1
|
Baddour NA, Paulin LM, Gassett AJ, Woo H, Hoffman EA, Newell JD, Woodruff PG, Pirozzi CS, Barjaktarevic I, Barr RG, O’Neal W, Han MK, Martinez FJ, Peters SP, Hastie AT, Hansel NN, Ortega VE, Kaufman JD, Sack CS. Air Pollution Exposure and Interstitial Lung Features in SPIROMICS Participants with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2024; 21:1251-1260. [PMID: 38568439 PMCID: PMC11376362 DOI: 10.1513/annalsats.202308-741oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/02/2024] [Indexed: 08/31/2024] Open
Abstract
Rationale: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). Objectives: To determine whether air pollution increases the prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation areas (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. Methods: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. Ten-year exposure to particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone before enrollment CT (completed between 2010 and 2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk (RR) of ILA or increased percent HAA (between -600 and -250 Hounsfield units), respectively. We assessed for effect modification by MUC5B-promoter polymorphism (variant allele carriers GT or TT vs. GG at rs3705950), smoking status, sex, and percent emphysema. Results: Among 1,272 participants with COPD assessed for HAA, 424 were current smokers, and 249 were carriers of the variant MUC5B allele. A total of 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (P value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (P value interaction term for NOx = 0.05; NO2 = 0.01; and ozone = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had an increased risk of ILA (RR per 26 ppb NOx, 2.41; 95% confidence interval [CI], 0.97-6.0; and RR per 4 μg ⋅ m-3 PM2.5, 1.43; 95% CI, 0.93-2.2, respectively). With higher exposure to NO2, former smokers had an increased risk of ILA (RR per 10 ppb, 1.64; 95% CI, 1.0-2.7). Conclusions: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.
Collapse
Affiliation(s)
| | - Laura M. Paulin
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Han Woo
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - John D. Newell
- Department of Radiology, University of Washington, Seattle, Washington
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Prescott G. Woodruff
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Cheryl S. Pirozzi
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Igor Barjaktarevic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Wanda O’Neal
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meilan K. Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Stephen P. Peters
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Annette T. Hastie
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Victor E. Ortega
- Division of Respiratory Diseases, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Joel D. Kaufman
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, and
| | - Coralynn S. Sack
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, and
| |
Collapse
|
2
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
3
|
Beasley MB. Interstitial Lung Abnormalities. Surg Pathol Clin 2024; 17:215-225. [PMID: 38692806 DOI: 10.1016/j.path.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Interstitial lung abnormalities (ILA) is a radiographic term, which has recently undergone clarification of definition with creation of 3 subtypes. ILA is defined as incidental identification of computed tomography abnormalities in a patient who is not suspected of having an interstitial lung disease (ILD). A subset of ILA may progress to clinically significant ILD and is associated with morbidities not related to progression such as an increased incidence of sepsis-related acute respiratory distress syndrome (ARDS). ILA has been associated with an increased incidence of treatment-related complications in patients with lung cancer. Information on corresponding histology is limited; knowledge gaps exist concerning optimal patient management.
Collapse
Affiliation(s)
- Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg 15-76, New York, NY 10029, USA.
| |
Collapse
|
4
|
Shiraishi Y, Tanabe N, Sakamoto R, Maetani T, Kaji S, Shima H, Terada S, Terada K, Ikezoe K, Tanizawa K, Oguma T, Handa T, Sato S, Muro S, Hirai T. Longitudinal assessment of interstitial lung abnormalities on CT in patients with COPD using artificial intelligence-based segmentation: a prospective observational study. BMC Pulm Med 2024; 24:200. [PMID: 38654252 PMCID: PMC11036664 DOI: 10.1186/s12890-024-03002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Interstitial lung abnormalities (ILAs) on CT may affect the clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), but their quantification remains unestablished. This study examined whether artificial intelligence (AI)-based segmentation could be applied to identify ILAs using two COPD cohorts. METHODS ILAs were diagnosed visually based on the Fleischner Society definition. Using an AI-based method, ground-glass opacities, reticulations, and honeycombing were segmented, and their volumes were summed to obtain the percentage ratio of interstitial lung disease-associated volume to total lung volume (ILDvol%). The optimal ILDvol% threshold for ILA detection was determined in cross-sectional data of the discovery and validation cohorts. The 5-year longitudinal changes in ILDvol% were calculated in discovery cohort patients who underwent baseline and follow-up CT scans. RESULTS ILAs were found in 32 (14%) and 15 (10%) patients with COPD in the discovery (n = 234) and validation (n = 153) cohorts, respectively. ILDvol% was higher in patients with ILAs than in those without ILA in both cohorts. The optimal ILDvol% threshold in the discovery cohort was 1.203%, and good sensitivity and specificity (93.3% and 76.3%) were confirmed in the validation cohort. 124 patients took follow-up CT scan during 5 ± 1 years. 8 out of 124 patients (7%) developed ILAs. In a multivariable model, an increase in ILDvol% was associated with ILA development after adjusting for age, sex, BMI, and smoking exposure. CONCLUSION AI-based CT quantification of ILDvol% may be a reproducible method for identifying and monitoring ILAs in patients with COPD.
Collapse
Affiliation(s)
- Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Kyoto, Japan.
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizuo Kaji
- Institute of Mathematics for Industry, Kyusyu University, Fukuoka, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Respiratory Medicine and General Practice, Terada Clinic, Himeji, Hyogo, Japan
| | - Kunihiko Terada
- Respiratory Medicine and General Practice, Terada Clinic, Himeji, Hyogo, Japan
| | - Kohei Ikezoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Seok J, Park S, Yoon EC, Yoon HY. Clinical outcomes of interstitial lung abnormalities: a systematic review and meta-analysis. Sci Rep 2024; 14:7330. [PMID: 38538680 PMCID: PMC10973382 DOI: 10.1038/s41598-024-57831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024] Open
Abstract
Interstitial lung abnormalities (ILA), incidental findings on computed tomography scans, have raised concerns due to their association with worse clinical outcomes. Our meta-analysis, which included studies up to April 2023 from PubMed/MEDLINE, Embase, and Cochrane Library, aimed to clarify the impact of ILA on mortality, lung cancer development, and complications from lung cancer treatments. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for outcomes. Analyzing 10 studies on ILA prognosis and 9 on cancer treatment complications, we found that ILA significantly increases the risk of overall mortality (RR 2.62, 95% CI 1.94-3.54; I2 = 90%) and lung cancer development (RR 3.85, 95% CI 2.64-5.62; I2 = 22%). Additionally, cancer patients with ILA had higher risks of grade 2 radiation pneumonitis (RR 2.28, 95% CI 1.71-3.03; I2 = 0%) and immune checkpoint inhibitor-related interstitial lung disease (RR 3.05, 95% CI 1.37-6.77; I2 = 83%) compared with those without ILA. In conclusion, ILA significantly associates with increased mortality, lung cancer risk, and cancer treatment-related complications, highlighting the necessity for vigilant patient management and monitoring.
Collapse
Affiliation(s)
- Jinwoo Seok
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Eun Chong Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea.
| |
Collapse
|
6
|
Oh JH, Kim GHJ, Song JW. Interstitial lung abnormality evaluated by an automated quantification system: prevalence and progression rate. Respir Res 2024; 25:78. [PMID: 38321467 PMCID: PMC10848490 DOI: 10.1186/s12931-024-02715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Despite the importance of recognizing interstitial lung abnormalities, screening methods using computer-based quantitative analysis are not well developed, and studies on the subject with an Asian population are rare. We aimed to identify the prevalence and progression rate of interstitial lung abnormality evaluated by an automated quantification system in the Korean population. METHODS A total of 2,890 healthy participants in a health screening program (mean age: 49 years, men: 79.5%) with serial chest computed tomography images obtained at least 5 years apart were included. Quantitative lung fibrosis scores were measured on the chest images by an automated quantification system. Interstitial lung abnormalities were defined as a score ≥ 3, and progression as any score increased above baseline. RESULTS Interstitial lung abnormalities were identified in 251 participants (8.6%), who were older and had a higher body mass index. The prevalence increased with age. Quantification of the follow-up images (median interval: 6.5 years) showed that 23.5% (59/251) of participants initially diagnosed with interstitial lung abnormality exhibited progression, and 11% had developed abnormalities (290/2639). Older age, higher body mass index, and higher erythrocyte sedimentation rate were independent risk factors for progression or development. The interstitial lung abnormality group had worse survival on follow-up (5-year mortality: 3.4% vs. 1.5%; P = 0.010). CONCLUSIONS Interstitial lung abnormality could be identified in one-tenth of the participants, and a quarter of them showed progression. Older age, higher body mass index and higher erythrocyte sedimentation rate increased the risk of development or progression of interstitial lung abnormality.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Grace Hyun J Kim
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jin Woo Song
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88, Olympic-Ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Brillet PY, Tran Ba S, Nunes H. How does the MESA Lung Study sharpen blurry edges in interstitial lung abnormalities? Eur Respir J 2023; 61:2300397. [PMID: 37290811 DOI: 10.1183/13993003.00397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Pierre-Yves Brillet
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Stéphane Tran Ba
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Pneumologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| |
Collapse
|