1
|
Higham A, Singh D. Inhaled corticosteroid responses in COPD: do mast cells hold the answer? Thorax 2023; 78:323-324. [PMID: 36598041 DOI: 10.1136/thorax-2022-219534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK .,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
2
|
Higham A, Dungwa J, Pham T, McCrae C, Singh D. Increased mast cell activation in eosinophilic chronic obstructive pulmonary disease. Clin Transl Immunology 2022; 11:e1417. [PMID: 36188122 PMCID: PMC9512688 DOI: 10.1002/cti2.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives A subset of chronic obstructive pulmonary disease (COPD) patients have increased numbers of airway eosinophils associated with elevated markers of T2 inflammation. This analysis focussed on mast cell counts and mast cell‐related gene expression in COPD patients with higher vs lower eosinophil counts. Methods We investigated gene expression of tryptase (TPSAB1), carboxypeptidase A3 (CPA3), chymase (CMA1) and two mast cell specific gene signatures; a bronchial biopsy signature (MCbb) and an IgE signature (MCIgE) using sputum cells and bronchial epithelial brushings. Gene expression analysis was conducted by RNA‐sequencing. We also examined bronchial biopsy mast cell numbers by immunohistochemistry. Results There was increased expression of TPSAB1, CPA3 and MCbb in eosinophilhigh than in eosinophillow COPD patients in sputum cells and bronchial epithelial brushings (fold change differences 1.21 and 1.28, respectively, P < 0.01). Mast cell gene expression was associated with markers of T2 and eosinophilic inflammation (IL13, CLCA1, CST1, CCL26, eosinophil counts in sputum and bronchial mucosa; rho = 0.4–0.8; P < 0.05). There was no difference in MCIgE gene expression between groups. There was no difference in the total number of bronchial biopsy mast cells between groups. Conclusion These results demonstrate that eosinophilic inflammation is associated with altered mast cell characteristics in COPD patients, implicating mast cells as a component of T2 inflammation present in a subset of COPD patients.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester and Manchester University NHS Foundation TrustManchesterUK
| | - Josiah Dungwa
- Medicines Evaluation UnitThe Langley BuildingManchesterUK
| | - Tuyet‐Hang Pham
- Translational Science & Experimental MedicineEarly Respiratory & Immunology, Research and Early Development, AstraZeneca, One MedImmune WayGaithersburgMDUSA
| | - Christopher McCrae
- Translational Science & Experimental MedicineEarly Respiratory & Immunology, Research and Early Development, AstraZeneca, One MedImmune WayGaithersburgMDUSA
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester and Manchester University NHS Foundation TrustManchesterUK
- Medicines Evaluation UnitThe Langley BuildingManchesterUK
| |
Collapse
|
3
|
Singh D, Agusti A, Martinez FJ, Papi A, Pavord ID, Wedzicha JA, Vogelmeier CF, Halpin DMG. Blood Eosinophils and Chronic Obstructive Pulmonary Disease: A GOLD Science Committee 2022 Review. Am J Respir Crit Care Med 2022; 206:17-24. [PMID: 35737975 DOI: 10.1164/rccm.202201-0209pp] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
COPD is a heterogeneous condition. Some patients benefit from treatment with inhaled corticosteroids (ICS) but this requires a precision medicine approach, based on clinical characteristics (phenotyping) and biological information (endotyping) in order to select patients most likely to benefit. The GOLD 2019 report recommended using exacerbation history combined with blood eosinophil counts (BEC) to identify such patients. Importantly, the relationship between BEC and ICS effects is continuous; no / small effects are observed at lower BEC, with increasing effects at higher BEC. The GOLD 2022 report has added additional evidence and recommendations concerning the use of BEC in COPD in clinical practice. Notably, associations have been demonstrated in COPD patients between higher BEC and increased levels of type-2 inflammation in the lungs. These differences in type-2 inflammation can explain the differential ICS response according to BEC. Additionally, lower BEC are associated with greater presence of proteobacteria, notably haemophilus, and increased bacterial infections and pneumonia risk. These observations support management strategies that use BEC to help identify subgroups with increased ICS response (higher BEC) or increased risk of bacterial infection (lower BEC). Recent studies in younger individuals without COPD have also shown that higher BEC are associated with increased risk of FEV1 decline and the development of COPD. Here we discuss and summarise the GOLD 2022 recommendations concerning the use of BEC as a biomarker that can facilitate a personalised management approach in COPD.
Collapse
Affiliation(s)
- Dave Singh
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - Alvar Agusti
- Fundacio Clinic per a la Recerca Biomedica, 189152, Barcelona, Spain
| | | | - Alberto Papi
- University of Ferrara, Research Centre on Asthma and COPD, Ferrara, Italy
| | - Ian D Pavord
- Oxford University, Nuffield department of Medicine, Respiratory Medicine, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Jadwiga A Wedzicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | | | - David M G Halpin
- University of Exeter College of Medicine, University of Exeter Medical School, Exeter, United Kingdom of Great Britain and Northern Ireland.,Royal Devon and Exeter Hospital, 159028, Exeter, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Nguyen HO, Salvi V, Tiberio L, Facchinetti F, Govoni M, Villetti G, Civelli M, Barbazza I, Gaudenzi C, Passari M, Schioppa T, Sozio F, Del Prete A, Sozzani S, Bosisio D. The PDE4 inhibitor tanimilast shows distinct immunomodulatory properties associated with a type 2 endotype and CD141 upregulation. J Transl Med 2022; 20:203. [PMID: 35538539 PMCID: PMC9092691 DOI: 10.1186/s12967-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Background Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. Methods DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. Results Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. Conclusion Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Maurizio Civelli
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|