFTR mutations with comparable functional consequences. In most patients with CF, lung disease progresses from childhood to adulthood, but is already present in infants soon after birth. In addition to the CFTR genotype, the variability of early CF lung disease can be influenced by several factors, including modifier genes, age at diagnosis (following newborn screening vs. clinical symptoms) and environmental factors. The early onset of CF lung disease requires sensitive, noninvasive measures to detect and monitor changes in lung structure and function. In this context, we review recent progress with using multiple-breath washout (MBW) and lung magnetic resonance imaging (MRI) to detect and quantify CF lung disease from infancy to adulthood. Further, we discuss emerging data on the impact of variability of lung disease severity in the first years of life on long-term outcomes and the potential use of this information to improve personalized medicine for patients with CF.
Collapse
|
20
|
Bayfield KJ, Douglas TA, Rosenow T, Davies JC, Elborn SJ, Mall M, Paproki A, Ratjen F, Sly PD, Smyth AR, Stick S, Wainwright CE, Robinson PD. Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 2021; 76:1255-1265. [PMID: 33927017 DOI: 10.1136/thoraxjnl-2020-216085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Structural and functional defects within the lungs of children with cystic fibrosis (CF) are detectable soon after birth and progress throughout preschool years often without overt clinical signs or symptoms. By school age, most children have structural changes such as bronchiectasis or gas trapping/hypoperfusion and lung function abnormalities that persist into later life. Despite improved survival, gains in forced expiratory volume in one second (FEV1) achieved across successive birth cohorts during childhood have plateaued, and rates of FEV1 decline in adolescence and adulthood have not slowed. This suggests that interventions aimed at preventing lung disease should be targeted to mild disease and commence in early life. Spirometry-based classifications of 'normal' (FEV1≥90% predicted) and 'mild lung disease' (FEV1 70%-89% predicted) are inappropriate, given the failure of spirometry to detect significant structural or functional abnormalities shown by more sensitive imaging and lung function techniques. The state and readiness of two imaging (CT and MRI) and two functional (multiple breath washout and oscillometry) tools for the detection and monitoring of early lung disease in children and adults with CF are discussed in this article.Prospective research programmes and technological advances in these techniques mean that well-designed interventional trials in early lung disease, particularly in young children and infants, are possible. Age appropriate, randomised controlled trials are critical to determine the safety, efficacy and best use of new therapies in young children. Regulatory bodies continue to approve medications in young children based on safety data alone and extrapolation of efficacy results from older age groups. Harnessing the complementary information from structural and functional tools, with measures of inflammation and infection, will significantly advance our understanding of early CF lung disease pathophysiology and responses to therapy. Defining clinical utility for these novel techniques will require effective collaboration across multiple disciplines to address important remaining research questions. Future impact on existing management burden for patients with CF and their family must be considered, assessed and minimised.To address the possible role of these techniques in early lung disease, a meeting of international leaders and experts in the field was convened in August 2019 at the Australiasian Cystic Fibrosis Conference. The meeting entitiled 'Shaping imaging and functional testing for early disease detection of lung disease in Cystic Fibrosis', was attended by representatives across the range of disciplines involved in modern CF care. This document summarises the proceedings, key priorities and important research questions highlighted.
Collapse
Affiliation(s)
- Katie J Bayfield
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Tonia A Douglas
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim Rosenow
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Stuart J Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Translational Pulmonology, German Center for Lung Research, Berlin, Germany
| | - Anthony Paproki
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Felix Ratjen
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queenland, Herston, Queensland, Australia
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology. School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Stephen Stick
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia .,Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia.,The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Mondéjar-López P, Horsley A, Ratjen F, Bertolo S, de Vicente H, Asensio de la Cruz Ò. A multimodal approach to detect and monitor early lung disease in cystic fibrosis. Expert Rev Respir Med 2021; 15:761-772. [PMID: 33843417 DOI: 10.1080/17476348.2021.1908131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: In the early stages, lung involvement in cystic fibrosis (CF) can be silent, with disease progression occurring in the absence of clinical symptoms. Irreversible airway damage is present in the early stages of disease; however, reliable biomarkers of early damage due to inflammation and infection that are universally applicable in day-to-day patient management have yet to be identified.Areas covered: At present, the main methods of detecting and monitoring early lung disease in CF are the lung clearance index (LCI), computed tomography (CT), and magnetic resonance imaging (MRI). LCI can be used to detect patients who may require more intense monitoring, identify exacerbations, and monitor responses to new interventions. High-resolution CT detects structural alterations in the lungs of CF patients with the best resolution of current imaging techniques. MRI is a radiation-free imaging alternative that provides both morphological and functional information. The role of MRI for short-term follow-up and pulmonary exacerbations is currently being investigated.Expert opinion: The roles of LCI and MRI are expected to expand considerably over the next few years. Meanwhile, closer collaboration between pulmonology and radiology specialties is an important goal toward improving care and optimizing outcomes in young patients with CF.
Collapse
Affiliation(s)
- Pedro Mondéjar-López
- Pediatric Pulmonologist, Pediatric Pulmonology and Cystic Fibrosis Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alexander Horsley
- Honorary Consultant, Respiratory Research Group, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Felix Ratjen
- Head, Division of Respiratory Medicine, Department of Pediatrics, Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Silvia Bertolo
- Radiologist, Department of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | | | - Òscar Asensio de la Cruz
- Pediatric Pulmonologist, Pediatric Unit, University Hospital Parc Taulí de Sabadell, Sabadell, Spain
| |
Collapse
|
22
|
Goralski JL, Stewart NJ, Woods JC. Novel imaging techniques for cystic fibrosis lung disease. Pediatr Pulmonol 2021; 56 Suppl 1:S40-S54. [PMID: 32592531 PMCID: PMC7808406 DOI: 10.1002/ppul.24931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
With an increasing number of patients with cystic fibrosis (CF) receiving highly effective CFTR (cystic fibrosis transmembrane regulator protein) modulator therapy, particularly at a young age, there is an increasing need to identify imaging tools that can detect and regionally visualize mild CF lung disease and subtle changes in disease state. In this review, we discuss the latest developments in imaging modalities for both structural and functional imaging of the lung available to CF clinicians and researchers, from the widely available, clinically utilized imaging methods for assessing CF lung disease-chest radiography and computed tomography-to newer techniques poised to become the next phase of clinical tools-structural/functional proton and hyperpolarized gas magnetic resonance imaging (MRI). Finally, we provide a brief discussion of several newer lung imaging techniques that are currently available only in selected research settings, including chest tomosynthesis, and fluorinated gas MRI. We provide an update on the clinical and/or research status of each technique, with a focus on sensitivity, early disease detection, and possibilities for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Jennifer L Goralski
- UNC Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil J Stewart
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Infection, Immunity & Cardiovascular Disease, POLARIS Group, Imaging Sciences, University of Sheffield, Sheffield, UK
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
23
|
Mallallah F, Packham A, Lee E, Hind D. Is hyperpolarised gas magnetic resonance imaging a valid and reliable tool to detect lung health in cystic fibrosis patients? a cosmin systematic review. J Cyst Fibros 2021; 20:906-919. [PMID: 33454201 DOI: 10.1016/j.jcf.2020.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
This paper systematically reviewed the literature reporting the validity and reliability of hyperpolarised gas MRI as a marker of lung health in cystic fibrosis (CF). MEDLINE, EMBASE and grey literature were searched for studies assessing the measurement properties of hyperpolarised helium-3 or xenon-129 MRI. The COSMIN risk of bias tool was used to critically appraise eligible studies. Findings show hyperpolarised gas MRI was able to detect structural and functional abnormalities in the lungs, detect response to treatments, and is more sensitive than FEV1 in detecting ventilation defects in CF patients. There was moderately robust evidence for construct validity of hyperpolarised gas MRI, although evidence for other types of validity is currently low. Nonetheless, high quality studies concluded that hyperpolarised gas MRI is a reliable tool and test results are reproducible in CF patients. Hyperpolarised gas MRI is a promising tool for detecting early CF pulmonary disease and for longitudinal monitoring of CF.
Collapse
Affiliation(s)
- Fatmah Mallallah
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Anna Packham
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ellen Lee
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK.
| | - Daniel Hind
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Munidasa S, Couch MJ, Rayment JH, Voskrebenzev A, Seethamraju R, Vogel-Claussen J, Ratjen F, Santyr G. Free-breathing MRI for monitoring ventilation changes following antibiotic treatment of pulmonary exacerbations in paediatric cystic fibrosis. Eur Respir J 2020; 57:13993003.03104-2020. [PMID: 33303537 DOI: 10.1183/13993003.03104-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/22/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Samal Munidasa
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Marcus J Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Andreas Voskrebenzev
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ravi Seethamraju
- MR Collaborations North East, Siemens Medical Solutions, Boston, MA, USA
| | - Jens Vogel-Claussen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Felix Ratjen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giles Santyr
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Marshall H, Kenworthy JC, Horn FC, Thomas S, Swift AJ, Siddiqui S, Brightling CE, Wild JM. Peripheral and proximal lung ventilation in asthma: Short-term variation and response to bronchodilator inhalation. J Allergy Clin Immunol 2020; 147:2154-2161.e6. [PMID: 33309743 DOI: 10.1016/j.jaci.2020.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND The relative involvement of the large and small airways in asthma is not clear. Hyperpolarized gas magnetic resonance imaging (MRI) provides high-resolution 3-dimensional images of ventilation distribution that can be quantified by the ventilated volume percentage (VV%) of the lungs. OBJECTIVE Our aims were to (1) quantify the baseline reproducibility of VV%, (2) assess the ventilation distribution between the proximal and peripheral lungs, and (3) investigate regional ventilation response to bronchodilator inhalation in a cohort of patients with asthma. METHODS A total of 33 patients with poorly controlled, moderate-to-severe asthma were scanned with hyperpolarized 3He MRI. Two image data sets were acquired at baseline, and 1 image data set was acquired after bronchodilator inhalation. Images were divided into proximal and peripheral regions for analysis. RESULTS Bland-Altman analysis showed strong reproducibility of VV% (bias = 0.12%; LOA = -1.86% to 2.10%). VV% variation at baseline was greater in the periphery than in the proximal lung. The proximal lung was better ventilated than the peripheral lung. Ventilation increased significantly in response to bronchodilator inhalation, globally and regionally, and the ventilation increase in response to bronchodilator inhalation was greater in the peripheral lung than in the proximal lung. Hyperpolarized gas MRI was more sensitive to changes in response to bronchodilator inhalation (58%) than spirometry (33%). CONCLUSION The peripheral lung showed reduced ventilation and a greater response to bronchodilator inhalation than the proximal lung. The high level of baseline reproducibility and sensitivity of hyperpolarized gas MRI to bronchodilator reversibility suggests that it is suitable for low subject number studies of therapy response.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - J Chris Kenworthy
- POLARIS, Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Felix C Horn
- POLARIS, Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Steven Thomas
- British Columbia Cancer Board, Vancouver, British Columbia, Canada
| | - Andrew J Swift
- POLARIS, Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Salman Siddiqui
- Institute for Lung Health and Leicester National Institute for Health Research Biomedical Research Centre (Respiratory Theme), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Christopher E Brightling
- Institute for Lung Health and Leicester National Institute for Health Research Biomedical Research Centre (Respiratory Theme), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Jim M Wild
- POLARIS, Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
|
27
|
Willers C, Bauman G, Andermatt S, Santini F, Sandkühler R, Ramsey KA, Cattin PC, Bieri O, Pusterla O, Latzin P. The impact of segmentation on whole-lung functional MRI quantification: Repeatability and reproducibility from multiple human observers and an artificial neural network. Magn Reson Med 2020; 85:1079-1092. [PMID: 32892445 DOI: 10.1002/mrm.28476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the repeatability and reproducibility of lung segmentation and their impact on the quantitative outcomes from functional pulmonary MRI. Additionally, to validate an artificial neural network (ANN) to accelerate whole-lung quantification. METHOD Ten healthy children and 25 children with cystic fibrosis underwent matrix pencil decomposition MRI (MP-MRI). Impaired relative fractional ventilation (RFV ) and relative perfusion (RQ ) from MP-MRI were compared using whole-lung segmentation performed by a physician at two time-points (At1 and At2 ), by an MRI technician (B), and by an ANN (C). Repeatability and reproducibility were assess with Dice similarity coefficient (DSC), paired t-test and Intraclass-correlation coefficient (ICC). RESULTS The repeatability within an observer (At1 vs At2 ) resulted in a DSC of 0.94 ± 0.01 (mean ± SD) and an unsystematic difference of -0.01% for RFV (P = .92) and +0.1% for RQ (P = .21). The reproducibility between human observers (At1 vs B) resulted in a DSC of 0.88 ± 0.02, and a systematic absolute difference of -0.81% (P < .001) for RFV and -0.38% (P = .037) for RQ . The reproducibility between human and the ANN (At1 vs C) resulted in a DSC of 0.89 ± 0.03 and a systematic absolute difference of -0.36% for RFV (P = .017) and -0.35% for RQ (P = .002). The ICC was >0.98 for all variables and comparisons. CONCLUSIONS Despite high overall agreement, there were systematic differences in lung segmentation between observers. This needs to be considered for longitudinal studies and could be overcome by using an ANN, which performs as good as human observers and fully automatizes MP-MRI post-processing.
Collapse
Affiliation(s)
- Corin Willers
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Simon Andermatt
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Robin Sandkühler
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kathryn A Ramsey
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Orso Pusterla
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Verger N, Arigliani M, Raywood E, Duncan J, Negreskul Y, Bush A, Aurora P. Limitations of regional ventilation inhomogeneity indices in children with cystic fibrosis. Pediatr Pulmonol 2020; 55:2315-2322. [PMID: 32441886 DOI: 10.1002/ppul.24863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Scond is a multiple breath washout (MBW) index that measures convection-dependent ventilation inhomogeneity (CDI) arising within conductive airways, but the calculation method is unreliable in subjects with advanced cystic fibrosis (CF) lung disease. A new CDI index, Scond *, has been proposed for use in adults with CF and moderate to severe ventilation inhomogeneity. We aimed to evaluate the most appropriate CDI index in children and adolescents with CF and various degrees of inhomogeneity, and from that the most appropriate diffusion-convection-interaction index (Sacin or Sacin *). METHODS Scond , Sacin and the alternative indices, Scond *, and Sacin * were retrospectively calculated in subjects with CF aged 3 to 18 years and age-matched controls, who underwent sulfur hexafluoride MBW between 2003 and 2015. The upper limit of normal was based on 95th percentile of the control population. RESULTS One hundred and twenty-seven subjects with CF (44% male; mean age ± SD: 7.5 years ± 4.9) and 94 controls (53% male; 7.9 years ± 5.1) were included in the final analysis. All measures of ventilation inhomogeneity were significantly higher in children with CF. As predicted, Scond reached a maximum value at lung clearance index (LCI) values of approximately 9. In subjects with LCI ≥ 9 Scond * showed good correlation with LCI, whilst Scond had no relationship with LCI (Spearman rank correlation Scond */LCI, 0.49; P < .01; Scond /LCI, -0.068; P = .46). In subjects with mild disease (LCI < 9) Scond was more frequently abnormal than Scond * (37% vs 16%; P = .01). CONCLUSIONS Scond and Sacin are sensitive indices of early regional inhomogeneity, but are of no value when LCI ≥ 9. In these subjects, Scond * & Sacin * are potential alternatives.
Collapse
Affiliation(s)
- Nicolas Verger
- Respiratory, Critical Care and Anaesthesia Section, Infection Inflammation and Immunity Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michele Arigliani
- Division of Pediatrics, Department of Medicine, University Hospital of Udine, Udine, Italy
| | - Emma Raywood
- Respiratory, Critical Care and Anaesthesia Section, Infection Inflammation and Immunity Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Julie Duncan
- Respiratory, Critical Care and Anaesthesia Section, Infection Inflammation and Immunity Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Yulia Negreskul
- Respiratory, Critical Care and Anaesthesia Section, Infection Inflammation and Immunity Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew Bush
- Respiratory Division, The National Heart and Lung Institute, Imperial College, London, UK
| | - Paul Aurora
- Respiratory, Critical Care and Anaesthesia Section, Infection Inflammation and Immunity Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Smith LJ, Horsley A, Bray J, Hughes PJC, Biancardi A, Norquay G, Wildman M, West N, Marshall H, Wild JM. The assessment of short and long term changes in lung function in CF using 129Xe MRI. Eur Respir J 2020; 56:2000441. [PMID: 32631840 DOI: 10.1183/13993003.00441-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION 129Xe ventilation MRI is sensitive to detect early CF lung disease and response to treatment. 129Xe-MRI could play a significant role in clinical trials and patient management. Here we present data on the repeatability of imaging measurements and their sensitivity to longitudinal change. METHODS 29 children and adults with CF and a range of disease severity were assessed twice, a median [IQR] of 16.0 [14.4,19.5] months apart. Patients performed 129Xe-MRI, lung clearance index (LCI), body plethysmography and spirometry at both visits. Eleven patients repeated 129Xe-MRI in the same session to assess the within-visit repeatability. The ventilation defect percentage (VDP) was the primary metric calculated from 129Xe-MRI. RESULTS At baseline, mean (sd) age=23.0 (11.1) years and FEV1 z-score=-2.2 (2.0). Median [IQR] VDP=9.5 [3.4,31.6]%, LCI=9.0 [7.7,13.7]. Within-visit and inter-visit repeatability of VDP was high. At 16 months there was no single trend of 129Xe-MRI disease progression. Visible 129Xe-MRI ventilation changes were common, which reflected changes in VDP. Based on the within-visit repeatability, a significant short-term change in VDP is >±1.6%. For longer-term follow up, changes in VDP of up to ±7.7% can be expected, or ±4.1% for patients with normal FEV1. No patient had a significant change in FEV1, however 59% had change in VDP >±1.6%. In patients with normal FEV1, there were significant changes in ventilation and in VDP. CONCLUSIONS 129Xe-MRI is a highly effective method for assessing longitudinal lung disease in patients with CF. VDP has great potential as a sensitive clinical outcome measure of lung function and endpoint for clinical trials.
Collapse
Affiliation(s)
- Laurie J Smith
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Alex Horsley
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Respiratory Research Group, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jody Bray
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Martin Wildman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Noreen West
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Goralski JL, Chung SH, Glass TM, Ceppe AS, Akinnagbe-Zusterzeel EO, Trimble AT, Boucher RC, Soher BJ, Charles HC, Donaldson SH, Lee YZ. Dynamic perfluorinated gas MRI reveals abnormal ventilation despite normal FEV1 in cystic fibrosis. JCI Insight 2020; 5:133400. [PMID: 31855577 PMCID: PMC7098716 DOI: 10.1172/jci.insight.133400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
We hypothesized that dynamic perfluorinated gas MRI would sensitively detect mild cystic fibrosis (CF) lung disease. This cross-sectional study enrolled 20 healthy volunteers and 24 stable subjects with CF, including a subgroup of subjects with normal forced expiratory volume in the first second (FEV1; >80% predicted, n = 9). Dynamic fluorine-19-enhanced MRI (19F MRI) were acquired during sequential breath holds while breathing perfluoropropane (PFP) and during gas wash-out. Outcomes included the fraction of lung without significant ventilation (ventilation defect percent, VDP) and time constants that described PFP wash-in and wash-out kinetics. VDP values (mean ± SD) of healthy controls (3.87% ± 2.7%) were statistically different from moderate CF subjects (19.5% ± 15.5%, P = 0.001) but not from mild CF subjects (10.4% ± 9.9%, P = 0.24). In contrast, the fractional lung volume with slow gas wash-out was elevated both in subjects with mild (9.61% ± 4.87%; P = 0.0066) and moderate CF (16.01% ± 5.01%; P = 0.0002) when compared with healthy controls (3.84% ± 2.16%) and distinguished mild from moderate CF (P = 0.006). 19F MRI detected significant ventilation abnormalities in subjects with CF. The ability of gas wash-out kinetics to distinguish between healthy and mild CF lung disease subjects makes 19F MRI a potentially valuable method for the characterization of early lung disease in CF. This study has been registered at ClinicalTrials.gov (NCT03489590).
Collapse
Affiliation(s)
- Jennifer L. Goralski
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
- Division of Pediatric Pulmonology, Department of Pediatrics
| | | | - Tyler M. Glass
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Agathe S. Ceppe
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | | | - Aaron T. Trimble
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | - Richard C. Boucher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | | | - H. Cecil Charles
- Duke Image Analysis Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott H. Donaldson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | - Yueh Z. Lee
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Biomedical Research Imaging Center, and
| |
Collapse
|
31
|
Couch MJ, Morgado F, Kanhere N, Kowalik K, Rayment JH, Ratjen F, Santyr G. Assessing the feasibility of hyperpolarized
129
Xe multiple‐breath washout MRI in pediatric cystic fibrosis. Magn Reson Med 2019; 84:304-311. [DOI: 10.1002/mrm.28099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Marcus J. Couch
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| | - Felipe Morgado
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Faculty of Medicine University of Toronto Toronto Ontario Canada
| | - Nikhil Kanhere
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Krzysztof Kowalik
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Jonathan H. Rayment
- Division of Respiratory Medicine British Columbia Children’s Hospital Vancouver British Columbia Canada
| | - Felix Ratjen
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Division of Respiratory Medicine The Hospital for Sick Children Toronto Ontario Canada
| | - Giles Santyr
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| |
Collapse
|
32
|
Lombardi E, Gambazza S, Pradal U, Braggion C. Lung clearance index in subjects with cystic fibrosis in Italy. Ital J Pediatr 2019; 45:56. [PMID: 31046783 PMCID: PMC6498565 DOI: 10.1186/s13052-019-0647-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Lung Clearance Index (LCI) is an index derived from washout recordings, able to detect early peripheral airway damage in subjects with cystic fibrosis (CF) with a greater sensitivity than spirometry. LCI is a marker of overall lung ventilation inhomogeneity; in fact, as pulmonary ventilation worsens, the number of tidal breaths and the expiratory volumes required to clear the lungs of a marker gas are increased, as documented by a greater value. In the field of CF, LCI allows indirect investigation of the small airways (< 2 mm) the site where, from a pathophysiologic point of view, the disease begins due to the defect of the CF transmembrane-conductance regulator (CFTR) protein. Infant pulmonary function changes seem to occur before clinically overt symptoms of lower respiratory illness occur. When performing the test, it is important to refer to the American Thoracic Society and European Respiratory Society consensus statements and apply a strict standardization. In Italy the first tests were carried out in 2014 for research purpose and now approximately 10 centers are collecting data and are experiencing a consistency in repeating exams. Currently in Italian centers children at pre-school age are the main target: in this population it is important to have a sensitive and feasible test, non-invasive, that can be performed at tidal volume without sedation, and requiring minimal cooperation and coordination, and that can be used longitudinally over time. Another target could be the transplanted subjects to detect early signs of lung function decline. The content of this paper captures the experience and discussions among some of the Italian centers where LCI is currently used for research and/or in clinical practice about the method and the need to have a common approach. The aim of this paper is not to describe the methodology of MBW, but to inform the pediatric community about the possible application of LCI in CF.
Collapse
Affiliation(s)
- Enrico Lombardi
- Azienda Ospedaliero-Universitaria Meyer, Pediatric University Hospital, Viale Pieraccini 24, 50139, Florence, Italy.
| | - Simone Gambazza
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Centre, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, U.O.C. Direzione delle Professioni Sanitarie, Milan, Italy
| | - Ugo Pradal
- UO Pediatria Ospedale di Rovereto, APSS Trento, Trento, Italy
| | - Cesare Braggion
- Azienda Ospedaliero-Universitaria Meyer, Pediatric University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| |
Collapse
|
33
|
Donaldson SH. Exercising our options: comparing effects of exercise and positive expiratory pressure on mucociliary clearance. Eur Respir J 2019; 53:53/4/1900510. [PMID: 31000670 DOI: 10.1183/13993003.00510-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Scott H Donaldson
- Division of Pulmonary and Critical Care and Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Nenna R, Hunt KA, Dassios T, Collins JJ, Rottier RJ, Liu NM, Rottier B, Goutaki M, Karadag B, Prayle A, Fernandes RM, Parisi G, Barben J, Rubbo B, Snijders D, Makrinioti H, Hall G, Pijnenburg MW, Grigg J. Key paediatric messages from the 2018 European Respiratory Society International Congress. ERJ Open Res 2019; 5:00241-2018. [PMID: 31044141 PMCID: PMC6487274 DOI: 10.1183/23120541.00241-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/23/2019] [Indexed: 11/29/2022] Open
Abstract
In this article, the Group Chairs and early career members of the European Respiratory Society (ERS) Paediatric Assembly highlight some of the most interesting findings in the field of paediatrics which were presented at the 2018 international ERS Congress.
Collapse
Affiliation(s)
- Raffaella Nenna
- Dept of Paediatrics, Sapienza University of Rome, Rome, Italy
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA
| | - Katie A. Hunt
- Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Theodore Dassios
- Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jennifer J.P. Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Robbert J. Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Norrice M. Liu
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University London, London, UK
| | - Bart Rottier
- Beatrix Children's Hospital, University Medical Centre Groningen, Groningen, The Netherlands
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Bülent Karadag
- Division of Pediatric Pulmonology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Andrew Prayle
- Child Health, Obstetrics and Gynaecology, The University of Nottingham, Nottingham, UK
| | - Ricardo M. Fernandes
- Dept of Pediatrics, Santa Maria Hospital, Lisbon, Portugal
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - Jürg Barben
- Division of Paediatric Pulmonology, Children's Hospitals of Eastern Switzerland, St. Gallen, Switzerland
| | - Bruna Rubbo
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- University of Southampton, Faculty of Medicine, Academic Unit of Clinical and Experimental Science, Southampton, UK
| | - Deborah Snijders
- Dept of Women's and Children Health, University of Padova, Padova, Italy
| | | | - Graham Hall
- Telethon Kids Institute and Curtin University, Perth, Australia
| | - Mariëlle W. Pijnenburg
- Dept of Paediatrics, Division of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jonathan Grigg
- Centre for Paediatrics, Queen Mary University London, London, UK
| |
Collapse
|
35
|
Tahir BA, Marshall H, Hughes PJC, Brightling CE, Collier G, Ireland RH, Wild JM. Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre. Phys Med Biol 2019; 64:055013. [PMID: 30673634 DOI: 10.1088/1361-6560/ab0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Image registration of lung CT images acquired at different inflation levels has been proposed as a surrogate method to map lung 'ventilation'. Prior to clinical use, it is important to understand how this technique compares with direct ventilation imaging modalities such as hyperpolarised gas MRI. However, variations in lung inflation level have been shown to affect regional ventilation distributions. Therefore, the aim of this study was to evaluate the impact of lung inflation levels when comparing CT ventilation imaging to ventilation from 3He-MRI. Seven asthma patients underwent breath-hold CT at total lung capacity (TLC) and functional residual capacity (FRC). 3He-MRI and a same-breath 1H-MRI were acquired at FRC+1L and TLC. Percentage ventilated volumes (%VVs) were calculated for FRC+1L and TLC 3He-MRI. TLC-CT and registered FRC-CT were used to compute a surrogate ventilation map from voxel-wise intensity differences in Hounsfield unit values, which was thresholded at the 10th and 20th percentiles. For direct comparison of CT and 3He-MRI ventilation, FRC+1L and TLC 3He-MRI were registered to TLC-CT indirectly via the corresponding same-breath 1H-MRI data. For 3He-MRI and CT ventilation comparison, Dice similarity coefficients (DSCs) between the binary segmentations were computed. The median (range) of %VVs for FRC+1L and TLC 3He-MRI were 90.5 (54.9-93.6) and 91.8 (67.8-96.2), respectively (p = 0.018). For MRI versus CT ventilation comparison, statistically significant improvements in DSCs were observed for TLC 3He MRI when compared with FRC+1L, with median (range) values of 0.93 (0.86-0.93) and 0.86 (0.68-0.92), respectively (p = 0.017), for the 10-100th percentile and 0.87 (0.83-0.88) and 0.81 (0.66-0.87), respectively (p = 0.027), for the 20-100th percentile. Correlation of CT ventilation imaging and hyperpolarised gas MRI is sensitive to lung inflation level. For ventilation maps derived from CT acquired at FRC and TLC, a higher correlation with gas ventilation MRI can be achieved if the MRI is acquired at TLC.
Collapse
Affiliation(s)
- Bilal A Tahir
- POLARIS, Academic Radiology, University of Sheffield, Sheffield, United Kingdom. Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
36
|
Rayment JH, Couch MJ, McDonald N, Kanhere N, Manson D, Santyr G, Ratjen F. Hyperpolarised 129Xe magnetic resonance imaging to monitor treatment response in children with cystic fibrosis. Eur Respir J 2019; 53:13993003.02188-2018. [DOI: 10.1183/13993003.02188-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023]
Abstract
Pulmonary magnetic resonance imaging using hyperpolarised 129Xe gas (XeMRI) can quantify ventilation inhomogeneity by measuring the percentage of unventilated lung volume (ventilation defect per cent (VDP)). While previous studies have demonstrated its sensitivity for detecting early cystic fibrosis (CF) lung disease, the utility of XeMRI to monitor response to therapy in CF is unknown. The aim of this study was to assess the ability of XeMRI to capture treatment response in paediatric CF patients undergoing inpatient antibiotic treatment for a pulmonary exacerbation.15 CF patients aged 8–18 years underwent XeMRI, spirometry, plethysmography and multiple-breath nitrogen washout at the beginning and end of inpatient treatment of a pulmonary exacerbation. VDP was calculated from XeMRI images obtained during a static breath hold using semi-automated k-means clustering and linear binning approaches.XeMRI was well tolerated. VDP, lung clearance index and the forced expiratory volume in 1 s all improved with treatment; however, response was not uniform in individual patients. Of all outcome measures, VDP showed the largest relative improvement (−42.1%, 95% CI −52.1–−31.9%, p<0.0001).These data support further investigation of XeMRI as a tool to capture treatment response in CF lung disease.
Collapse
|
37
|
Stahl M, Joachim C, Wielpütz MO, Mall MA. Authors' response: Letter to the Editor 'Comparison of lung clearance index determined by washout of N2 and SF6 in infants and preschool children with cystic fibrosis'. J Cyst Fibros 2019; 18:e28-e29. [PMID: 30738803 DOI: 10.1016/j.jcf.2019.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Mirjam Stahl
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany.
| | - Cornelia Joachim
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Mark O Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Department of Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Marcus A Mall
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany.
| |
Collapse
|